Practice Problems: Determine which FT if any to use; don't calculate Find the flux of $\left\langle\boldsymbol{x}^{3}, \boldsymbol{y}^{3}, \boldsymbol{z}^{3}\right\rangle$ flowing out of the sphere $x^{2}+y^{2}+z^{2}=1$.

Find the work done by $\overrightarrow{\boldsymbol{F}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{y}-\boldsymbol{z}, \boldsymbol{z}-\boldsymbol{x}\rangle$ along the path C which is the boundary of the portion of the plane $x+y+z=1$ with $x, y, z \geq 0$, traversed counterclockwise when viewed from above.

Find $\iint_{S} z^{2} d S$ where S is the sphere $x^{2}+y^{2}+z^{2}=4$.
Find $\iiint_{E} \operatorname{div} \vec{F} d V$ with $\vec{F}(x, y, z)=\left\langle\left(x^{2}+y^{2}+z^{2}\right) x,\left(x^{2}+y^{2}+z^{2}\right) y,\left(x^{2}+y^{2}+z^{2}\right) z\right\rangle$ and E is the cube with vertices $(\pm 1, \pm 1, \pm 1)$.
Find the work done by $\oint_{c}\left(\ln (1+\boldsymbol{y}) d \boldsymbol{x}+\frac{\boldsymbol{x y}}{1+\boldsymbol{y}} d \boldsymbol{y}\right)$, where C is the parallelogram with vertices $(0,0),(1,0),(1,1),(0,1)$ traversed counterclockwise.

Find the work done by $\overrightarrow{\boldsymbol{F}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\left\langle\mathbf{2 x} \boldsymbol{y}^{\mathbf{2}} \boldsymbol{z}, \mathbf{2} \boldsymbol{x}^{\mathbf{2}} \boldsymbol{y z}, \boldsymbol{x}^{\mathbf{2}} \boldsymbol{y}^{\mathbf{2}}-\mathbf{2 z}\right\rangle$ along the path C consisting of the line segment joining $(0,1,0)$ to $(1,0,0)$, followed by the semicircular arc joining $(1,0,0)$ to $(-1,0,0)$.

