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Abstract. A random growth model known as Internal Diffusion-Limited Aggregation, is

discussed. This model amounts to a Markov chain whose state space is the subsets of Z2.

We review Diaconis and Fulton related notion of “multiplication” for sets of Z2 and how it
relates to this process. We also discuss the long time behavior of the model: after n steps,

the state of the chain resembles a circle of a certain radius proportional to
√
n, a fact first

proved by Lawler et al.

1. Background

A mathematical model combining some kind of particle dynamics, and a rule by which
different particles start coalescing into a growing cluster is known as a growth model. Often,
such a model amounts to a Markov chain where the state space are subsets of a lattice (or
a more general discrete set). In this note, we discuss one such model. It was introduced by
Diaconis and Fulton [1] and Lawler et al [2]. Here is an informal description of this process: at
time n we have a set An, which initialized as

A0 = {0}.‘′

The evolution from An to An+1 is as follows. We consider a random walk Xt starting at 0 and
run it until the first time it hits Ac

n, this is a point XTAc
n

, so we set

An+1 = An ∪ {XTAc
n
},

where for a set B, TB denotes the first time that Xt reaches B.
This model is a variation on one introduced by Witten and Sander [3] which they dubbed

Diffusion-Limited Aggregation. In the orignal model of Witten and Sander (dubbed just DLA)
there is again an initial “seed” A0 = {0}. Then the way to go from An to An+1 is to start a
random walk very far from the origin (concretely: one places a the starting point at one point
chosen at random uniformly from the sphere of large radius centered at zero), and run it until
it reaches for the first time one of the points which have a point of An as a neighbor.

In this model any emerging branches will continuously grow further, with unoccupied region
near the origin being blocked from being visited. By contrast, in the internal DLA variation,
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unoccupied sites closer the origin will be more likely to be visited than far away ones. Therefore
just as in DLA one sees the appearance of marked irregularities, for internal DLA one expects
a more or less symmetric shape to emerge, in fact, a disc.

This much was suggested by numerical simulations (one example is presented in the previous
page). Later Lawler et al [2] used estimates on hitting probabilities of random walks to prove
that in fact, as n grows, the cluster An begins to resemble with high probability a disc of
radius proportional to n1/d. More concretely, they showed that given any number ε > 0, with
probability 1 there is a (random) number Nε such that An contains a disc of radius cdn

1/d(1−ε)
and is contained in a disc of radius cdn

1/d(1 + ε). This result is stated in precise form later
Theorem 2.1. In section 4 we discuss the results of numerical simulations that illustrate the
scaling n1/d for the size of the disc.

2. Markov Chain Formalism and asymptotics

We consider a Cartesian grid, denoted by

Z2 =
{

(x, y) | x, y are integers
}

We have a growing sequence of random sets An ⊂ Z2, and the probability of going from the
set A to the set B is given by

P[An+1 = B | An = A] =

{
h0(Ac, {x}) if B = A ∪ {x}, x 6∈ A,

0 if B otherwise.

Here hz(A,B) denotes the probability that starting from z, the random walk first hits the set
A at a node belonging to the set B ⊂ A.

Lawler et al show in [2] that indeed the asymptotic limit of the An is, after a proper rescaling,
a ball (this is in fact the main result in [2]).

Theorem 2.1. Fix ε > 0, then for all n large enough we have

Bn(1−ε)(0) ⊂ A(ωdn
d) ⊂ Bn(1+ε)(0).

Equivalently, for cd = ω
−1/d
d and all sufficiently large t, we have

Bcdt1/d(1−ε)(0) ⊂ A(t) ⊂ Bcdt1/d(1+ε)(0).

An alternative way of expressing this theorem, is if we define the two random quantities

R(n) = max{|z| | z ∈ ∂A(n)}
r(n) = min{|z| | z ∈ ∂A(N)}.

where

∂A(n) =
{
z ∈ A(n) | one of A(n) nearest neighbors lies outside A(n)

}
.

Then, the above theorem says that, with probability 1, as n→∞
log(R(n)) = 1

d log(n) + (small term),

log(r(n)) = 1
d log(n) + (small term).

Where (small term) means a number which is much smaller than log(n) as n → ∞. In the
next subsection, we are going to discuss some of the ideas used in [2] to prove this Theorem.
In particular, we only discuss ideas related to “the lower bound”, that is, the fact that

Bn(1−ε)(0) ⊂ A(ωdn
d),(1)

or equivalently,

log(r(n)) ≥ 1
d log(n) + (small term).
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2.1. A sketch of the lower bound. Before showing the results of the numerical simulations,
we shall briefly review some of the tools used in [2] to prove the inclusion (1).

First, the authors study the properties of an arbitrary random walk in the Cartesian grid.
Therefore, they define for a given site (state) z and time t, the random quantity

Nt(z) = #
{

visits up to time t to z
}
,

and used it to introduce the following function

Gn(y, z) = Ey[NTn−1(z)].

Where Tn denotes the first time a particle exists the ball Bn(0), that is

Tn = TBc
n

What Gn(y, z) counts the (expected) number of visits to z before exiting Bn(0), assuming the
random walk starts from y.

Lemma 2.1. Let d = 2, then for any z with ‖z‖ ≥ 1,

Gn(0, z) =
2

π
ln

(
n

‖z‖

)
+ o

(
1

‖z‖

)
+O

(
1

n

)
On the other hand, if d ≥ 3, then for any z with ‖z‖ ≥ 1,

Gn(0, z) =
2

d− 2

1

wd

(
1

‖z‖d−2
− 1

nd−2

)
+O

(
1

‖z‖d−1

)
The estimate for Gn(y, z) we really need, is one in average. What we need is that in average,

Gn(y, z) is comparable to G(0, z) in the ball Bn(0).

