BASIC EXAM

ADVANCED CALCULUS/LINEAR ALGEBRA

This part of the Basic Exam covers topics at the undergraduate level, most of which might be encountered in courses here such as Math 233, 235, 425, 523, 545. Faculty members who teach these courses can recommend texts for review purposes. The emphasis is on understanding basic concepts, rather than performing routine computations. But exam questions often center on concrete examples of matrices, functions, series, etc.

- Vector spaces: subspaces, linear independence, basis, dimension.
- Linear transformations and matrices: kernel and image, rank and nullity, transpose.
- Linear operators: change of basis and similarity, trace and determinant, eigenvalues and eigenvectors, characteristic polynomial, diagonalizable operators.
- Inner product spaces: orthonormal basis, orthogonal complements and projections, orthogonal matrices, diagonalization of symmetric matrices.
- Functions of one real variable: continuity and uniform continuity, derivative and Mean Value Theorem, Riemann integral, improper integrals, Fundamental Theorem of Calculus.
- Sequences and series of numbers or functions: pointwise, uniform, absolute convergence; term-by-term differentiation and integration of series; Taylor’s Theorem with remainder.
- Functions of several variables: continuity, partial and directional derivatives, differentiability, maps from \mathbb{R}^n to \mathbb{R}^m, Jacobian, implicit and inverse function theorems, chain rule.
- Extrema of functions of several variables: constrained extrema, Lagrange multipliers.
- Multiple and iterated integrals, change of variables formula.
- Vector calculus: gradient, divergence, curl; line and surface integrals; theorems of Green, Gauss, Stokes; conservative vector fields.
COMPLEX ANALYSIS

- Analytic functions: algebraic and geometric representation of complex numbers; elementary functions, including the exponential functions and its relatives (log, cos, sin, cosh, sinh, ...); functions defined by power series; concept of holomorphic (analytic) function, complex derivative and the Cauchy–Riemann equations; harmonic functions.

- Complex integration: complex contour integrals, the Cauchy Theorem and the Cauchy Integral Formula; local properties of analytic functions, Taylor series expansions and their convergence; isolated singularities and Laurent series expansions. Liouville’s Theorem and the Fundamental Theorem of Algebra. Maximum principle and Schwarz’s lemma.

- Calculus of residues: meromorphic functions, the Residue Theorem, calculation of definite integrals by the evaluation of residues, including improper integrals (principal values) and integrands with branch points; the argument principle (for counting zeroes and poles) and the Rouche Theorem.

- Conformal mapping: geometrical interpretation of an analytic function; explicit mappings defined by elementary functions; linear fractional (bilinear) transformations and their action on the Riemann sphere; the Riemann Mapping Theorem (statement); solution of specific problems in potential theory (boundary-value problems for harmonic functions) by the conformal mapping technique.

REFERENCES

L.V. Ahlfors, Complex Analysis
H. Cartan, Elementary Theory of Analytic Functions
J.B. Conway, Functions of One Complex Variable
K. Knopp, The Theory of Functions
S. Lang, Complex Analysis
J. Marsden and M. Hoffman, Basic Complex Analysis
Z. Nehari, Conformal Mapping
NUMERICS

• Computer representation of numbers, and error propagation.

• Solving linear systems: direct methods—Gaussian elimination, matrix decomposition (LU), Cholesky’s method; iterative methods—Jacobi, Gauss–Seidel, SOR; condition number and norms.

• Solving nonlinear equations: bisection, Newton’s method, secant, fixed point methods, nonlinear systems.

• Interpolation and approximation: polynomial interpolation, trigonometric interpolation, orthogonal polynomials and least squares.

• Integration and differentiation techniques: Newton–Cotes formulas and Gaussian quadrature, numerical differentiation, Richardson extrapolation.

• Ordinary differential equations: one step methods—Euler, Taylor series, Runge–Kutta; multistep methods—explicit, implicit, predictor-corrector; consistency and stability; solution of constant coefficient finite difference equations.

REFERENCES

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis
E. Isaacson and H. B. Keller Analysis of Numerical Methods
K. E. Atkinson, An Introduction to Numerical Analysis
H. R. Schwarz, Numerical Analysis: A Comprehensive Introduction
S. Conte and C. de Boor, Elementary Numerical Analysis
PROBABILITY

REFERENCES

Chung, *Elementary Probability Theory*
Woodroofe, *Probability with Applications*
Arnold, *Mathematical Statistics*
Casella and Berger, *Statistical Inference*

STATISTICS

REFERENCES

Bickel and Doksum, *Mathematical Statistics*
Mood, Graybill and Boes, *Introduction to the Theory of Statistics*
Arnold, *Mathematical Statistics*
Casella and Berger, *Statistical Inference.*
TOPOLOGY

- Compactness and local compactness. One-point compactification.

- Function spaces: pointwise and uniform convergence, compact-open topology.

REFERENCES

- Baum, *Elements of Point Set Topology*
- Dugundji, *Topology*
- Gemignani, *Elementary Topology*
- McCarty, *Topology*
- Mendelson, *Introduction to Topology*
- Munkres, *Topology: A First Course*
M.S. IN APPLIED MATHEMATICS

- Complex variables: analytic functions, singularities; Taylor and Laurent expansions; residues and their application to integrals and integral transforms.

- Initial value problems for ODE; explicit methods of solving first and second order equations; power series methods, special functions; Laplace transforms.

- Boundary-value and eigenvalue problems for linear ODE; Green’s functions; Sturm–Liouville theory and eigenfunction expansions; Fourier series and Fourier transform.

- Basic linear PDE; evolution equations in one space variable: the wave equation (D’Alembert’s formula), the diffusion (heat) equation; equilibrium equations in two and three dimensions: the Laplace and the Poisson equation in simple geometries; separation of variables methods, Fourier series and transform methods.

REFERENCES

Birkhoff and Rota, *Ordinary Differential Equations*
Boyce and DiPrima, *Elementary Differential Equations and Boundary Value Problems*

E. Butkov, *Mathematical Physics*
Churchill and Brown, *Complex Variables and Applications*
Churchill and Brown, *Fourier Series and Boundary Value Problems*
Churchill, *Operational Mathematics*
H. Weinberger, *A First Course in Partial Differential Equations*