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Abstract

We study the fluctuations of the spin per site around the thdymamic magnetization
in the mean-field Blume-Capel model. Our main theorem géimesathe main result in
a previous paper [12] in which the first rigorous confirmatidnhe statistical mechanical
theory of finite-size scaling for a mean-field model is givdn. that paper our goal is
to determine whether the thermodynamic magnetization isyaipally relevant estimator
of the finite-size magnetization. This is done by comparimg dsymptotic behaviors of
these two quantities along parameter sequences convegy@ither a second-order point
or the tricritical point in the mean-field Blume-Capel mad@éhe main result is that the
thermodynamic magnetization and the finite-size magn@izare asymptotic when the
parametery governing the speed at which the sequence approachesldmtis below a
certain thresholdyy. Our main theorem in the present paper on the fluctuationbeof t
spin per site around the thermodynamic magnetization istbas a new conditional limit
theorem for the spin, which is closely related to a new caodét central limit theorem for
the spin.
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1 Introduction

The purpose of this paper is to analyze the asymptotic behatithe fluctuations of the spin
per site around the thermodynamic magnetization alonghpetier sequences having physical
relevance in the mean-field Blume-Capel model. This rebeantminates a series of papers
that study the phase-transition structure of the model né&yadic techniques and probabilistic
limit theorems [13, 6, 9, 12]. The mean-field Blume-Capel glad a mean-field version of
an important lattice model due to Blume and Capel, to whichwilerefer as the B—C model
[2, 3, 4, 5]. The mean-field B-C model is an important objecstofdly because it is one of the
simplest models that exhibits the following complicatedgdtransition structure: a curve of
second-order points; a curve of first-order points; andcaitical point, which separates the two
curves.

The main theorem in this paper generalizes the main res{d2jy The goal of [12] is to
compare the asymptotic behaviors of the thermodynamic etagtion and the finite-size mag-
netization along parameter sequences converging to etsecond-order point or the tricritical
point of the mean-field B-C model. Theorem 4.1 in that papenshthat these two quantities
are asymptotic when the parametegoverning the speed at which the sequence approaches
criticality is below a certain threshold,. However, wheny exceedsy,, the thermodynamic
magnetization converges to 0 much faster than the finiessiagnetization. These results in
[12] are worthwhile because they are the first rigorous corairons of the statistical mechani-
cal theory of finite-size scaling for a mean-field model [1R [56].

The importance of both the theory of finite-size scaling dremean-field B-C model mo-
tivate us in this paper to refine Theorem 4.1 in [12]. We do llyistudying the fluctuations of
the spin per site around the thermodynamic magnetizatiof fo o < «g, obtaining a more
refined asymptotic estimate that yields the conclusion eforem 4.1 in [12] as a corollary.
This refined asymptotic estimate is stated in (1.4) and iggqatan part (a) of Theorem 4.1 be-
low. While Theorem 4.1 in [12] is obtained from a moderateidon principle, the refinement
of that theorem in this paper is obtained from the conditidinat theorem stated in (1.5) and
proved in part (b) of Theorem 6.1.

The mean-field B-C model is defined by a canonical ensembtentbalenote byPy s k;

N is the number of verticegi > 0 is the inverse temperature, aid > 0 is the interaction



strength.Py s i is defined in (2.1) in terms of the Hamiltonian

N K (X 2
Hyx(w) =3 i =% <Z> |
j=1 j=1

In this formulaw; is the spin at sitg € {1,2,..., N} and takes values in = {—1,0,1}.
The configuration space for the model is thes#tcontaining all sequences= (w, ..., wy)
with eachw; € A. Expectation with respect tBy 5 x is denoted byEy 5 k. The finite-size
magnetization is defined by 5 x{|Sn/N|}, whereSy equals the total spiﬁjjyzl Wj.

Before discussing the results in this paper, we first sumzadhie phase-transition structure
of the mean-field B-C model as derived in [13]. Fbr- 0 and K > 0, we denote by\ g x the
set of equilibrium values of the magnetization. The.A¢t x coincides with the set of global
minimum points of the free-energy functicfy x, which is defined in (2.3)—(2.4). The critical
inverse temperature of the mean-field B-C modetis= log4. For0 < g < j. there exists
a quantityK (3) and fors > (3. there exists a quantiti; () having the following properties.
The positive quantityn (3, K') appearing in this list is the thermodynamic magnetization.

1. Fix0 < 8 < .. Thenfor0 < K < K(f), Mgk consists of the unique pure phase 0,
and forK > K(3), Mz k consists of two nonzero valugsn (53, K).

2. For0 < g < (., Mgk undergoes a continuous bifurcationfit= K (3), changing
continuously from{0} for K < K(8) to {£m(p3, K)} for K > K(3). This continuous
bifurcation corresponds to a second-order phase transitio

3. Fixg > B.. Thenfor0 < K < K;(f), Mgk consists of the unique pure phase O;
for K = Ki(B), Mgk consists of 0 and two nonzero valugsn(3, K1(3)); and for
K > K;(0), Mgk consists of two nonzero valuesn (g3, K).

4. Forp > ., Ms x undergoes a discontinuous bifurcationfat= K;(/3), changing dis-
continuously from{0} for K < K(3)to{0,+m(3, K)}for K = K;(8) to{xm(5, K)}
for K > K, ((). This discontinuous bifurcation corresponds to a firsteogghase transi-
tion.

Because of item 2, we refer to the cur{&3, K(3)),0 < < (.} as the second-order
curve and points on this curve as second-order points. Beaafutem 4, we refer to the curve
{(B, K1(0)), 8 > B.} as the first-order curve and points on this curve as firstrqrdimts. The
point (3., K(5.)) = (log4,3/2log4), called the tricritical point, separates the second-order
curve from the first-order curve. The phase-coexistendemeag defined as the set of all points
in the positive3-K quadrant for whichM g x consists of more than one value. Therefore
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the phase-coexistence region consists of all points adwesé¢cond-order curve, above the
tricritical point, on the first-order curve, and above thstforder curve; that is,

{(B,K):0<3<f, K> K(B)ands > fe, K = Ki(5)}.

Figure 1 exhibits the sets that describe the phase-transtructure of mean-field B-C model.

Figure 1: The sets that describe the phase-transition structureeaingran-field B-C model: the second-order
curve{(G, K(8)),0 < B < B.}, the first-order curvé (3, K1(0)), 8 > B}, and the tricritical poin{s., K (5.)).
The phase-coexistence region consists of @lIK') above the second-order curve, above the tricritical point,
the first-order curve, and above the first-order curve.

In order to discuss the contributions of this paper, it igohdlfirst to explain the main
results in [9] and [12]. Those papers focus on positive seces (5, K,,) that lie in the phase-
coexistence region for all sufficiently large converge to either a second-order point or the
tricritical point, and satisfy the hypotheses of Theore&iB3.[9]. These sequences are param-
eterized by > 0 in the sense that the limits

b= lim n*(6, — ) and k = lim n“(K, — K(())
are assumed to exist and are not both 0. Six specific suchrsggpiare introduced in section
4 of that paper. Theorem 3.2 in [9] states that for any 0, m((3,, K,,) has the asymptotic

behavior
m(Bn, IK,) ~ /0%, (1.1)
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wherefd > 0 andz is the positive global minimum point of a certain polynomjét) called the
Ginzburg-Landau polynomial. This polynomial is definedems of the free-energy function
G,k In hypothesis (iii)(a) of Theorem 3.1 below.

One of the surprises in our study of the mean-field B-C modéhésappearance of the
Ginzburg-Landau polynomial in a number of basic resultsesehinclude the asymptotic for-
mula (1.1), the quantitg in the asymptotic formula (1.4) and the conditional limiednem
(1.5), the limiting variance in the conditional central itrtheorem (1.7), and the rate function
in the moderate deviation principle in Theorem 6.2. As we &dplain, this conditional central
limit theorem is closely related to the main result in thip@a which is the asymptotic formula
(1.4).

A straightforward large-deviation calculation summadize [12, p. 2120] shows that for
fixed (3, K) lying in the phase-coexistence region the spin periteV has the weak-convergence
limit

1 1
PN,B,K{SN/N S dl’} - <§5m(6,K) + Eé_m(ﬁ’K)) (dl’) (12)

This implies that
Jim Eys.i{|Sx/NI} = m(3, K).

Because the thermodynamic magnetizatiofs, K) is the limit, as the number of spins goes
to oo, of the finite-size magnetizatioAy s x{|Sn/N|}, the thermodynamic magnetization is
a physically relevant estimator of the finite-size magragion, at least when evaluated at fixed
(6, K) in the phase-coexistence region.

The main focus of [12] is to determine whether the thermodyinanagnetization is a phys-
ically relevant estimator of the finite-size magnetizaiioa more general sense, namely, when
evaluated along positive sequences that lie in the phamseastence region for all sufficiently
largen, converge to a second-order point or the tricritical paamitl satisfy a set of hypotheses
including those of Theorem 3.2 in [9]. The criterion for deténing whethem (5, K,,) is a
physically relevant estimator is thatas— oo, m(53,, K, ) is asymptotic to the finite-size mag-
netizationE, s, x,{|S»/n|}, both of which converge to 0. In this formulation we [gt= n
in the finite-size magnetization; i.e., we let the numberphs N coincide with the index:
parametrizing the sequen¢é,, K, ).

As summarized in Theorems 4.1 and 4.2 in [12], the main findsntphatm (3, K,,) is
a physically relevant estimator when the parametgoverning the speed at whialy,,, K,,)
approaches criticality is below a certain thresheld The value ofv, depends on the type of
the phase transition — first-order, second-order, or troal — that influences the sequence,
an issue addressed in section 6 of [9]. Bot a < ay this finding is summarized by the limit

T 1% By, s, {150 /nl} = m(Bn, Ko)| =0, (L3)
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which in combination with (1.1) implies that
Br g, i {1Sn/nl} ~ 30" ~ m(B,, Ky).

By contrast, whem > «g, m(3,, K,) converges to O much faster thah s, «, {|S./n|}. The
sequences for which these asymptotic results are validdiedhe six sequences introduced in
[9, §4].

We now turn to the main focus of this paper, which is a refineslyans of the fluctuations
of S,,/n aroundm(f,, K,) for 0 < o < «ap. Definex = (1 — /o) + Oor. As shown in
part (a) of Theorem 4.1, fdr < a < «aq and for a class of sequences that includes the first five
sequences introduced in [$4]

En g s {|[Sn /1] = m(Bn, Kn)|} ~ Z/n". (1.4)

In this formulaz = (2/[r¢®(7)])/2, whereg®(z) denotes the positive second derivative of the
Ginzburg-Landau polynomiglevaluated at its unique positive global minimum painfor all
0 < a < ag, kis larger tharfa. Thus the rate /n" at whichE,, g, k, {||S./n| — m(Gn, K»)|}
converges to 0 is asymptotically faster than the mte’ at which E, 5, ., {|S./n|} and
m(G,, K,) converge separately to 0.

This asymptotic result generalizes (1.3), which is the agion of Theorem 4.1 in [12]. To
see this, definel,, = E,, 3, x,{||S./n| — m(B,, K,)|} and note that

| En B, 16, 1S/} — m(Bn, Kn)| < An.
Equation (1.4) states théin,, .., n"A, = z. Sincex > fa, this implies that

0= lim nA, > lim n%|E, s, x,{|S./n|} — m(B,, K,)| = 0.

n—oQ

The fact that this second limit equals 0 yields (1.3), whithie conclusion of Theorem 4.1 in
[12].

The proof of our main result (1.4) is based on the following/rm@nditional limit stated in
part (b) of Theorem 6.1 fab < a < ayp:

lim n"E, g, k,{|S/n — m(Bn, K,)| ‘ Sp/n > om(B,, K,)} = Z. (1.5)

The conditioning is on the evefit,,/n > dm(5,, K,)}, wheres € (0, 1) is sufficiently close to
1. This conditioning allows us to study the asymptotic bébranf the system in a neighborhood
of the pure states having thermodynamic magnetization,, K,,). According to Lemma 6.3

lim P, s, x,{Sn/n > dm(G,, K,)} (1.6)
= lim P, 3, k,{Sn/n < —dm(Gn, K,)} = 1/2.
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These limits are the analog of the weak convergence limi) (Ehowing that as — oo the
mass of theP, s, k., -distribution ofS,,/n concentrates atm(j3,, K, ). As we show in section 6,
the limits (1.6) and (1.5) and a moderate deviation estimatée probability?, s, x, {0m(6n, K,) >
Sn/n > —ém(G,, K,)} yield

This limit is equivalent to (1.4).

The main result in part (a) of Theorem 4.1 is applied to the five sequences introduced
in [9, §4]. Located in the phase-coexistence region for all suffiitydargen, the first two se-
guences converge to a second-order point, and the laststhgeences converge to the tricritical
point. Possible paths followed by these sequences are simokigure 2. For each of the five
sequences the quantitieg, ¢, andx appearing in Theorem 4.1 are specified in Table 1.1.

1.09 —

K(p,.). |

1.08 —

1.07 —

Figure 2:Possible paths for the five sequences converging to a seardied-point and to the tricritical point. In
section 5 and appendix A these sequences are defined andane tehsatisfy the hypotheses of Theorem 4.1 and
Theorem 6.1. The sequences labeled 1-5 in this figure comeddp sequences 1a—5a in Table 1.1 and Table 5.1.

The conditional limit (1.5) is closely related to anothesuk stated in part (a) of Theorem
6.1. This result is a new conditional central limit theoreon@ < o < «p. Asin (1.5), the



| Seq. | Defn. | ao | 6 I |
1a (5.5) I I I1—a)
2a (5.6) ﬁ L 5(1 —pa)
3a (5.7) 2 : )
1 1 1
5a (5.10) 3 z (1 —2a)

Table 1.1:The equations where each of the five sequences is defined@anélties ofyg, 0, andx for
each sequence.

conditioning is on the evertsS,, /n > dm(5,, K,)}, wheres € (0, 1) is sufficiently close to 1.
Under a set of hypotheses satisfied by the first five sequentesliiced in [954], part (a) of
Theorem 6.1 states that when conditioned 8p/n > dm(5,, K,)}, theP, s, k, -distributions
of n®(S,/n — m(B,, K,)) converge weakly to a normal random variabi€0, 1/¢®(z)) with
mean0 and variance /¢® (z); in symbols,

Pos, k,An"(Sn/n —m(Bn, K,)) € dx ‘ Sp/n > om(S,, K,)} a.7)
— N(0,1/9%(2)).

