Practice Problems: Determine which FT if any to use; don't calculate Find the flux of $\langle x^3, y^3, z^3 \rangle$ flowing out of the sphere $x^2 + y^2 + z^2 = 1$.

Find the work done by $\vec{F}(x, y, z) = \langle x - y, y - z, z - x \rangle$ along the path *C* which is the boundary of the portion of the plane x + y + z = 1 with $x, y, z \ge 0$, traversed counterclockwise when viewed from above.

Find $\iint_S z^2 dS$ where *S* is the sphere $x^2 + y^2 + z^2 = 4$.

Find
$$\iiint_{E} \operatorname{div} \vec{F} dV$$
 with $\vec{F}(x, y, z) = \langle (x^{2} + y^{2} + z^{2})x, (x^{2} + y^{2} + z^{2})y, (x^{2} + y^{2} + z^{2})z \rangle$

and \vec{E} is the cube with vertices $(\pm 1, \pm 1, \pm 1)$.

Find the work done by $\oint_{C} \left(\ln(1+y)dx + \frac{xy}{1+y}dy \right)$, where *C* is the parallelogram with vertices (0,0), (1,0), (1,1), (0,1) traversed counterclockwise.

Find the work done by $\vec{F}(x, y, z) = \langle 2xy^2z, 2x^2yz, x^2y^2 - 2z \rangle$ along the path *C* consisting of the line segment joining (0, 1, 0) to (1, 0, 0), followed by the semicircular arc joining (1, 0, 0) to (-1, 0, 0).