HW 1, due Thursday Feb 7

1. You flip 3 fair coins which are either H (eads) or T (ails). List all the elements in the the sample space. Find the probability that you flip exactly 2 heads. Compute the expected number of heads using two methods: sum over the sample space and sum over the number of possible heads.
2. A deck of 52 cards has 13 hearts. What is the probability the first 3 cards are hearts? If the first card is a heart, what is the probability the next 2 cards are hearts? If the first 2 cards are hearts, what is the probability the next card is a heart?
3. Consider events A and B. Suppose $P(A \mid B)=P(A \mid \bar{B})$. Show that A and B are independent.
4. Consider events A and B. Let C be the event that where either A occurs or B occurs, but not both. Show $P(C)=P(A)+P(B)-2 P(A \cap B)$.
5. Consider events A and B. Suppose $P(A)=0.2, P(B)=0.3$ and $P(A \cup B)=0.4$. Compute $P(A \cap B)$ and $P(\bar{A} \mid B)$.
6. A cat has a litter of kittens. Each kitten has a 50% chance of being female and 50% chance of being male. Let A the event that there is at most one female. Let B be the event that the litter contains both sexes. Are A and B independent? Explain.
7. There are two methods, A and B to teach Math 456. Method A works for 80% of the students and method B for 90%. B takes more work on the instructor's part and is thus used only 30% of the time math 456 is taught. Mike took 456 but the class did not work for him. What is the probability Mike was taught 456 using method A?
8. The population is 40% Whigs and 60% Tories. 30% of Whigs favor wearing wigs and 70% of Tories favor wearing wigs. A randomly chosen person is found to favor wearing a wig. Find the conditional probability that this person is a Whig.
9. Let Y be a random variable who probability density function is given by $P(Y=$ $y)=\frac{y}{10}$ when y is an integer between 1 and n inclusive. What should n be for this to be valid probability density function? Compute $E(Y), V(Y), E(17 Y-\pi)$ and $E(1 / Y)$.
10. 10% of bottles produced at a factory have cracks. If two bottles are selected, find the mean and variance of the number of cracked bottles selected.