Sincex = 3(1 — a/ag) + O is less than 1/2 [Thm. 6.1(c)], the scaling in this resultdsn
classical. An equivalent formulation is that for any bouthdsontinuous functiorf

nlggo En g, Lf (07 (Sn/n — m(Bn, Kn))) } Sn/n > om(Bn, Kn)} (1.8)
= 7}520 B g 16, {f (Sn /075 = n"m(3,, K,)) ‘ Sn/n > om(Bn, Kn)}

= E{f(N(0,1/9”(2)))}
- ! : ) exnl—La@ () 22dr.
fRexp[—%g@)(j)xz]dx /Rf( ) exp| 59 (z)z?]d

Through the terng® () this conditional central limit theorem and the asymptatigiula
(1.4) exhibit a sensitive dependence on the choice of theese®(5,, K,), which lies in the
phase coexistence region for all sufficiently largand converges to a second-order point or
the tricritical point. This contrasts sharply with the aahtimit theorem that is valid for an
arbitrary sequencgs,,, K,,) that converges to a poiis, K) in the single-phase region defined
by {(5,K):0< (< 6.,0< K < K(f)}. In this situation it is proved in Theorem 5.5 in [6]
that

P, s, 1, {Sn/n*? € dz} = N(0,0%(3, K)),
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where the limiting variance?(3, K) depends only of3, K') and not on the sequen¢g,, K,,).

Formally, the conditional limit (1.5) follows from the cottidnal central limit theorem (1.8)
if one replaces the bounded, continuous functfdoy the absolute value function. Then (1.8)
would imply

lim n"E, g, k,{|Sn/n — m(B,, K,)| ‘ Sp/n > om(Bn, K,)}
= lim E, 3, 1, {|Sn/n'™" — n"m(B,, K,)| ‘ Sp/n > om(G,, K,)}

_ 1 . _10® ()2 de — 2
= o ly@ @) /R|x|exp[ 599 (2)2%|dr = Z.

In order to justify this formal derivation, one needs a umifantegrability estimate. In fact,
we can derive the conditional limit (1.5) from a related weakivergence result via a more
circuitous route. The related weak convergence resuligaron Lemma 7.7, involves two extra
summands defined in terms of a sequence of scaled normalmavaliablesiV,,. We prove
the conditional limit (1.5) by two steps: the uniform integility-type result in Proposition 8.2
allows us to replace the bounded, continuous funcfion Lemma 7.7 by the absolute value
function; the calculations in Lemmas 8.3 and 8.4 show thahelimit n — oo the extra
summands involving the normal random variablEs do not affect the limit. As we show at
the end of section 7 in [8], we also use the weak convergerstdtni@ Lemma 7.7 to prove
the conditional central limit theorem (1.7) by an analogbusmore straightforward argument.
Again, a key step is to show that in the limit— oo the extra summands involving the normal
random variable$l,, do not affect the limit.

The conditional limit (1.5) is stated in part (b) of Theoreri,&he proof of which is subtle
and complicated. In this proof Lemma 7.5 is key. There weialttao basic estimates that
allow us to apply the Dominated Convergence Theorem to piteveveak convergence result
in Lemma 7.7, from which part (b) of Theorem 6.1 will be deddic&he value of« can be
motivated from the calculation underlying the proof of p@jtof Lemma 7.5.

The contents of this paper are as follows. In section 2 we éd¢fie mean-field B-C model
and summarize its phase-transition structure in Theorefnar®l 2.2. For a class of sequences
(Gn, K, lying in the phase-coexistence region for all sufficiendlsgien. and converging either
to a second-order point or to the tricritical point, Theor@min section 3 describes the asymp-
totic behavior ofm (5, K,) — 0 as stated in (1.1). Theorem 3.2 in section 3 states one of the
main results of [12], which is that as— 0, m(03,, K,,) is asymptotic tav,, s, x,{|S./n|} for
0 < a < ayp, proving that for this range af the thermodynamic magnetization3,, K,,) is a
physically relevant estimator of the finite-size magnéimar,, s, ,{|S./n|}

The main result in this paper is given in section 4. Accordogart (a) of Theorem 4.1, for
0< a<a

B g, 1o {150 /1 = m(Bp, K|} ~ 2/n",

9



wherez = (2/[rg®(z)])"/? andx = 1(1 — a/ay) + 0o Part (a) of Theorem 4.1 is applied
in section 5 to five specific sequendgs, K,,). The first two sequences converge to a second-
order point, and the last three sequences converge to thitidel point. In section 6 part (a)
of Theorem 6.1 states the conditional central limit theoférid), and part (b) of that theorem
states the conditional limit (1.5). In section 7 we derivauanber of lemmas that are applied in
section 8 to part (b) of Theorem 6.1. In section 8 we prove (arof Theorem 6.1 using these
lemmas together with Lemmas 8.1, 8.3, and 8.4 and the weak®rdf the standard uniform
integrability estimate in Proposition 8.2. In appendix A preve that sequences la—5a satisfy
the limits in hypothesis (i) of Theorem 4.1. In appendix B we prove the moderate deviatio
principle in part (a) of Theorem 6.2. This result is used ia pnoof of one of our main results
in part (a) of Theorem 4.1.

Acknowledgement. The research of both authors was supported in part by a g@ntthe
National Science Foundation (NSF-DMS-0604071). We thagtePT. Otto for permission to
use Figures 1 and 2.

2 Phase-Transition Structure of the Mean-Field B-C Model

For N € N the mean-field Blume-Capel model is defined on the completelgon/V vertices
1,2,...,N. The spin at sitg € {1,2,..., N} is denoted by;, a quantity taking values in
A ={-1,0,1}. The Hamiltonian for this model is defined by

N K (X 2
Hyx(w) =3 ol = <Z> |
j=1 i=1

whereK > (is a positive parameter representing the interactiongtheando = (wy, ..., wn) €
AN . We will refer to this model as the mean-field B-C model.

Let Py be the product measure otV with identical one-dimensional marginals =
5(0_1 + do + 01). Then Py assigns the probability~" to eachw € AY. For inverse tem-
peratures > 0 and forK > 0, the canonical ensemble for the mean-field B-C model is the
sequence of probability measures that assign to each sBlasfet ¥ the probability

1
1 _
= LR 2 Pl 8,

weB
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where

Zx(6,8) = [ expl=8HxldPy = 3 expl-BHyx] 37

weAN
It is useful to rewrite this measure in a different form. Defifiy(w) = Z;V:I w; and let
Px g be the product measure dny with identical one-dimensional marginals
1
ps(dw;) = 70 - exp(—fwi) p(dw;),
whereZ(3) = [, exp(—fw})p(dw;) = (1 +2¢77)/3. Define
N 1 N
Py gldw) =[] psldw;) = ——=— [ [ exp(—Bw})p(dw;)
and Zn(5. )
Zy(3.K) = [ explNBK(Sx /NPy, = 72O,
AN [Z(B)]
Then we have
1
Py .k (dw) = =—————exp|[NBK (Sy(w)/N)? Py s(dw). (2.2)
o) = 7 ) SN T
Fort € R andx € R we also define the cumulate generating function
1+ePlel +e7)
cp(t) = log/Aexp(twl)pg(dwl) = log T 207 (2.3)

and the free-energy function
Gpr(r) = BKx* — cs(26Kx). (2.4)

We denote byM 3  the set of equilibrium macrostates of the mean-field B-C mo&eshown
in Proposition 3.4 in [13] M x can be characterized as the set of global minimum points of
CaiK:
Mg k ={z € [-1,1] : x is the global minimum points af x (z)}.

In [13] M x is denoted bys k.

The critical inverse temperature for the mean-field B-C n@&lg. = log4. For0 < g <
B., the next theorem states th&t s i exhibits a continuous bifurcation &€ increases through
a valueK (). This bifurcation corresponds to a second-order phassitiam, and the curve
{(B,K(0)),0 < B8 < B.} is called the second-order curve. The pdift, K(5.)) is called
the tricritical point. Theorem 2.1 is proved in Theorem $1§13], whereK (3) is denoted by

E&(9).
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Theorem 2.1.For 0 < < 3., we define
K(B) = 1/[26¢5(0)] = (¢ +2)/(46).

For these values of, Mg i has the following structure.

(@Foro < K < K(f8), Mg x ={0}.

(b) For K > K([3), there existsn((, K) > 0 such thatM s x = {+m(8, K)}.

(c) m(pB, K) is a positive, increasing, continuous function fer > K.(3), and asK —
(K(B))", m(8, K) — 0. Therefore M x exhibits a continuous bifurcation &t ().

For 3 > ., the next theorem states th&l; x exhibits a discontinuous bifurcation &S
increases through a valu€ (). This bifurcation corresponds to a first-order phase ttemsi
and the curve (3, K1(5)), 8 > (.} is called the first-order curve. Theorem 2.2 is proved in

Theorem 3.8 in [13], wheré&; (3) is denoted byx"(3).

Theorem 2.2.For 5 > ., Mg k has the following structure in terms of the quantity(5),
denoted b)Kc(l)(ﬁ) in [13] and defined implicitly fos > 3. on page2231of [13].

(@Foro< K < Kl(ﬂ), M@K = {0}

(b) For K = K, () there existsn (3, K1(3)) > 0such thatM k, 5 = {0, m(3, K1(3))}.

(c) For K > K;(3) there existsn(53, K') > 0 such thatM s x = {+m(3, K)}.

(d) m(5, K) is a positive, increasing, continuous function flsr > K, (/), and ask —
Ki(B)t, m(8, K) — m(B3, Ki(8)) > 0. Therefore, M x exhibits a discontinuous bifurcation
at Kl(ﬁ)

The positive quantityn (3, K') in Theorems 2.1 and 2.2 is called the thermodynamic magne-
tization. In the next section we describe the asymptoti@isieh of the finite-size magnetization
for suitable sequencés,,, K,,) and relate this to the asymptotic behavior of the thermonhyoa
magnetizationn (g3, K,).

3 Asymptotic Behavior of £, 5, r,,{|5./n|}

For 3 > 0 andK > 0 the finite-size magnetization is defined as

Evarl[Sx/N} = [ 1Sw/NldPsax
QN
where Py 3 x denotes the measure defined in (2.1)—(2.2). In this sectierdescribe the
asymptotic behavior of,, 5, «, {|S»/n|} for suitable sequences,, K,) lying in the phase-
coexistence region. In this formulation we I8t= n in the finite-size magnetization; i.e., we
let the number of spind/ coincide with the index. parametrizing the sequen¢g,, K,,).
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The phase-coexistence region is defined as the set of atlspnithe positive3- K quadrant
for which M i cosists of more than one value. According to Theorems 2.Rdhdhe phase-
coexistence region consists of all points above the secoteFr curve, above the tricritical
point, on the first-order curve, and above the first-ordeveuhat is,

{(B,K):0<3<f, K> K(B)ands > fe, K = Ki(5)}.

For a class of sequencgs,, K,,) lying in the phase-coexistence region for all sufficientdlsgie

n and converging either to a second-order point or to thetidat point, Theorem 3.1 describes
the asymptotic behavior of the thermodynamic magnetinatids,, K,,) — 0. The asymp-
totic behavior is related to the unique positive, globalimumm point of the Ginzburg-Landau
polynomial, which is defined in hypothesis (iii) of the theor.

Theorem 3.1 is a special case of the main theorem in [9], Bme®&.2. In that paper we de-
scribe six different sequences that satisfy the hypothafséseorem 3.1. The first five of these
sequences are revisited in section 5 of this paper, wherdowe that they satisfy the hypothe-
ses of our main theorem, Theorem 4.1. These five sequenbekeddla—5a, are summarized in
Table 5.1. The main conclusion of Theorem 3.1 about the tatdighm (3, K,,) — 0 will be
used in the proofs of a number of results in this paper.

Theorem 3.1.Let(8,, K,,) be a positive sequence that converges either to a secoret-ooiht
(B,K(0)),0 < B < B, orto the tricritical point(3, K(3)) = (6., K(5:)). We assume that
(Gn, K,,) satisfies the following four hypotheses.

() (Bn, K,) lies in the phase-coexistence region for all sufficienttgdan.

(i) The sequencgs,, K,,) is parametrized by > 0. This parameter regulates the speed of
approach of(,, K,,) to the second-order point or the tricritical point in the li@ving
sense

b= hm n*(B, — f) and k = Jirgona(Kn — K(B))

both exist, and and % are not both0; if b # 0, thenb equalsl or —1.

(i) There exists an even polynomiabf degree4 or 6 satisfyingg(z) — oo as|z| — oo
together with the following two propertigg is called the Ginzburg-Landau polynomial.

(a) There existyy > 0 andd > 0 such that for allo > 0
lim n®/*°Gp, s, (x/n"*) = g(x)

uniformly forx in compact subsets &.
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(b) There existg > 0 such that the set of global minimum pointgyaquals{+z}.

(iv) Consideray > 0 andé > 0 in hypothesigiii)(a). There exists a polynomid@l satisfying
H(x) — oo as|z| — oo together with the following propertyor all « > 0 there exists
R > 0 such that for alln € N sufficiently large and for alt: € R satisfying|z /n?*| < R,
n/Ggs k. (x/n) > H(x).

Under hypothese@)—(iv), for anya > 0
m(Bn, Kp) ~ /0% ie., lim n®m(B,, K,) = 7.

n—oQ

If b £ 0, then this becomes (3, K,,) ~ Z|8 — 3./°.

Theorem 3.2 restates Theorem 4.1 in [12]. The hypothesdb@se of Theorem 3.1 for all
0 < a < «p together with the inequality < 6oy < 1/2. These hypotheses are satisfied by
sequences la—5a in Table 5.1 as well as by a sixth sequeraé&ddsn Theorem 4.6 in [9].
Part (a) of the next theorem gives the rate at WHigh, «, {|S./n|} — 0for0 < a < ap, and
part (b) states that for the same valueswt, 5, x,{|S./n|} ~ m(Bn, K,). Thus Theorem
3.2 shows that the asymptotic behavior®f s, ,{|S./n|} coincides with that ofn (5, K,,)
for 0 < a < ap. Theorem 4.2 in [12] shows that far > «y, m(5,, K,,) converges to 0
asymptotically faster tha®, s, x, {|S./n|}.