Lemma 2.2. ∑
y∈Bn

Gn(y, z) ≤ wdn
dG(0, z)

These two lemmas, the proof of which we omit, are then used to analyze the behavior of the
clusters A(n).

Second, fix ε > 0, and write, for the sake of brevity

r(n) = cd(1− ε)n1/d

Consider the events

Ez(n) = site z does not belong to An,

Fε(n) = the disc Br(n)(0) is not contained in An.

Fε(ε, n) =
⋃

z∈Br(n)

Ez(n)(2)

Then, a way to restate Theorem 2.1 is that the probability that an infinite number of the events
Fε(n) occurs simultaneously is zero. Because that means that with probability 1 there is some
n0 such that

Br(n)(0) ⊂ An for all n ≥ n0.
In probability, the best known way to show that out of an infinite list of events F (1), F (2), . . .
then with probability 1 at most a finite number of them occur simultaneously, is the celebrated
Borel-Cantelli lemma. According to this Lemma, all we need to do is show that

∞∑
n=1

P(Fε(n)) <∞.
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Therefore, the goal is to find some upper estimate for the probability of Ez(n) (and in turn,
Fε(n)) which goes to zero sufficiently fast in n so as to make the above series converges. With
this goal in mind, Lawler et al [2] introduced further auxiliary quantities

M(n) = #
{

walks that visit z before exiting Bn

}
L(n) = #

{
walks that visit z before exiting Bn but after leaving the cluster

}
.

They show that, for every number a > 0, we have the estimate

P(Ez(n)) ≤ P(M(n) ≤ a) + P(L(n) ≥ a)

Then, [2, Lemma 6] shows that, for the right selection of the constnat a, we have

P(M(n) ≤ a) ≤ e−cdn,
P(L(n) ≥ a) ≤ e−cdn.

Which in turn implies that

P(Ez(n)) ≤ 2e−cdn.

Then, in light of (2), we have

P(Fε)(n) ≤
∑

z∈Br(n)

P(Ez(n)) ≤ 2ωdn
de−cdn

From here, the Borel-Cantelli Lemma says with probability 1, the number of events

Fε(n)

which occur simultaneously must be finite. As explained above, this means that, with proba-
bility 1, for all sufficiently large n

Bcdn1/d(1−ε)(0) ⊂ A(n)

3. Diaconis and Fulton’s smash sum

Consider two finite sets A,B ⊂ Zd. We define a random set, denoted A ⊕ B, defined as
follows:

1.If A ∩B = ∅, then

A⊕B := A ∪B.

2.If A ∩ B is non-empty, we enumerate the elements of this interesection as x1, . . . , xn. Then
we define a sequence of sets C0, C1, C2, . . . , Cn as follows: C0 = A ∪ B, given Ck−1 for some
k ≥ 1 we start a random walk at xk and let yk denote the first time this random walk exits the
set Ck−1. Then we set

Ck = Ck−1 ∪ {yk}

This determines a random set Cn. We thus set

A⊕B := Cn.

The set Cn may depend on the numbering of the points in A ∩ B, but Diaconis and Fulton
discovered that the probability distribution for Cn does not. Thus, in reality, the “smash
sum” is not a well defined set but a well defined distribution over sets.

Internal DLA is just the sequence of sets given by

X0 = {0}, Xn = Xn−1 ⊕ {0}
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4. Numerical simulations

The graphs generated below are run in a 100x100 grid at first, and later in a 300x300 grid
(see the appendix for the python code used).

4.1. Square lattice. Samples with N = 2000 points, 100 x 100 grid

Samples with N = 4000 points, 100 x 100 grid
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Samples with N = 6000 points, 100 x 100 grid

Samples with N = 20000 points, 300 x 300 grid
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4.2. Statistics on the size of the cluster. Below we have a logarithmic plot of the size of
the clusters for d = 2. We see how as n gets larger, that

log(r(n)) ≈ log(R(n)) ≈ 1

2
.

Appendix A. Code

The python code used to generate the images and the data in Section 4 is below.

import numpy as np

import random

import matplotlib.pyplot as plt

def random_direction():

e = np.random.random_integers(0,1,2)

e[0] = int(2*e[0]-1)

e[1] = int(2*e[1]-1)

return (e[0],e[1])

def move(x_location,N_size):

e_direction = random_direction()

x = np.zeros(2)

if x_location[0]+e_direction[0]<=2*N_size and x_location[0]+e_direction[0]>=0:

x[0] = x_location[0]+e_direction[0]

if x_location[1]+e_direction[1]<=2*N_size and x_location[1]+e_direction[1]>=0:

x[1] = x_location[1]+e_direction[1]

return x

def indicator_complement(x_location,A_set):

if A_set[x_location[0]][x_location[1]] == 1:

return False

else:

return True

N = 300

n = 40000

x = np.zeros((2))

A = np.zeros((2*N,2*N)) #This is [-N,N]^2 (we gonna use negative indices!)

A[N][N] = 1

#Walker indicator setup

for i in range(n):

Stop_time = False

x = (N,N)

print i

while Stop_time == False:

x = move(x,N)

Stop_time = indicator_complement(x,A)

A[x[0]][x[1]] = 1
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#It remains to plot A

plt.imshow(A,cmap=plt.cm.hot)

plt.show()
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