Theorem 3.2. Let (5, K,,) be a positive sequence parametrizeddby> 0 and converging
either to a second-order poin?, K(3)), 0 < 5 < f., or to the tricritical point(5., K(53.)).
We assume thdps,, K,,) satisfies the hypotheses of Theothfor all 0 < o < ap. We also
assume the inequality< 0oy < 1/2. The following conclusions hold.

(@Forall 0 < a < ag

Eo s ASu/nl} ~ /0 e, lim 0B, 5, i, {|S/nl} = 7.

(b)Forall 0 < o < v, En g, k,{1Sn/n|} ~ m(Bn, Ky).

In Theorem 4.1 in the next section we state our main resuli®rgte at whicl,, g, «, {||S./n|—
m(Bn, K,)|} converges to 0 fob < o < «ap. We then explain how Theorem 4.1 generalizes
Theorem 3.2.

4 Asymptotic Behavior of E, 5, x,{||Sn/n| — m(B8., K,)|}

We denote byE, s, x, expectation with respect to the measutgs, x,,. Theorem 4.1 is
our main result. In this theorem we investigate the asymptmhavior of the expectation
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E,p, .k, {||Sn/n| — m(Bn, K,)|} under the hypotheses of Theorem 3.1 and an additional hy-
pothesis (iif). Part (a) of Theorem 4.1 states that the expected value dlitttuations ofS,, /n|
aroundm/((,, K, ) is asymptotic toz/n", wherex = %(1 —a/ag) + 6o andz > 0 is given
explicitly. Compared with the conclusion of Theorem 3.2rtffa) of Theorem 4.1 is a more
refined statement. As we showed in the introduction, it @elte conclusion of Theorem 3.2
as a corollary. The rate/n* at whichE,, s, x, {||S./n| — m(B,, K,)|} converges to 0 is much
faster than the rate/n’* at whichE,, 5, . {|S./n|} andm(g,, K,,) converge to 0 separately.
We comment on the hypotheses of Theorem 4.1 at the end okittiss.

Part (a) of Theorem 4.1 is proved in section 6. Part (b) of Téeo4.1 asserts that the
hypotheses of this theorem are satisfied by sequences Ia¥ahle 5.1. This is discussed in
section 5. For each of these sequences the Ginzburg-Lamtigomial has degree 4 or 6.

Theorem 4.1. Let (3, K,,) be a positive sequence converging either to a second-omiet p
(B, K(0)),0 < B < B, orto the tricritical point (3, K(3)) = (6., K(5.)). We assume that
(Gn, K,,) satisfies the hypotheses of Theo@rhfor all 0 < o < ay. We also assume the
following additional hypothesis on the Ginzburg-Landalypomialg.

(iii”) Assume thay has degreel. Thendqy lies in the intervall/4,1/2). In addition, for all
0<a<apandforj =234

lim na/ag—jGQG(ﬁlen(m(ﬁm Kn)) = g(J) (f) > 0.

Assume thag has degree. Thenfay lies in the interval1/6,1/2). In addition, for all
0<a<apandforj=2,3,4,506

lim na/ag—jGQG(ﬁlen(m(ﬁm Kn)) = g(J) (f) > 0.

n—oQ

For a € (0, ap) we also define: = 1(1 — o/ag) + fa. Then for all0 < o < ay the following
conclusions hold.
(a) We have the asymptotic behavior

En g 119n/n] = m(Bn, K|} ~ 2/n",

wherez = (2/(mg®(2))) "% i.€.,1imp o0 " B g, 6, {1|Sn /1] — m(Bn, Kn)|} = Z.
(b) The hypotheses of this theorem are satisfied by sequéaeésin Table5.1

The hypotheses of Theorem 4.1 are those of Theorem 3.1 tagetth the additional hy-
pothesis (iif) for all 0 < a < «ay. The latter hypothesis takes two related forms depending
on whetherg has degree 4 or degree 6. In this hypothesis, the assumptingoyields the
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inequality0 < fay < 1/2, which is required by the moderate deviation principleestan

Theorem 6.2. Hypothesis (jialso assumes both the asymptotic behavior of certainater@s

of n®/* G, k. evaluated atn(f3,, K, ) and the positivity of the corresponding derivativesjof

evaluated at the positive global minimum paintThese assumptions are needed in the proof of

Lemma 7.5, a key result needed to prove part (b) of Theoremwhith in turn yields part (a)

of Theorem 4.1. The proof of that lemma also requires theadsstimed in hypothesis ()ithat

fay lies in the interval [1/4, 1/2) or [1/6, 1/2) depending on Wiex ¢ has degree 4 or degree 6.
In the next section we outline how to verify the hypotheseS$todorem 4.1 for sequences

la—5ain Table 5.1.

5 \Verification of Hypotheses of Theorem 4.1 for Sequences
la-5a

Table 5.1 summarizes five sequen¢gs, K,) introduced in section 4 of [9]. Depending on
the inequalities on the coefficients, sequences 1, 2, 3, amach have two cases labeled a
and b, and sequence 4 has three cases labeled a, b, and ceAkfuences 1la—5a lie in the
phase-coexistence region for all sufficiently largas required by hypothesis (i) of Theorem
3.1.

The hypotheses of Theorem 4.1 consist of the hypothesesoirém 3.1 forall) < o < ag
and hypothesis (fij. Hypothesis (ifi) takes two forms depending on the degree of the Ginzburg-
Landau polynomiay. Wheng has degree 4o, is assumed to lie in the intervgl/4, 1/2) and
forall a € (0,9) and forj = 2,3,4

nh_)rgo na/ao—jGQG(ﬁlen(m(ﬁmKn)) — g(J) (j») > (. (51)
Wheng has degree o, is assumed to lie in the intervgl/6, 1/2) and for alla € (0, o) and
forj=2,3,4,5,6

nh_)rgo na/ao—jGQG(ﬁlen(m(ﬁmKn)) — g(J) (j») > (. (52)
In this section we verify for sequences la—5a that whdms degree 4, we havk, <
[1/4,1/2) and ¢¥)(z) > 0 for j = 2,3,4 and that whery has degree 6, we hawky, ¢
[1/6,1/2) andg")(z) > 0 for j = 2, 3,4, 5, 6. The verification of the limits in (5.1) and (5.2) is
carried out in appendix A.

Sequence 6 introduced in Theorem 4.6 in [9] does not satigbpthesis (iif) in Theorem
4.1. In this caseg has degree 4, buty, does not lie in the interval /4, 1/2).

The first two sequences converge to a second-order pojit (3)), 0 < 5 < (., and the
last three sequences converge to the tricritical p@#atK (5.)). For each sequence 1a—5a, the
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| Seq.| Defn. | Case| Ineq.

Region| My, | Thm.in[9] |

1 (5.5) [a K (B)b—k<0 Ph-CR | {2} [ Thm.4.1
b K'(B)b—k>0 1-PhR | {0}

2 (5.6) |a (K@P(3) -0t <0 | Ph-CR | {£z} [ Thm.4.2
b (K®(B)—0)b* < 0 | 1-PhR | {0}

3 (5.7) Ja K'(B)b—k <0 Ph-CR | {#z} [ Thm.4.3
b K'(B)b—k >0 1-PhR | {0}

4 (5.8) | a (>0,leR Ph-CR | {+z} | Thm.4.4
b (=1{.,0>K"(B3) | Ph-CR | {0, %7}
c t</l,leR 1-PhR | {0}

5 (5.10)] a (> K"(j3.) Ph-CR | {2} [ Thm.45
b (< K"(f.) 1-PhR | {0}

Table 5.1: The equation where each of the 5 sequences isdiefirkthe inequalities on the coefficients guaran-
teeing that each sequence lies in the phase-coexisterioa (B-CR) or in the single-phase region (1-PhR). The
next-to-last column states the structure of the/sgf of global minimum points of the Ginzburg-Landau polyno-
mial g for each sequence in terms of a positive numibénat can be explicitly calculated. The theorems in [9]
where this information is verified are also given.

hypotheses of Theorem 3.1 are verified in Theorems 4.1-4%.ikVe follow the same method
used in that paper to verify hypothesis’{iin Theorem 4.1 for sequences la-5a. Hypothesis
(iii") of Theorem 4.1 takes two forms depending on whether theegegfrthe Ginzburg-Landau
polynomialg is 4 or 6. We must verify thatag lies in a certain interval and that

nh_)rgo na/ao—jﬁaG(ﬁlen(m(ﬁmKn)) — g(J)(f) > 0 (53)
for 7 = 2,3,4 wheng has degree 4 and fgr= 2, 3,4, 5,6 wheng has degree 6. The function
Gp i is defined in(2.3)—(2.4).

It is straightforward to show that the limit in (5.3) holds fogiven; provided the following
limit holds uniformly forz in compact subsets @:

lim na/a“_jeaG(ﬁlen (z/n%) = ¢V (z). (5.4)
The proof that the uniform convergence in (5.4) implies tinatlin (5.3) uses the fact that
n%m(B,, k,) — Z [Thm. 3.1]. The uniform convergence in (5.4) can be obtaiieechally by
taking thej-th derivative of the uniform convergence limits in hypatise(iii)(a) of Theorem
3.1:
lim n®* Gy, f, (x/n%) = g(x).

n—oQ
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The verification of the uniform convergence limits in (5d)d thus the verification of the limits
(5.1) and (5.2) in hypothesis (jij depend on asymptotic properties of the Taylor expansibns
GY) o (z/n). This analysis closely parallels the proof of Theorem 3.hiclv is based on a
similar analysis of the Taylor expansions®f, x, (z/n) carried out in [9]. The straightfor-
ward but tedious calculations can be found in appendix A.

We now define the five sequendgs, K,,) and summarize the verification of the hypotheses
of Theorem 4.1 for them.

Sequence la
Definition Given0 < 5 < (., a > 0,b € {1,0,—1}, andk € R, k # 0, the sequence is
defined by

Bn=p03+b/n" and K,, = K(3) + k/n*. (5.5)
This sequence converges to the second-order goink’(3)) along a ray with slopé: /b if
b # 0. We assume that’(3)b — k < 0. Under this assumption it is proved in Theorem 4.1 in
[9] that sequence 1 satisfies the hypotheses of Theorem hwvi= 1/2 andd = 1/2. When
K'(B8)b— k < 0, we refer to sequence 1 as sequence 1a.

Hypothesiqiii’) in Theoremd.1for sequencda Sincea, = 1/2 andf = 1/2, fay lies in the
interval[1/4,1/2) as required by hypothesis ()ii The limits in (5.1) forj = 2, 3, 4 are proved
in appendix A. We now prove that’) (z) > 0 for j = 2, 3, 4 using the formulas fog andz in

Theorem 4.1in [9]. Lety(3) = (ef + 2)2(4 — €7)/8 - 41. Sinceld < 8 < 3. = log 4, we have
el < efe = 4, which impliescy(3) > 0. SinceK’(3)b — k < 0, these formulas yield

9®/(z) = 2B(K'(B)b — k) + 3 - 4ea(B)2* = 48(k — K'(B)b) > 0,
g3(@) = 4ey(B)T > 0, and ¢ (z) = 4ley(3) > 0.

Thus under the conditioR” (5)b — k < 0 sequence la satisfies all the hypotheses of Theorem
4.1.

Sequence 2a
Definition Given0 < § < (., « > 0, b € {1,—1}, an integerp > 2, and a real number
¢ #+ K (3), the sequence is defined by

B = B+0b/n* and K, = K(B8) + > _ KV (B)Y/(j'n/*) + 0¥ /(pn*®).  (5.6)

This sequence converges to the second-order pgirt’(3)) along a curve that coincides with
the second-order curve to order®~Ye, We assume that *)(3) — £)b? < 0. Under this as-
sumption itis proved in Theorem 4.2 in [9] that sequence Bfsas the hypotheses of Theorem
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3.1 withay = 1/(2p) andd = p/2. When(K®(3) — £)b* < 0, we refer to sequence 2 as
sequence 2a.

Hypothesiqiii’) in Theoremd4.1 for sequenc®a Sinceay = 1/(2p) andd = p/2, Hay lies
in the interval[1/4,1/2) as required by hypothesis ()ii The limits in (5.1) forj = 2,3,4 are
proved in appendix A. We now prove thgt)(z) > 0 for j = 2, 3, 4 using the formulas foy
andz in Theorem 4.2 in [9]. Lety(8) = (e + 2)%(4 — ) /8 - 4. Sinced < 8 < 3. = log 4,
we havee? < e’ = 4, which impliescy(3) > 0. Since(K®(3) — £)b* < 0, these formulas
yield

9P (o) = ZOKP(B) — OF +3-4cu(8)5* = (L~ KD (B >0,

¢ (Z) = dles(B)T > 0, and ¢ () = 4leg(B) > 0.
Thus under the conditionk®)(3) — /)b < 0 sequence 2a satisfies all the hypotheses of
Theorem 4.1.

Sequence 3a
Definition Givena > 0, b € {1,0, —1}, andk € R, k # 0, the sequence is defined by

Bn = Pe+b/n* and K,, = K(S.) + k/n°. (5.7)

This sequence converges to the tricritical pdint K (3.)) along a ray with slopé /b if b # 0.
We assume thak’(5.)b — k < 0. Under this assumption it is proved in Theorem 4.3 in [9]
that sequence 3 satisfies the hypotheses of Theorem 3.;wwith2/3 andf = 1/4. When
K'(B.)b — k < 0, we refer to sequence 3 as sequence 3a.

Hypothesiqiii’) in Theoremd.1for sequenc&a Sincea, = 2/3 andf = 1/4, fay lies in the
interval [1/6,1/2) as required by hypothesis ()i The limits in (5.2) forj = 2,3,4,5,6 are
proved in appendix A. We now prove thgt)(z) > 0 for j = 2,3, 4, 5, 6 using the formulas for
g andz in Theorem 4.3 in [9]. Lets = 9/40. SinceK'(5.)b — k < 0, these formulas yield

9(2)(j) = 260([(/(60)6 - k) +5- 606@4 = 860(1{5 - K/(ﬁC)b) >0,

g(@)=4-5-6c62° >0, gD(T) =3-4-5- 67> > 0,
g (z) = 6legz > 0, and ¢®(z) = 6lcs > 0.

Thus under the conditioA”(5.)b — k < 0 sequence 3a satisfies all the hypotheses of Theorem
4.1.
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Sequence 4a .
Definition Givena > 0, a curvature parametér € R, and another parametére R, the
sequence 4 is defined by

Bn = fBe+1/n% and K,, = K(3.) + K'(8.)/n® + £/(2n%) + £/ (6n°%). (5.8)

This sequence converges from the right to the tricriticahp@s., K (3.)) along the curve
(6, K(7)), where forg > 3,

K(B) = K(B.) + K'(B)(B — B:) + LB — B.)% /2 + (B — B.)* /6.

The first-order curvé (3, K1(3)), 8 > (.} is shown in Figure 1 in the introduction. In order to
determine a condition on the coefficients guaranteeingsth@iience 4 satisfies the hypotheses
of Theorem 3.1, we must study; () more closely.

Sincelim,_, 5+ K1(8) = K(f) [13, Sects. 3.1, 3.3], by continuity we extend the definition
of K,(8) from 3 > §.to 5 = 3. by defineK(8.) = K(f.). In addition we must assume other
properties off; that are stated in conjectures 1 and 2 on page 119 of [9]. Aslarpnary to
stating these conjectures, we assume that the first thieehand derivatives oK (3) exist at
G. and denote them b (5.), K{'(5.), andK{"(3.). We also defind. = K"(3.) — 5/(45.).
Conjectures 1 and 2 state the following: @&)(5.) = K'(5.) and (2)K{(5.) = (. < 0 <
K"(.). These conjectures are discussed in detail in section 50)fddd are supported by
properties of the Ginzburg-Landau polynomials and nunaédalculations.

We assume that > /., which by conjecture 1 equalsy(5.). Under this assumption it
is proved in Theorem 4.4 in [9] that sequence 4 satisfies tipethgses of Theorem 3.1 with
ap = 1/3 andf = 1/2. Whent > (., we refer to sequence 4 as sequence 4a.

Hypothesiqiii’) in Theoremd.1for sequencda Sincea, = 1/3 andf = 1/2, fay lies in the
interval [1/6,1/2) as required by hypothesis ()i The limits in (5.2) forj = 2,3,4,5,6 are
proved in appendix A. Define

1/2
y= (1 + gﬁc(f - K”(ﬁc))) : (5.9)

Sincel! > (. = K"(8.) — 5/(483.), we havey > 1/2. We now prove thay)(z) > 0 for
Jj = 2,3,4,5,6 using the formulas foy andz in Theorem 4.4 in [9]. Lety, = 3/16 and
ce = 9/40. These formulas yield

20 20
gD(T) = B(K"(B.) — ) —3-4-4eyT2 45 - 6cT* = Egﬁ + 3v> 0,
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4 10
g¥(z) = —4! - 4eyT +4-5 - 6cs7° = 9T <§ + Ey) > 0,

gW(z) = -4 -4y +3-4-5-6c622 = —18 +90(1 +y) > 0,
¢®(z) = 6legz > 0, and ¢'®(z) = 6lcg > 0.
Thus under the conditioh> ¢. = K ((3.) sequence 4a satisfies all the hypotheses of Theorem
4.1.

Sequence 5a
Definition Givena > 0 and a real numbetr# K”(.), the sequence 5 is defined by

B =B —1/n% and K, = K(3.) — K'(8.)/n® + £/(2n%). (5.10)

This sequence converges to the tricritical pdifit, K (3.)) from the left along the curve that
coincide with the second-order curve to order 2 in powers-of.. We assume thdt> K" (3,).
Under this assumptionitis proved in Theorem 4.5 in [9] tlegfgence 5 satisfies the hypotheses
of Theorem 3.1 withhy = 1/3 andd = 1/2. When? > K"(3.), we refer to sequence 5 as
sequence 5a.

Hypothesiqiii’) in Theoremd.1for sequenc®a Sincea, = 1/3 andf = 1/2, fay lies in the
interval [1/6,1/2) as required by hypothesis ()i The limits in (5.2) forj = 2,3,4,5,6 are
proved in appendix A. Defing as in (5.9). Sincé > K"((.), we havey > 1. We now prove
thatg\)(z) > 0 for j = 2,3,4,5,6 using the formulas fog andz in Theorem 4.5 in [9]. Let
¢y = 3/16 andcg = 9/40. These formulas yield

20
§P(Z) = Bo(K"(B) — ) +3-4-4c,7° + 5 - 66T = 3y(y —1) >0,

gN@) =4 - desT+4-5-6667° >0, ¢gD(F) =4! - dey +3-4-5-6¢ - T2 > 0,
g®(z) = 6leg > 0, and g9 (z) = 6lcg > 0.
Thus under the conditioh> K"(3.) sequence 5a satisfies all the hypotheses of Theorem 4.1.
We have completed the discussion of the verification of th@otiyeses of Theorem 4.1 for

sequences la—5a in Table 5.1. This is the content of parff (Bheorem 4.1. Part (a) of that
theorem is proved in the next section.
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6 Proof of Part (a) of Theorem 4.1

Theorem 6.1, a new theorem stated in this section, has tve. pamder the same hypotheses as
Theorem 4.1, part (a) of Theorem 6.1 states a conditionataddimit theorem: conditioned on
the event{S,,/n > om(f3,, K,,)} for 6 € (0, 1) sufficiently close to 1, thé, 5, , -distributions

of n(S,/n — m(B3,, K,)) converge weakly to av (0, 1/¢® (z))-random variable with mean

0 and variance /¢® (z). Under the same hypotheses as Theorem 4.1, part (b) of Thebie
states the related conditional limit

Tim 1By, 16, {50 /n — m(Ba. J0)| | S/ > 6m(B,, K,))
— B{IN(0,1/¢® @)} = (2/(xg® (@) = =.

We now sketch the proof of part (a) of Theorem 4.1 from partqbYheorem 6.1. In
Lemma 6.3, we show that the moderate deviation principlehaofem 6.2 and the asymp-
totic behavior ofm(f,, K,) in Theorem 3.1 imply that the eveRtS,/n > dm(G,, K,.)}
and the symmetric evedtS, /n < —dém(5,, K,)} have large probability and that the event
{om(B,, K,) > Sn/n > —0m(G,, K,)} has an exponentially small probability. As we show at
the end of this section, combining part (b) of Theorem 6.hw@&mma 6.3 and using symmetry
yield

1im 0" By, ¢, {[Sn/n| = m(Bh, Ko)|} = 2.

This is part (a) of Theorem 4.1.

The proofs of parts (a) and (b) of Theorem 6.1 are long anchieah Part (b) is proved in
subsections 8a, 8b, and 8c using a number of preparatorydsnmsection 7. At the end of
section 7 in [8] we outline the proof of part (a), which follewhe pattern of proof of part (b)
but is more straightforward. The weak convergence resaltgat in Lemma 7.7 is the seed that
yields both the conditional central limit theorem in paftgaTheorem 6.1 and the conditional
limit in part (b) of Theorem 6.1.

The hypotheses of Theorem 6.1 coincide with the hypothels€éhenrem 4.1. Part (c) of
Theorem 6.1 states that fare (0, o), k = 3(1 — a/ag) 4 O« lies in the intervalfag, 1/2).
This fact is needed in the proofs of Lemmas 7.2, 7.5, and &é.proof thatc € (6o, 1/2) is
elementary. By hypothesis (jiiof Theorem 4.1, we hawy, < 1/2, which givesd) < 1/(2ay).

Therefore 1 1
K= 5(1 —ajap) + o = B + ol —1/(20)) < 1/2.

Since0 < o < ap andd < 1/(2ap), we haves > 1 + ao( — 1/(2ap)) = 6. This completes
the proof of part (c) of Theorem 6.1.
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Concerning part (d) of Theorem 6.1, the hypotheses of tleisrdm coincide with the hy-
potheses of Theorem 4.1. Thus, as shown in section 5 and digp&nthese hypotheses are
satisfied by sequences 1a—5a in Table 5.1.

Theorem 6.1. Let (3, K,,) be a positive sequence converging either to a second-omiet p
(B,K(#)), 0 < 8 < B, or to the tricritical point (5, K(5)) = (6., K(5.)). We assume
that for all 0 < o < ao, (6n, K,,) Satisfies the hypotheses of Theorérhy which coincide
with the hypotheses of Theoréi together with hypothesigii’). For a € (0, o) we define
k= 3(1 — a/ag) + fa. Then for anyd) < a < ay there existsA € (0,1) such that for any
) € (A, 1) the following conclusions hold.

(a) When conditioned on the evefi$,,/n > dm(5,, K,)}, the P, s, k, -distributions of
n*(S,/n — m(B,, K,)) converge weakly to a normal random variabi¥g0, 1/¢?(z)) with
mean0 and variancel /¢(? (z); in symbols,

Po g i {0 (Su/n — m(By, Ky)) € da | So/n > dm (B, K,)} = N(0,1/¢"% ().
(b) We have the conditional limit

lim n"E, g, i, {|Sn/n — m(Bn, Ky)| ‘ Sn/n > om(Bn, Kn)}
= lim E, 3, 1, {|Sn/n'™" — n"m(B,, K,)| ‘ Sp/n > om(G,, K,)} = Z,

where

z = E{IN(0,1/¢%(2))|}

- : [ lalexpl-t® @)tde = (5 "
fRexp[—%g(z)(i)xz]dx R 2 g3 (z)

(c) For o € (0, ), k = (1 — a/awg) + Oex lies in the interval(fayg, 1/2).
(d) The hypotheses of this theorem are satisfied by sequéaesin Table5.1

In part (a) of Theorem 6.2 we state a moderate deviation iptiea@VIDP) for the mean-field
B-C model. This MDP will be used to prove Lemma 6.3, which imtwill be used to prove part
(a) of Theorem 4.1 from part (b) of Theorem 6.1. The rate fiomdh the MDP is the continuous
function'(x) = g(x) — inf,cr g(y), Whereg is the associated Ginzburg-Landau polynomiial.
satisfied'(x) — oo as|z| — oo. For A a subset oR definel'(A) = inf,c4 ['(z).

Theorem 6.2. Let (3, K,,) be a positive sequence converging either to a second-omiet p
(B, K(0)),0 < B < B, orto the tricritical point(3, K(3)) = (6., K(5:)). We assume that
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(Gn, K,,) satisfies the hypotheses of Theoredifor all 0 < « < ay. The following conclusions
hold.

(@ Forall 0 < a < ag, S,/n' % satisfies the MDP with respect 0, 5, x, with exponen-
tial speedn!~*/* and rate functiol(z) = g(x) — inf,cr g(y); i.e., for any closed sef in
R

log Py, i, {Sn/n' 7 € F} < —T(F)

lim su
p nl—a/ag

n—oQ

and for any open se¥' in R

1
lim inf ————log Py 5, ., {5 /ntTt e G} > —T(G).

n—oo M

(b) The hypotheses of this theorem are satisfied by sequéaeésin Table5.1.

The MDP in part (a) of Theorem 6.2 is proved like the MDP in gajtof Theorem 8.1 in
[6] with only changes in notation. Because of the importasfdbe MDP in part (a) of Theorem
6.2, the proof is given in appendix B. Concerning part (b) bédrem 6.2, the hypotheses of
this theorem coincide with the hypotheses of Theorem 4.1sTas shown in section 5 of this
paper and in appendix A, these hypotheses are satisfied bgrsses 1a—5a in Table 5.1.

After proving the next lemma, we use it to derive part (a) oedtem 4.1 from part (b) of
Theorem 6.1.

Lemma 6.3. We assume thdp,,, K,,) satisfies the hypotheses of Theorerhfor all 0 < o <
ap. Then for any) < a < oy and anys € (0, 1) there exists: > 0 such that for all sufficiently
large n

Pnﬂn,Kn{ém(ﬁm Kn) 2 Sn/n 2 _5m(ﬁm Kn)} S eXp[_Cnl_a/aO] — 0 asn — oo.
In addition,

lim P, s, k,{Sn/n > dm(f,, K,)} = lim P, g, k,{S./n < —=dm(G,, K,)} = 1/2.

Proof. By hypothesis (iii)(b) of Theorem 3.1 the global minimum ptsi of g are+z, and by
Theorem 3.1p%m(3,, K,) — Z asn — oo. Thus we can choose> 0 satisfying(1+¢)d < 1

such that’*m(j3,, K,,) < (1+¢)z for largen. Let F’ be the closed sét-(1+¢)d7, (1+¢)d7].

Since(1 +¢)6z < zand—(1 + )6z > —Zz, we have

inf g(y) > inf g(2) = g(2),

which implies
L(F) = inf{g(y) — inf g(2)} > 0.
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We writem,, = m((,, K,). The moderate deviation upper bound in part (a) of Theoré&n 6.
implies that for all sufficiently large

P g, i, {0mn > Sy fn > —dmy, }
= P, k, 100" m, > S, /00 > —n’m,}
< P i, {(1+€)0% > S, /n' ™" > —(1 + )0z}
< exp[—n'"*/*I'(F)/2] — 0 asn — oo.

This yields the first assertion in the lemma.
To prove the second assertion, we write

1=P.s, k,{S/n€R} = P,gs, k,{0mn> Sp/n>—0m,}
+ Pog,.k,{Sn/n > dmy,}
+ P g, k,{Sn/n < —dmy},
Symmetry and the first assertion imply that
nll_g)l() Pos, k,{Sn/n > o0m,} = nll_g)l() P.s, k,{Sn/n < —dm,} =1/2.

This completes the proof of the lemmia.
Now we are ready to prove part (a) of Theorem 4.1.

Proof of part (a) of Theorem 4.1 from part (b) of Theorem 6.1 ard Lemma 6.3. We write
my, = m(B,, K,). Define
Prs = Pupar,ASn/n > 0mn}, p, s = Pup, i, {Sn/n < —0my},
Ins = Pop, r,{0mn > Sp/n > —om,}.
Since by symmetry;’ ; = p, s and
En {11 Su/nl = mal | Su/n < —om,}
= Enpo i {1|Sn/nl = ma| | Sp/n > dm,}
= En g, k. {|Sn/n — my| ‘ Sp/n > dmy,},
we have
B {|[Sn/n] =mal} = Enppr, {11Su/n] —mal | Su/n > dma} - pis
+ En gk, {110 /1] — my ‘ Sp/n < =0mup} - p, s
+ En g, k,11|Sn/n] — mia] ‘ OMy > Sp/n > —dmy} - Gns
= 2-E,p, k,{|S/n — my| ‘ Sp/n > dmy,} -p:;(;
+ Eng,, 5,110 /0] — mia] ‘ OMy > Sp/n > —dmy} - G
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By part (b) of Theorem 6.1 and Lemma 6.3

1
lim n"E, g, k,{|S/n — my| ‘ Sp/n > om,} -p:;(; = 52.
Since|S,/n| < 1and0 < m, < 1, Lemma 6.3 implies that there exists> 0 such that for all
sufficiently largen

n” n,ﬁn,Kn{||Sn/n| - mn| } 5mn 2 Sn/n 2 _5mn} *Qns

l—a/ag]

< 2n"gn s < 2n" expl—cn — 0 asn — oo.

It follows that

lim 7" En g, i, {|[Sn/n| = mnl} =
n—oo

Part (a) of Theorem 4.1 is proved.

In the next section we prove a number of lemmas that will be irssection 8 to prove part
(b) of Theorem 6.1.

7 Preparatory Lemmas for Proof of Part (b) of Theorem 6.1

Let (6, K,,) be a positive sequence. Throughout this section we work Wwith o < «p
and denoten(53,, K,,) by m,.. Let W,, be a sequence of normal random variables with mean
0 and varianc€23,K,)~" defined on a probability spad€, 7, Q). We denote byF, 5. .,
expectation with respect to the product meashyg, x, x Q; P, 3, x, IS defined in (2.1)-
(2.2). Because the proof of part (b) of Theorem 6.1 is longtanhnical, we start by explaining
the logic. The hypotheses of this theorem coincide withehafsSTheorem 4.1.

Part (b) of Theorem 6.1 states that there exists (0, 1) such that for any € (A, 1)

lim n"E, g, k,{|S./n — my| ‘ Sn/n > dmy,} (7.1)
= lim E, 3, 1,{|Sn/n'™" — n"m,| ‘ Sp/n > dmy,}
1

- : 10 () 2ldr = 3
fReXp[—%g(Q)(j)x2]dx /R|5L'|8Xp[ 599 (2)2%|dr = Z.

A € (0,1) is determined in Lemma 7.5. The key idea in proving (7.1) isitow that adding
suitably scaled versions of the normal random variablleyields a quantity with the following
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two properties: its limit equals the last line of (7.1) and #econd line of (7.1) has the same
limit; specifically,
lim E, g, x,{|Sa/n' ™" = n"my| | Sp/n > dm,} (7.2)

lim E, s, k. {|Sn/n' ™" + W, /027" — nfm,,| ‘ Sn/n+ Wy /nt? > 6m,}
! _1,@(7 2d

f eXp[—lg(2)(j)x2]dx ’ R|x|exp[ 59 (Z)z?]d.

R 2

Formula (7.2) is proved in two steps.

Step 1.Prove the second limitin (7.2). This is done in part (b) of lrean8.1 in subsection 8a.
Step 2.Prove the first limitin (7.2). This is done in two substepsjaltwe now explain.

Substep 2a.Define
Co = Eng, 16, {|Sn/n' ™" — nmy,| ‘ Sp/n > om,}

and
D, = Epn g, k., {|Sn/n'™" + W, /0?75 — n"m,| ‘ Sp/n > omy,}.

ThusD,, is obtained fromC,, by replacings,, /n'=* by S,,/n'~"* + W, /n!/>=*. Substep 2a is
to prove thatim,,_,« |C,, — D,,| = 0. This is done in Lemma 8.3 in subsection 8b.

Substep 2b.Define
F, = EnﬁmKnﬂSn/nl_“ + Wn/nl/z_“ — n"my| ‘ Sp/n + VVn/nl/2 > dmy}.

Thus F;, is obtained fromD,, by replacingS,,/n in the conditioned even{s,,/n > dm,} by
S, /n + W, /n'/2. Substep 2b is to prove that

1
lim D, = lim F, = .
n1—>rgo n1—>rgo fR exp[— %9(2) (j)xz]dx

/|x|exp[—%g(2)(x)xz]dx.

R

The limit of F;,, asn — oo is calculated in Step 1. Substep 2b is proved in part (b) ofrham
8.4 in subsection 8c. The explanation of the logic of the podpart (b) of Theorem 6.1 is now

complete.

We next state and prove the preparatory lemmas needed yoocdr$tep 1, Substep 2a, and
Substep 2b in the proof of part (b) of Theorem 6.1.
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Lemma 7.1 is a representation formula that will be used tdystie limit of the conditional
expectation in the second line of (7.2). This lemma can bequatdike Lemma 3.3 in [11],
which applies to the Curie-Weiss model, or like Lemma 3.214| [ which applies to the Curie-
Weiss-Potts model. It will also be used to prove Lemma 7.2laamma 7.6.

Lemma 7.1. Given a positive sequend®,,, K,,), let IW,, be a sequence of normal random
variables with mean 0 and varian¢eg,, K,,) ! defined on a probability spa¢€, 7, Q). Then
for any#y € [0, 1) and any bounded, measurable function

/ 0(Sp/n' 7 + Wn/nl/z_:/)d(Pn7ﬁn7Kn X Q)
A" xQ)

- fRexp[—nGﬁlK (z/n7)]dx '/RSD(x) exp|—nGp, k, (x/n7)]dz.

In this formulaGjp, g, is the free energy function defined(4).

Lemma 7.2 uses the representation formula in the precedmgh to rewrite the condi-
tional expectation in the second line of (7.2).

Lemma 7.2. We assume thd3,, K,) satisfies the hypotheses of Theorifor all 0 < o <
ap. Foranyé € (0, 1) define

An(0) = {Sn/n 4+ Wy, /0% > 6my,},

wherem,, = m(f,, K,). Given anyw € (0, «y), definex = 1(1 — a/aq) + 6. The following
conclusions hold.
(a) For any bounded, measurable functibn

E’nyﬁnyKn{h(Sn/nl_H + Wn/n1/2—“ - n‘%mn) ) 1An((§)} (73)
1 00
ez / ~ W(z)exp[-nGp, Kk, (x/n" +m,)]dz,
n,k J —nt(1—-86)mn

whereZ, .. = [, exp[—nGp, k, (x/n")]dz. In particular, if h = 1, then

Engy i {la,®} = (Pagar, X Q){An(0)} (7.4)

1 o0
= / exp|—nGg, i, (z/n" + my)|dx.
an“f —nr(1—=8)my 7
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(b) We have the representation

En g sca{|Sn /0" 4+ W /0270 — nfim,| | A,(6)} (7.5)
1

Jonr(—ym, €XP[=1G s, i, (/0% + my) + nG, i, (M) da

- /  Jalexpl—nGy, (/0" + ma) + nG, k. (ma)]de.
—nk(1=0)my

Proof. (a) By part (c) of Theorem 6.15 € (fap,1/2). We apply Lemma 7.1 witlp(z) =
h(z —n"my) « Legm, ) () @andy = x, obtaining

En,ﬁn,Kn{h(Sn/nl_H + I/Vn/nl/z_‘k€ - nﬁmn) ' 1{Sn/n1*“+Wn/n1/2”‘>n"5mn}}

= /A o h(Sn/nl_H + I/Vn/nl/z_"i - nﬁmn) ’ 1{Sn/n1*“+Wn/n1/2*">n"5mn}d(Pnﬂn7Kn X Q)
nx

1
oG G L ) N () PG o
R n, A n
1 o0
= / h(z) exp[—nGg, K, (x/n" + m,)]dz.
an“f —nkE(1—=8)my

This yields (7.3). Formula (7.4) follows by takirg= 1.

(b) We apply part (a) to the sequence of bounded, measurabtgiénsh,(z) = |z| A j,
J € N. By the monotone convergence theorem we obtain (7.3) kit replaced byz|. Part
(b) now follows by using the definition of conditional expatbn and multiplying the numerator
and denominator of the resulting fraction &yp[nGjp, k,(m,)]. The proof of Lemma 7.2 is
complete[]

Lemma 7.3 gives the asymptotic behavior®j, r, (m,). This lemma is used to prove
Lemma 7.4 and part (a) of Lemma 8.1.

Lemma 7.3. We assume thdp,,, K,,) satisfies the hypotheses of Theorerhfor all 0 < o <
ap. Letm,, = m(5,, K,). Then for all0 < o < a,

lim n®*Gy, k, (m,) = g(z) < 0.

n—oQ

Proof. We have

NGy, k. (my) — g(7)] < |Gy, x,(nm, /n%) — g(n®m,)| (7.6)
+|g(n”*m,) — g(z)|.

29



The hypotheses of Theorem 3.1 for @ll< o < «q consist of a subset of the hypotheses of
Theorem 4.1. By hypothesis (iii)(a) of Theorem 3.1
lim n®/* Gy, K, (x/n"*) = g()

uniformly for = in compact subsets d@. According to Theorem 3.13%*m,, — z, and so for
anye > 0 the sequence’m,, lies in the compact sét — ¢, z + ¢] for all sufficiently large
n. Settingr = n%*m,,, we see that the first term on the right-hand side of (7.6) hadirmit O.
Because of the limit?>m,, — z and the continuity of;, the second term on the right-hand side
of (7.6) also converges to 0 as— oo. It follows that

lim |na/a°G5mKn(mn) —g(z)| =0.

n—oQ

By hypothesis (iii)(b) of Theorem 3.%;, > 0 is the unique nonnegative, global minimum point
of g. Thus
9(z) < g(0) = lim n®*Gy g (0) = 0.

n—oQ

The proof of lemma is completé]

Lemma 7.4 gives an inequality involvind=s, x, (m,) and the quantity,, ., defined in part
(a) of Lemma 7.2. This inequality is used in the proof of Lemnfand the proof of part (a)
of Lemma 8.4.

Lemma 7.4. We assume thdp,,, K,,) satisfies the hypotheses of Theorerhfor all 0 < o <
ap. For any0 < o < «a definex = £(1 — a/ag) + 6 and

iy = /exp[—nGngn(x/n“)]dx.
R

Letm, = m(3,, K,). Then for any: > 0 and all sufficiently large:
eXp[nGﬁann (mn)] ' Zn,li < eXp[€n1_a/aO].

Proof. For any0 < a < o define

Zn o = /exp[—nGngn(x/nea)]dx.
R

Changing variables shows thd} ,, = n"~%*Z, 5,. The MDP stated in Theorem 6.2 is proved
in Theorem 8.1 in [6] via an associated Laplace principle e &ep in this proof is the limit

lim —— log / exp[n' =200 (@) — nGy, i, (2/n")]dz = sup{t(x) — g(a)},

n—oo pl=a/ao J
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where is any bounded, continuous function mappikgo R. This is proved on page 546 of
[6] with v = —(1 — a/ap) andy = fa. Settingy = 0 gives the limit

1 1
lim ———log Z, 9o = lim 7log/ exp[—nGp, r, (z/n%)]dz = — inf g(y).
R

n—oo ’)’Ll_a/aO n—oo ’)’Ll_a/ao yER

SinceZ, . = n"%*Z, 4, andg has a unique positive, global minimum pointzat

. 1 . 1 K—Oo
nll_% W log Zn,ﬁ = 7}1_,%10 W log(n Zn,@a)

= —infg(y) = —g(2).

By Lemma 7.3im,, ., n®/*°Gp, r, (m,) = g(Z). Hence the asymptotic behaviorslof 7, ..
andnGjy, k, (my) are related by

. 1 .
7}1_%10 ni—alao log Zy x = — 7}5& WnGﬁn,Kn (may,).
Thus for anye > 0 and all sufficiently large:

1

nl—a/ao nGﬁann(mn) <g,

1
log Zy o + ——
n

1—a/ag

or equivalently
eXp[nGﬁann(mn)] ' Zn,li < eXp(€n1_a/aO).

The proof of Lemma 7.4 is completel

We recall that Step 1 in the proof of part (b) of Theorem 6.Dbiprove the second limit in
(7.2):
lim E, K, 1|50 n =+ W, /nM P — nfm,| | S, /n + W, /a2 > dm,
B
1 L2y,
= . _ 1,2 2
fR exp[—%g(z)(f)ﬁ]dx /R|l‘|eXp[ 59 (x)x ]dl’

By part (b) of Lemma 7.2 the limit of the conditional expematequals the limit of the product
in the last two lines of (7.5) with = §. Ford € (0, 1) this product has the form

1
S sy, €XP[=1G, i, (/05 + my) + nG, i, (M) da

- / 2 expl—nGl, 1, (/0" +m2) + nGs, . (mo)]de.
—n"(1-08)my
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The calculation of the limit of this product depends in pantleemma 7.7, which will be

proved via the Dominated Convergence Theorem (DCT). Twodsgtynates are given in the
next lemma. Part (b) of the next lemma also removes an emar tteat arises in the proof of
part (a) of Lemma 8.1. The proof of Lemma 7.5 is postponed thdiend of this section.

Lemma 7.5. We assume thdp,,, K,,) satisfies the hypotheses of Theorerhfor all 0 < o <
ap. Forany0 < a < aq definex = (1—a/ag) +6a, and letm,, = m(6,, K,). The following
conclusions hold.

(@Forallz e R

1
lim (nGp, k., (¢/n" + 1) = nG, 1, (M) = 29 (7)2°

n—oo

(b) There exists\ € (0, 1) such that for any € (A, 1) there existsR > 0 such that for all
sufficiently large n and alt € R satisfying|z/n"| < R andz/n"* > —(1 — 0)m,,

1

The next lemma removes an error term that arises in applgm@CT to prove Lemma 7.7.
The next lemma also removes an error term that arises in toé pf part (a) of Lemma 8.1.

Lemma 7.6. We assume thdp,,, K,,) satisfies the hypotheses of Theorerhfor all 0 < o <
ap. Then there exist a constast > 0 such that for all sufficiently large

/ exp[—nGg, i, (/" +my) + nGa, K, (my)|dx < exp[—cyn] — 0 as n — oo,
Rn*

whereR is chosen as in paifb) of Lemmar.5andm,, = m(f3,, K,).
Proof. We start by applying Lemma 7.1 with(z) = 1(gnsinrm, o) () andy = «, obtaining
(Pn Buiin X Q{Sn/n+ W, /n'? > R+ m,}
= (PngnKnxQ){S/nl“+W/n1/2“>Rn + mnn }

= / 1{Sn/n1fﬁ+Wn/n1/2fnZRnn+mnnK}d(Pn75n7Kn X Q)
A" xQ

1
= - ./1[Rnﬁ+mnnn7oo)(x) exp[—nGg, i, (x/n")|dx
n,K R

o

- . / exp[—nGg, i, (z/n" +my)|dz,
Zn,li Rn*
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whereZ, . = [, exp[—nGg, , (x/n")]dz. Thus we have

/ exp|—nGg, i, (x/n" +my) + nGpg, k, (m,)]|dx
Rn*

= exp[nGp, ik, (Mn)] - Zns - (Pog,.k, X Q){Sn/n + I/Vn/nl/2 > R+m,}
< exp[nGg, k,(mn)] - Zns - (Pog,.x, X Q){Sn/n + I/Vn/nl/2 > R}.

By part (b) of Lemma 4.4 in [6], with respect 8, 5, r, x Q, S,/n + W, /n'/? satisfies the
large deviation principle o with exponential speed and rate functioid’; x(s. In particular,
for the closed s€tR, co) we have the large deviation upper bound

1
lim sup —1og(Py 5,1, X Q){Sn/n + Wa/n'/* > B} < — inf G x(s)(x).

n—oQ

By part (a) of Theorem 2.1, sindée< 3 < (3., we haveMg k3 = {0}. ThusGp k(s has a
unique global minimum point at 0. Singe > 0, it follows that

inf Gor(p) (@) > 1nf G res)(x) = 0.
Therefore for all sufficiently large
(Pog, .k, X Q){Sn/n+ W,/n*/? > R} < exp|—cin,

wherec; = inf,>r Gg k(3 (x)/2 > 0. We now appeal to Lemma 7.4, which states that for any
¢ > 0 and all sufficiently large:

eXp[nGﬁann (mn)] . Zn,li S eXp[€n1_a/aO].

Sincel < 1 — a/ay < 1, it follows that for all sufficiently large:

/ exp|—nGg, i, (z/n" +my) + nGpg, k, (m,)]dx

Rn*
< exp[nGi, k., (Mn)] - Zo - (Pag,. i, X Q){Sn/n+ Wy /n'/? > R}
< explent=®/%] . exp[—c ]
< exp[—cin/2).

This gives the conclusion of Lemma 7.6 with= ¢, /2. The proof of the lemma is complete.
O

Lemma 7.7 is a key result in the proof of the conditional listéted in part (b) of Theorem
6.1. The lemma deals with the weak convergence of certairsunes needed in the proof of
part (a) of Lemma 8.1. Lemma 7.7 is also used wfitk 1 in the proof of part (b) of Lemma
8.1 and part (a) of Lemma 8.4.
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Lemma 7.7. We assume thdp,, K,,) satisfies the hypotheses of Theorerhfor all 0 < o <
ap. Given any € (0, o), definex = (1 — /o) + 6 and

Ik = /exp[—nGngn(a?/n“)]da?.
R

For 0 € (0,1) define ) )
An(6) = {S,/n+ W, /n'? > dm,,},

wherem,, = m(,, K,). Let f be any bounded, continuous function andAet (0, 1) be the
number determined in pafb) of Lemmar.5. Then for any) < a < ap and anys € (A, 1) we
have the limit

Tim exp[nGa, i, (M) - Zus + B i, L (S /'~ 4 Wo/n! 275 = nme) - 14, )}

= lim f(z) exp|—nGp, i, (x/n" + my,) + nGpg, k, (my,)|dz
N0 J_nk(1-8)mn
— [ f@) el b @)a?ldo (7.7)
R

Proof. The first equality follows by applying part (a) of Lemma 7.2ite= f. Concerning the
second equality, we denote bythe integral in the second line of (7.7). We write= I,,, +1,,,,
where

RnF
In, = / f(x) exp[—nGp, k, (x/n" +my) + nGp, K, (my)|dz

ne(1=8)my,

and
Iy, = f(z) exp[—nGp, k, (x/n" + mn) + nGp, Kk, (mn)]dz.
Rn*
The numberR is chosen as in part (b) of Lemma 7.5. Sinfces bounded, Lemma 7.6 implies
that there exists; > 0 such that for all sufficiently large

L < Iflle / expl=nG, (/0" + M) + nC s ()]
Rn*

< | flloo exp[—can] — 0 as n — oo.

Thusi,, — 0 asn — oc.
Define
hn(x) = f(x) exp|—nGa, k, (/0" + my,) +nGgs, Kk, (Mn)]
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and

h(z) = f(x)exp|- 9@ (z)a?).
By part (a) of Lemma 7.5),,(v) — h(z) for all z € R. In addition, by part (b) of Lemma 7.5,
if z € (—(1—d0)m,n", Rn"), then for all sufficiently large:

1
nGg, i, (x/n" +m,) —nGg, k,(m,) > H(z) = gg(z) (7).

Sinceexp[—H (z)] is integrable, the Dominated Convergence Theorem imgiias t
Rn"

lim 7, = lim hp(x)de = /Rh(x)dx: /Rf(x) exp[— 39 (z)x?)dx.

We conclude that

lim /I, = lim [,,, + lim [,, = / f(z) exp[— 39D (z)x?dx.
n—oo R

n—oQ n—oQ

This completes the proof of Lemma 7[7.

The next lemma collects several elementary but useful tactserning the normal random
variablesiv,.

Lemma 7.8. Let (5, K,,) be a positive sequence that converges either to a secored-paint
(B,K(0#)), 0 < B < S, or to the tricritical point (5, K(3)) = (6., K(5.)). LetW,, be a
sequence of normal random variables with mean 0 and variafice (23, K,)~" defined on a
probability spacg2, F, ). The following conclusions hold.

(@)For b > 0 and¢ > 0 there exists a constant> 0 such that for alln, Q{|W,,| > bn¢} <
exp[—cn?].

(b) There exist a constamt > 0 such that for alln

/ |W,|?dQ < ¢; and /|Wn|dQ < \/er1.
Q Q
Proof. (a) We have the bound

V2 [ V20,
ﬁan bnS ﬁbnc

Part (a) now follows from the fact that sin¢g,,, K,,) is a positive sequence converging to
(8, K(3)) for 0 < 3 < 33, the positive sequences ando? are bounded.

Q{|Wal| > bn'} =

exp[—2?/202]dx <

exp[—b°n?¢ /252].

35



(b) Since/,, |W,|?dQ = o2 and [, [W,,|dQ < ([, [Wa[*dQ)"? = o, this follows from the
fact that the positive sequencesando,, are bounded. The proof of the lemma is compléte.

The next lemma is used in the proof of part (a) of Lemma 8.4. ddnlde hypotheses of
Theorem 4.1, for any < a < ag the interval((),% — Oa) appearing in the next lemma is
nonempty because by hypothesisXil — a > £ — 6ay > 0.

Lemma 7.9. We assume thd3,, K,) satisfies the hypotheses of Theorifor all 0 < o <
ap. Foro € (0,1) define

An(8) = {Sn/n + Wyn/n'? > ém,},

wherem,, = m(f,, K,). LetA € (0,1) be the number determined in pgkt) of Lemmar.5.
Assume thad < a < ap and choose any numbefg 4, 6o and( satisfyingA < §; < 6 < dp <
land¢ € (0,5 — 6). Then there exist constants> 0 and ¢, > 0 such that the following
conclusions hold.

(a) For all sufficiently largen

2¢

(Pn75n7KTL X Q){An(él)} + 6_Cn Pn,ﬁ,.“Kn{Sn/n > 5mn}

(Pt X Q){An(02)} — ™.
(b) For all sufficiently largen

E’nyﬁnyKn{|Sn/n1_H + Wn/n1/2—“ - nﬁmn| ' 1An(51)}

—cn2¢ _ —_en2¢
+2pfemcn —|—an% 1/26 cn?6 /2

> En,ﬁmKnﬂSn/nl_H + VVn/ﬂJl/z_’Li - nﬁmn| : 1{Sn/n>5mn}}
> En,ﬁn,KnﬂSn/nl_H + Wn/nl/z_ﬁ - nﬁmn| : 1An(52)}
. 2nﬁe—cn2< . anﬁ_1/2€_cn2</2.

Proof of part (a) of Lemma 7.9. We choose, € (0,1 — f«). The proof is based on the
following two claims, which are proved later.

Claim 1.  For all sufficiently larger, {S,/n > dm,} C A, (1) U {|W,| > 3n¢}.

Claim 2.  For all sufficiently larger, {S,/n > dm,} D A, (62)\{|Wy| > inc}.
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By Claims 1 and 2, for all sufficiently large

(Pogoicn X Q{An(01)} + Q{{|Wa| > 50}
= (Pagnicn X Q{An(00)} + (Pupn i, X Q{{IWal > 50}
> (Pn75n7](n X Q){Sn/n > 5mn} = P{Sn/n > 5mn}
> (Popotcn % Q){A(02)} — Q{|Wal| > 40},

Part (a) of Lemma 7.8 completes the proof. Thus, given Cldirasd 2, the proof of part (a) is
complete.

Proof of part (b) of Lemma 7.9. We use Claim 1 to prove the first inequality in part (b). For
all sufficiently largen

E’nvﬁnyKn{|Sn/n1_H _I_ Wn/n1/2—“ - n‘%mn| ' 1{Sn/n>5mn}} (78)

= / 1S, /0t W /2 — nm,| - 118, /nsomn} (P g i % Q)
A" xQ
< / 1S/ A+ W /027 — S| - 1, 50 d(Pagn.r X Q)
A" xQ
1-k 1/2—x _ K .
St W (P, Q)

< / 1S/ W /027 — g | - L, 50 d(Pagn i, % Q)
A" xQ

‘l‘/AnXQ |Sn/’n,1—l€ _ n“mn| . 1{|Wn|> %nC}d(PnﬂmKn X Q)

1/2—k| |
—l—/Q|Wn/n | 1{|Wn|> %ng}dQ

Since|S,/n| < 1 andm, € (0,1), we have|S,/n'™" — n"m,| < 2n®. Using part (a) of
Lemma 7.8, for all sufficiently large we bound the next to last integral in (7.8) by
2n" - Q{|Wn| > %nC} < 2n" eXp(_anc)a

wherec > 0 is a constant. The next step is to apply the Cauchy-Schwaetyuiality to the

last integral in (7.8) and use parts (a) and (b) of Lemma 7I&ré& exist constants> 0 and
cz = 4/c1 > 0 such that for all

1/2—k |

1/2
< (/ |Wn/nl/2_”|2dQ) . (Q{|Wn| > %ng})l/2 < conf1/? exp[—cnzg/2].
Q
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It follows that for all sufficiently large:
EnvﬁnyKn{|Sn/n1_H _I_ Wn/n1/2—"€ - nﬁmn| ' 1{Sn/n>5mn}} (79)
S EnvﬁnyKn{|Sn/n1_H _I_ Wn//n’l/z_H - nﬁmn| ' 1An(51)}
+ 2nﬁe—cn2< + anﬁ_1/2€_cn2</2.

This completes the proof of the first inequality in part (b).
We now use Claim 2 to prove the second inequality in part (b).af sufficiently largen

EnvﬁnyKn{|Sn/n1_H + Wn//n’l/z_H - nﬁmn| ' 1{Sn/n>5mn}} (710)

= / 1S /0t W /0275 — 0 m| - s, s smn) AP g s
A" xQ
= / S /0t W /02— mg| 14, 5)d(Prg, i, X Q)
A" xQ
o 1-k 1/2—k _ Kk i
Jo 1S e W w1 P, X Q)
& / |/ W 027 — S| - 14, (5 d(Pag i, X Q)
A" xQ
1—k K
_ Il | 1 d(P,
T S W0 )

o 1/2—k |

The last two integrals in (7.10) coincide with the last tweegrals in (7.8) and hence can be
bounded the same way. For all sufficiently largthis yields
Enﬂn,Kn{|Sn/nl_l’i + I/Vn/nl/z_ﬁi — Ny, - 1{Sn/n>5mn}}
> Bty {18 /07 4 W /0270 = my| - 14, 5,0} (7.11)
. 2nﬁe—cn2< . C277J.14—1/26—cn2</2’

wherec > 0 andc, > 0 are constants. In combination with (7.9), the last inedygields part
(b).

In order to complete the proofs of parts (a) and (b) we now tarthe proofs of Claims 1
and 2.

Proof of Claim 1. We write

(Sufn > 0mn} = ({Su/n > dmn} N {[Wa| < 1nS}) U ({Su/n > mn} N {|Wa| > Inc})
C ({Su/n > dmy} N {|Wal < LnS}) U{Wo| > Lnc}.
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Claim 1 follows if we prove for all sufficiently large
{Sn/n > dmy} N {IW,| < 30} C Au(61) = {Su/n+ Wy /n'/? > §im,} (7.12)
We have

{Su/n > dmp} N{{W,] < inf} = ({Su/n>dm,}N{0<W, <int})
U({Sn/n > dm,} N {—3n° < W, < 0}).

If S,./n > dm,, and0 < W,, < in¢, thenS, /n+ W, /n'/? > S,/n > ém, > dim,. Thus
{Sp/n>dm,}N{0<W, < %ng} C A, (7). (7.13)

Now assume thas$,,/n > dm, and—in® < W, < 0. Since¢ < 3 — 6a, we have for all

2
sufficiently largen
(6 — 6,)T > nS~ /20

Sincelim,,_.o n’*m,, = z [Thm. 3.1], it follows that for all sufficiently large
(5 — 51)mn > %nC_l/z.

Thusdm,, —in=1/2 > §;m, for all sufficiently largen. Hence, ifS,,/n > dm, andW,, /n!/? >
—1n¢=1/2 then for all sufficiently large:

So/n+ Wy /nt? > dmy, + W, /n'/? > ém,, — %nC_l/z > d1my,.
It follows that for all sufficiently largex
{Sp/n > dmu} N {—nS < W, <0} C A,(61).
Therefore (7.12) follows from (7.13) and the last displalgisTcompletes the proof of Claim 1.

Proof of Claim 2. It suffices to prove thatl,(d:) C {S,/n > dm,} U {|W,| > n‘}. We
write
An(6s) = {Sn/n+W,/n'? > sym,}
= ({Su/n+W,/n? > dom,} 0 {|W,] > n‘})
U({Sn/n + W, /n'? > Somy,} 0 {|Wh] < inf}).
C A{IWal > 03U ({Su/n+ Wo/n'? > domy} O {[W,| < gt}
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Hence Claim 2 follows if we prove for all sufficiently large
{S,/n+ W, /n'? > sym,} N {|W,| < snf} C {Sn/n > dmy}.

We omit the proof, which is similar to the proof of (7.12). Tim@of of Lemma 7.9 is complete.
O

We now prove Lemma 7.5, completing the preparatory lemmegtsihl be used in the next
section to prove part (b) of Theorem 6.1.

Proof of Lemma 7.5. This is done whery has degree 4. We omit the analogous but more
complicated proof whep has degree 6.

Proof of part (a) of Lemma 7.5 wheng has degree 4 By Taylor’s theorem, for any? > 0,
alln € N, and allz € R satisfying|z/n"| < R

nGg, k,(x/n" +my,) — nGg, K, (Mmn)

- ! GY) . (my) ; 1 G (my+712/0%)
B Z nin=1 - j! ET= 5! o

7=1
wherer is a number in [0,1]. The quantity.,, + 72 /n" lies in the interval m,, — |x/n"|, m,, +
|z/n"|]. Sincem,, € (0,1), m,, — 0and|z/n"| < R, we haven,, +7z/n" € (—R, R+ 1) for
all n. Since the sequencd®,, K,,) is bounded and positive, there existE (0, co) such that
0 < B, <aand0 < K,, < aforalln. As a continuous function df3, K, y) on the compact set

[0,a] x [0,a] x [~ R, R+1], it follows thatG' ) () is uniformly bounded. Since, + 7z /n* €

(—R,R+1) foralln € Nandx € R satisfying|z/n"| < R, G(B?KR (my, + 72 /n") is uniformly
bounded fom € N andx € (—Rn"”, Rn"). We summarize the last display by writing

nGg, i, (x/n" +my,) — nGg, k, (M)

4 ()
1 G My) . 1

- nir—1 4!

J

where the big-oh term is uniform far € (—Rn", Rn").

Let ¢,, denote a sequence that converges to 0 and that represenarithes error terms
arising in the proof. The same notatiep will be used to represent different error terms. To
simplify the arithmetic, we introduce= 1—a/ay > 0. We have the following three properties:

(1) Sincem,, is the unique positive, global minimum point@f, «,,, G(ﬁln)xn (m,) = 0.
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(2) By hypothesis (ii) of Theorem 4.1, fo = 2, 3,4, we have

GE) 1, () = (99(&) + £0) /2079 = (&) + £,) /2.

(3) Sincex = 1u + 0o, we havejr — u — jfo = (4 — 1)ufor j = 2,3, 4.

Using these properties, we obtain the following asymptmimula, which is valid for any
R >0, alln € N, and allz € R satisfying|z/n"| < R:

4 N —
; 1 gu@) +e, . 1
nGﬁnyKn (x//n’ _I_ mn) - nGﬁnyKn (mn) = : : ,n/jli—l ’ nl_“_jea . ]' ) xj _I_ O n5l€—1 x5

1 gV +e, 1 5
= 2E'W'ﬂ+o eyl B

1 (¢¥(@) +n)
- (@ (7 2, -0 =3
= (¢"(Z) +en)z” + a3 G T

@ (7 1
—I—l (g (x)+€n)x4—|—0< 5%—1)x5‘
n

41 nY

By hypothesis (if) of Theorem 4.1 and part (c) of Theorem 6.1, we hgie < oy < K <
1/2. Thereforesx — 1 > 50y — 1 > 0. Sinceu > 0 ande,, — 0, we have for al: € R

1
lim (nGp, Kk, (z/n" + m,) — nGg, k, (M) = ig(z) (f)xz

n—oQ

This completes the proof of part (a) of Lemma 7.5 wigdras degree 4.

Proof of part (b) of Lemma 7.5 wheng has degree 4Hypothesis (iif) of Theorem 4.1 states
thatgV)(z) > 0 for j = 2,3, 4. It follows that for all sufficiently large: and allz € R

1 1
o (9@(z) + en)2® > T g (7)2?
and o nys
L @@ +e) oo 1 W@ 4
4! n — 2.4 n

and that for all sufficiently large

31 ez T T 9.3l

3)(z ®)(z
L g ($)+5n3> 1 g (x)x?’forallsz
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and
L g9@) ten s 2 P@)

3l nu/2 31 2
We first consider: € [0, Rn*). Sinceg™ (z) > 0, for all sufficiently largen and all suche
we have

23 forall z <0.

nGg, k,(x/n" +my,) — nGg, K, (Mmn) (7.14)
Ny
* ﬁ | %x * ﬁo<nsf1—u) o
1 9(4)(9?“)

4 Sk—1—u
o T (1 O™ ),

By hypothesis (ifi) of Theorem 4.10a, € [1/4,1/2). Hence4d — 1/ay > 0, and so
bk—1—u=r+ (40 —1/ag)a > k.

Hence foralh < x < Rn" we have) < z/n°*~'7* < z/n* < R. Thusthe term Qu/n°*~17%)
appearing in (7.14) can be made larger thanfor all 0 < z/n" < R by choosingR to be
sufficiently small. Sincg®(z) > 0, ¢ (z) > 0, and1 + O(x/n®*~1~*) > 0, we have that for
all sufficiently largen and allz € [0, Rn")

1
_2 2,9

This is the conclusion of part (b) of Lemma 7.5 for@iK = < Rn" wheng has degree 4.
We now consider € (—Rn*,0]. Sinceg"(z) > 0, for all sufficiently largen and all such
x we have

nGpg, k,(x/n" +m,) — nGs, k,(My) > ﬁ .9(2)(x)x2+%_gigf)xs (7.15)
4)
ﬁ.g (7)1 n; O(itrs) !
> ﬁ'g(z)(x)x2+§ giigf)xs
tra 9(251“) (1+O(z/n™""")



Sincesk — 1 —u > &, forall —Rn* < z < 0 we have—R < z/n" < x/n°*~'7* < 0. Thus
the term Qx /n°<~1~%) appearing in (7.15) can be made larger thdrfor all - R < x/n" < 0
by choosingR to be sufficiently small. Since®(z) > 0 and1 + O(x/n>~17%) > 0, we have
that for all sufficiently large: and allx € (—Rn*,0)

3 1 2 ¢g¥(z)
nGp, i, (x/n" +my,) — nGg, K, (my) > —2_219( )(Z)a? +§ o/ z®.

By Theorem 3.1 we have,, ~ z/n’. Thusn®*m,, = 7 + ¢, and
n*m, = n“? . n’*m, = n“/z(f +en).

In part (b) of Lemma 7.5 we assume thatn* > —(1 — §)m,, and0 < é§ < 1. Thus for all
sufficiently largen and all suche

—(1=§nfm, = —(1 =Nz +e,) > —(1 — 6)n%? - 2z.

Sinceg® (z) > 0, we see that for all sufficiently large, all z € (—Rn*,0), and allz/n" >
—(1—6)m,, there exists\ € (0, 1) such that for any € (A, 1) the following inequalities hold:

nGg, k,(x/n" +m,) — nGg, k, (M)

1 2 g9 5
> @+ o T gy o)
1 2-2 _ _
- (gg 0@ =22 0@ -0 ) o
1 1 1
N R S C e S C ey
> 2o = L@

This is the conclusion of part (b) of Lemma 7.5 felkn” < x < 0 andz/n" > —(1 — d)m,,
wheng has degree 4.

We have shown that for anyc (A, 1) there exists? > 0 such that for all sufficiently large
n and allz € R satisfying|z/n"| < R andz/n* > —(1 — 0)m,,

1

This completes the proof of part (b) of Lemma 7.5 whehas degree 4. Because we are
omitting the proof of part (b) when has degree 6, the proof of Lemma 7.5 is complete.

We have completed the statements and proofs of the prepatatomas. We now turn to
the proof of part (b) of Theorem 6.1.
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8 Proof of Part (b) of Theorem 6.1

As we saw at the start of section 7, the proof of part (b) of TaeD6.1 involves two steps. Step
1 is proved in the next subsection. Step 2 is subdivided imtostubsteps. Substep 2a is proved
in subsection 8b, and Substep 2b is proved in subsection 8c.

8a Proof of Step 1 in Proof of Theorem 6.1 (b)

Part (b) of the following lemma states Step 1 in the proof of (i@) of Theorem 6.1. We recall
that1V,, is a sequence of normal random variables with mean 0 andheai2s,, K,,) ! defined
on a probability spacg?, F, Q). We denote b)Enﬁm &, expectation with respect to the product
measure, 5, k, X Q; Pns,.x, 1S defined in (2.1)—(2.2).

Lemma 8.1. We assume thd3,, K,) satisfies the hypotheses of Theorifor all 0 < o <
ap. Foro € (0,1) define

A, (8) = {Sn/n+ W, /n*? > dm,,}

wherem,, = m(f3,, K,). LetA € (0,1) be the number determined in pgHt) of Lemmar.5,
Then for any) < o < ap and anyo € (A, 1), the following conclusions hold.

(a) We have the limit

o

lim |z| exp[—nGp, k, (z/n" +my) + nGg, k, (m,)]dx

=0 J _nk(1-8)mn

— [ lelexpl- b @)
R

(b) We have the limit

nlirgo En g, 1, 4Sn/nt " 4+ W, /0275 — nfm,,| ‘ An(0)}

L 1 _
: 1,2 2
o exp[—1g@ (2)22)dx /R|x| exp|—359"(Z)z?]dx

= Z.

Proof of part (a) of Lemma 8.1. Let ¥,, andV denote the measures &defined by

Vn(de) = 1 s (1-5)mn,00) (%) - Xp[=1Gig,, i, (/05 + M) + 0, 1, (M0n) ] d

44



and
U(dz) = exp[—1¢?(z)2?]dx.

According to Lemma 7.7Y¥,, converges weakly t&. The limit in part (a) of Lemma 8.1 can
be expressed as

lim |x|d\Ifn:/|x|d\If.

As discussed in Theorem 4 §hl.6 of [15], this limit would follow from the weak convergee
of ¥,, to ¥ if one could prove the uniform integrability estimate

lim sup/ |z|dV¥,, = 0.
{l[>5}

=0 neR

The next proposition shows that the lirtiitn, .o [; |2|dV, = [ |z|dV is a consequence of a
condition that is weaker than uniform integrability.

Proposition 8.2. Let ¥,, be a sequence of measures®rhat converges weakly to a measure
¥ onR. Assume in addition thaf, |z|d¥ < co and that

lim lim sup/ |z|dV¥,, = 0.
{l[>5}

J7X0 pn—oco

It then follows that
lim |x|d\Ifn:/|x|d\If.
R R

Proof. SinceV,, — ¥, we haveV,(R) — ¥(R). Hence the proposition is a consequence of
Proposition 8.3 in [12] applied to the sequence of probghihieasures
1 1

TR U, (dr) = IR U(dz).

This completes the proof.l.

We now verify the following hypotheses of Proposition 8.2 tlie measure¥,, andV:
(1) v, = 0.
(2) [g lz|d¥ < oco.

(3) lim;j_ limsup,,_.., f{|m|>j} |z|d¥,, = 0.
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Item (1) is proved in Lemma 7.7, and item (2) is immediate fiitin definition of¥. We
now prove item (3). Since

/ |z|dV,, = / |z|dW,,
{le[>5} {lz[>j}n{z>—n"(1-8)mn}

we can prove item (3) by showing that

lim lim sup |z|dW¥,, = 0.

)70 pooo /{|m|>j}ﬂ{m>—n“(1—g)mn}

In order to do this we find, for any € N and all sufficiently large:, quantities4;, B,, andC,,
with the properties that

{lz[>5}n{z>-n"(1-8)mn}

A; —0asj — oo, B, — 0asn — oo, andC,, — 0 asn — oo.
We now specify the quantitie$;, B,, andC,,. Given positive integerg andn, let R and K
be positive numbers that satisfy > R and that will be specified below. Then

{lz| > 7} 0 {z/n" > —(1 = d)m,}
= [{lz] >} n{lz/n"| < R} n{z/n" > —(1 = §)mn}]
U[{lz| > 7} 0 {R < |z/n"] < K} 0 {z/n" > —(1 — d)m,,}]
Ul{lz| > 7} 0 {lz/n"| > K} 0 {z/n" > —(1 = 6)m,,}]
C [zl > s} n{lz/n"] < R} n{z/n" > —(1 = §)mn}]
UHR < |z/n"| < K} n{x/n" > —(1 - §)m,}| U {|z/n"| > K}.

Sincem,, — 0, for all sufficiently largen
(R< |z/n| < K} N {z/n" > —(1—0)mp} ={R< z/n" < K}.

Hence for all sufficiently large
/ |z]d ¥, (8.1)
{lz|>3}n{z/n">—(1=8)mn}

<

/ 2|d,
{lz[>5}n{|z/n | <R}N{z>—n"(1-8)mn}

+/ 2|d, +/ 2]d,.
{R<z/n*<K} {lz/n~|>K}
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We next estimate each of these three integrals. By part (teofma 7.5, there exists
A € (0,1) such that for any € (A, 1) there exists? > 0 such that for all sufficiently large n

and allz € R satisfying|z/n"| < Randz/n" > —(1 — §)m,,

1
nGg, i, (x/n" +m,) —nGg, k,(m,) > H(z) = gg(z) (E)x2

Sinceexp[—H (x)] is integrable, for all sufficiently large we estimate the first integral on the
right hand side of equation (8.1) by

/ |z|dW,, (8.2)
{lal>3}n{la /| <RY{a>—n®(1-3)mn}

<Aj= [ ol expl-H(a)ldr =0 as = oo,
{lz>35}

By part (a) of Lemma 4.4 in [6], there exisk§ > 0 andD; > 0 suchthatis, ., (z) > Dyx?
forall |x| > K. Sincem,, — 0, it follows that for all sufficiently large: and allz € R satisfying
|x/n"| > K, there existd) > 0 such that

nGg, k,(x/n" +my) > nDi(z/n" +my)* > nD(x/n")?.

Without loss of generality< can be chosen to be larger than the quanfiitgpecified in the
preceding paragraph. By Lemma 7.3, for all sufficiently éatighere existg,, — 0 such that

o)+ _ (@)
na/ag — 2na/ag

G, K, (M) =

These bounds allow us to estimate the third integral on tite hand side of equation (8.1) by

/ 2| dP,, (8.3)
{lz/n~>K}

|z| exp[—nGp, K, (z/n" +my) +nGg, K, (my,)]dx

IN
—

{lz/n" =K}

IN

|z| exp[—nD(z/n")?|dx
{la/n =K}
2

=5 -n*lexp[-nDK?] — 0 as n — oo.

A
a

With these choices oRR and K, we use Lemma 7.6 to estimate the second integral on the
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right hand side of (8.1). There exists > 0 such that for all sufficiently large

/ |x|dW,, (8.4)
{R<z/n"<K}

- / 2| expl—nGp, . (2/n" + my) + nG, 1, (mo)|de
{R<z/nr<K}

<Kt [ expl-nGa e, (a4 ma) + G e () dz
{z/n*>R}
< B,, = Kn"exp[—con] — 0 as n — oo.

Together equations (8.2), (8.4) and (8.3) prove (8.1). Thmpletes the proof of part (a) of
Lemma 8.1.

Proof of part (b) of Lemma 8.1. Part (b) of Lemma 7.2 states that

E~n75n7Kn{|Sn/n1_“ + Wn/nl/z_“ —n"m,| ‘ A, (0)}
fojwu—é)mn |z| exp[—nGp, k, (z/n" +m,) + nGg, k, (m,)]dx

e ¢}

f—n"(l—g)mn exp|—nGg, K, (z/n" +m,) + nGg, k,(m,)|dr
Hence by part (a) of Lemma 8.1 and Lemma 7.7f0t) = 1, the last integral has the limit

Je 17| exp[—1¢P(Z)2?]dx
o expl— 19 (@)7dx

This completes the proof of part (b) of Lemma 8.1 and hencetbef of the lemmall

=Z.

Having completed Step 1 in the proof of part (b) of Theorem &@& now turn to Substep
2a.

8b Proof of Substep 2a in Proof of Theorem 6.1 (b)

Lemma 8.3 proves Substep 2a of part (b) of Theorem 6.1. Wd thealV,, is a sequence of
normal random variables with mean 0 and varia(@e, K,,) ! defined on a probability space
(Q, F, Q). We denote by, s, k,, expectation with respect to the product measeyg, x, X Q.

Lemma 8.3. We assume thdp,, K,,) satisfies the hypotheses of Theorerhfor all 0 < o <
ap. Denotem,, = m(5,, K,,). Foré € (0, 1) define

C, = E~n K,1|5n =" —nm,| | S,/n > ém,
»Bn,
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and
Dy = Enp, 1,190 /n' ™" + Wy /075 —nfmy| | Sp/n > 6mi}.

Thenlim,,_.« |C,, — D,,| = 0.
Proof. By part (b) of Lemma 7.8 there exists a constant- 0 such that for all

B o { W20} < e fn/2

By Lemma 6.3
lim P, s, k,{Sn/n > dm,} =1/2.

It follows that there exists a constant> 0 such that for all sufficiently large

A E~|n Wn nl/z_“ -] nSEm
En,ﬁn,Kn{|Wn/n1/2_”| ‘ Sp/n > dm,} = B kn (| Wn/ | Lgsu/nzomay}

Pn75n7Kn{Sn/n > 5mn}

< ey /nt/F
Since

|Sn/n1—li + Wn/n1/2—ﬁ o nﬁmn|

|Sn/n1—n o n“mn| . |Wn/n1/2—n| S
< |Sn/n1_ﬁ —n"my| + |Wn/n1/2_ﬁ|>

we have for all sufficiently large

Dn + 02/77,1/2_"‘i
= Enﬁm;(nﬂSn/nl_“ + W, /0 27F — nfmy,) ‘ Sn/n > dmy} + co/nt/* "
fA”XQ |Sn//n,1_‘% _I_ Wn/nl/z_‘% - /n/’%mn| . 1{Sn/n>5mn}d(Pnyﬁn7Kn X Q)

(8.5)

= + Cz/nl/z_fi

Er g0 koA 1S, /n>oma} }
1

EnyﬁnyKn{l{sn/’ﬂ>5mn}}
A" xQ

B g s { W /0 27| | S fn > dm)
= EnﬂannﬂSn/nl_H - nﬁmn| ‘ Sn/n > 5mn} = Cn
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and

D, — cz/nl/z_” (8.6)
= Eug rco{[Sn/n' ™" + Wy /0P — 0y | | Sp/n > dma} — ca/n'/?7"
fAnxQ |Sn/nl_l‘i + I/Vn/nl/z_ﬁi — n"my| - 1{Sn/n>5mn}d(Pn,6n,Kn X Q)

= - 02/n
En g k0118, /nsomn} }

([ 18t =l s, usimapd Pagi % Q)
A" xQ

1/2—k

1
EnyﬁnyKn{l{sn/n>5mn}}

A xQ

- ~n75n7Kn{|Wn//n’1/2_H| ‘ Sn/n > 6mn}
= En7ﬁn7Kn{|Sn/’n,1—li _ n“mn| ‘ Sn/n > 5mn} = Cn

IN

Thus we obtain for any € (0, 1) and all sufficiently large:
D, + cz/nl/z_“ >C,> D, — cz/nl/z_“.

Sincex < 1/2 [Thm. 6.1(c)], it follows thalim,, ., |C,, — D,,| = 0. This completes the proof
of Lemma 8.3

Having proved Substep 2a in the proof of part (b) of Theorelp\we next turn to Substep
2b.

8c Proof of Substep 2b in Proof of Theorem 6.1 (b)

We recall thatV,, is a sequence of normal random variables with mean 0 anchea(ias,, /<, )~
defined on a probability spadel, 7, Q). We denote byF, s, x, expectation with respect to
the product measuri, s, x, x . Substep 2b in the proof of part (b) of Theorem 6.1 states the
following:

lim B, s, 1, {|Sn/n*=" 4+ W, /n/?7F — nfm,| ‘ Sp/n > om,} (8.7)

= lim En,ﬁn,KnﬂSn/nl—n + [/[/n/’nl/Q—H _ n“mn| ‘ Sn/n + Wn/nl/z > 5mn}
1 vy p—
" Jeexp[—1g® (@)a?dx /R ] expl—39®()a®]da = =.
R 2

This will be proved in Lemma 8.4.
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Part (a) of Lemma 8.4 relates the expectatioftgfn' —*+W,, /n'/>~* —n"m,,| conditioned
on the even{S,,/n > om,,} to the expectation of the same random variable conditiometi®
eventA, (§) for two choices off. Part (b) of the next lemma proves (8.7). The hypotheses of
this lemma coincide with the hypotheses of Lemma 7.9 togetité the additional condition
¢ > 11 — a/ag), which is used to prov®,,; — 0, 6,3 — 0,T,,; — 0, andl, 3 — 0in
part (a). According to part (c) of Theorem 65(,1 —a/ag) + 0o = k < 1/2, which implies
:(1—a/ag) < 5 — 0c. This additional condition og is consistent with the hypothesis grin
Lemma 7.9, whichi$ < ¢ < § — fa.

Lemma 8.4. We assume thd3,, K,) satisfies the hypotheses of Theorihfor all 0 < o <
ap. Foro € (0,1) define

A (8) = {Sn/n+ W, /n*? > dm,}

wherem,, = m(f,, K,). LetA € (0,1) be the number determined in pgkt) of Lemmar.5.
Assume thad < a < ap and choose any numbefg 4, 4o and( satisfyingA < §; < 6 < dp <
land( € (5(1 — «/ag), 3 — Ba). The following conclusions hold.

(a) There exists sequences,; — 0, ©,, — 1, ©,3 — 0,T,; — 0, [,,» — 1, and
I',.5 — 0 such that for all sufficiently large

B gt {|Sn/n' =" + W /0275 — nimy| | Au(61)} + s
On2 — Ons
> B po oS0 /0" + W /0275 — 0 my| | So/n > dmy}
o B e, {ISn/n! =+ Wa /027 — 0| | An(02)} = T
B Tpo+Ths

(b) We have the conditional limit

lim E~n75n7Kn{|Sn/n1_“ + Wn/nl/z_“ —n"m,| ‘ Sp/n > dmy,}

= lim B, x, {|Sn/n' ™" + W /0> —nmy| | An(6)}

1 ) ) 7
- - L@ (3)a?dr =
Jp exp[—359P(2)2?]dx /]Rle exp[—39%(7)2%]dr = Z.

Proof of part (a) of Lemma 8.4. The hypotheses of this lemma are a subset of the hypotheses
of Lemma 7.9. We start by proving the first inequality in pat By the first inequality in part
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(b) of Lemma 7.9 and the second inequality in part (a) of LerdtBave have for all sufficiently
largen

Eﬂvﬁn,Kn{|Sn/n1_H + Wn/n1/2—li _ n“mn| ‘ Sn/n > 5mn}

B g {[Sa/n' T+ W /027 — | - s, mssma )
B Pr gy i, {Sn/n > dmy}
< En o i, {|Sn/n' =5+ Wa /n' 75 — nfmy,| - La, 60} + InFe M 4 contT 2o /2
N (Po s 10, X Q){An(35)} — =™
En g s {1Sn /014 Wa /0l /27 5 —nmn| - Lan o)} + onre=n* foynn—1/2e—cn? /2
(Prn K0 Q) {An (61)} P e, QA GD]

(Pn’ﬁn’KnXQ){An((sQ)} _ efchC
Pron o XQAAROD} P e Q) An(01)]

Ey g, i, {|Sn/n ™ + W /2 — nmy,| | Au(61)} + O
én,2 - én,3 ’

wherec > 0 andcy, > 0 are constants and

—_en2¢€ _ _2¢
5 2nFe" 4 cont 1/26 cn®t /2

n,l — 5 88
T T P < QA6 (88)
 (Posr ¥ Q{AL))

@n2 = 5 8.9
2= P, < Q{An(01)) (6:9)

and o
O3 = ¢ (8.10)

(Pogo s, X Q){An(01)}

_ We prove the first inequality in part (a) of the present lemmaHowing that, as — oo,
On1 — 0, 0,2 — 1and®, 3 — 0. These limits hold forany < ¢; < 1 and0 < 4, < 1. By
(7.4) in part (a) of Lemma 7.2 with = ¢,

5 Ik —cn?¢ k—1/2 ,—cn3¢ /2
On1 = n-e + can e (8.11)
(P icn X @){An(01)}

2nﬁe—cn2< + Cznﬁ—1/26—0n2</2
S

s eXP[—1Gl, 1o (a1 + M)A Zoy

—cn?¢ ﬁ—1/26—cn2</2)

exp[nG, ik, (Mn)] - Znw - (207" + con
Sk —sym, ©XP[=1Gs, k(2 /0" + my) + nG, ., (M) dz
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We now use Lemma 7.7 with = 1 andé = 6,. This gives

o

lim exp[—nGg, i, (/0" +my) + nGg, K, (my)|dx

o0 Sk (1-61)my,
= / exp[—19@(z)2?]dx.
R
By Lemma 7.4, for any > 0 and all sufficiently large:

exp[nGi, i, (Mn)] - Zn s - (207 4 e 27 /2)
< 2n" explen' "/ — en®] 4 cyn" /2 explen! T/ — e /2).

Since by hypothesié > £(1 — a/ay), it follows that

lim eXp[nng,Kn (mn)] Y/ (2nn6_cn2< i Cznﬁ—1/26—cn2i/2) —0.

n—oQ

It follows from the last line of (8.11) that

lim én 1 = lim eXp[nGﬁn,Kn (mn)] . Zn,li : (2nﬁe_cn2< + 0277/{_1/26_0”2(/2)
nooo TV n—00 fffm_al)mn exp|—nGg, i, (x/n% +my) + nGpg, k, (m,)]dx
= 0 =0
oL@ @aldr

as claimed. . )
We now prove thatim,, .., ©,2 = 0. By (7.4) in part (a) of Lemma 7.2 with = 4, and
§ =0y

o . _ (Pusic X QA)
" (P X Q){An(01)}
ffzﬁ(l_(b)mn exp|—nGg, i, (x/n" +my)|dx/Z,

Sk sy, €XP[=1Gs, 1, (/107 + M) [ Zn
S s (1= sym,, €XP[=1Gg, (/0" + mn) + nG, K, (m)]de

fojwa—él)mn exp|—nGg, k, (/0" + my) + nG B, K,(m,)|dz

By Lemma 7.7 forf = 1, 6 = 61, andd = &,, both the numerator and denominator have the
same limit [, exp[—1¢'®(Z)z?]dz. It follows thatlim,, .. ©,» = 1, as claimed.

We now prove thatim,, .., ©,,3 = 0. Since®,,; > ©,,3 > 0,
lim ©,; =0 implies lim 6,5 =0,

n—oQ
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as claimed. This completes the proof of the first inequatitgart (a) of the present lemma.

We now prove the second inequality in part (a) of the preseminia. By the second in-
equality in part (b) of Lemma 7.9 and the first inequality imtd@a) of Lemma 7.9 we have for
all sufficiently largen

By g0 10 {|Sn/n' " + Wy /0270 — 0y | | Sp/n > dma}
 Enp i, {1Sn /0t 4+ W /02— | - s, mssmay }
Pos, k,{Sn/n > om,}
> B gotica {Sn/n ™% + Wi /020 — S| - 1a, 5} — 205 — e~ l/2e=en™ /2
a (Pr,go i, X Q) {AR(01)} + e

En,ﬁn,Kn{|Sn/nlfﬁ+Wn/7’L1/27ﬁ_n"imn|'1An(52)} . 2”’{670”2(+an"71/267‘3”2</2
_ (P, kn XQ){An(02)} (Pr gy, 16 XQ){An(02)}
(P”,Bn’Kn XQ){An(él)} e,chC

(P, Kn XQ{An(62)} * (Pn,gn,kp XQ){An(d2)}
B g, g, {|Sn/n' 7" + W /0! 270 — 0 my| | Au(d2)} = Toa
fn,2 + fn,3 ’

wherec > 0 andcy, > 0 are constants and

—_en2€ _ o 2¢
InFe=N L cont 1/26 cn®t /2

o T e X QA G))

b Puse X Q{A)}

"2 Pusen X Q)L An(0)}
and

~ e—C"QC

Fmg:

(P X Q){An(02)}

The sequences, , I, andT, 3 are obtained fron®,,;, ©,,, and®,, ; in (8.8)—(8.10) by
interchanging); andd,. Hence the I|m|t§n1 — 0, an — 1, andl“ng — 0 follow from the
limits ©,, 1—0, On 2 — 1, ando,, 3 — 0, which hold for anyd < 6; < 1and0 < d < 1. The
proof of part (a) of Lemma 8.4 is complete.

Proof of part (b) of Lemma 8.4. We know from part (b) of Lemma 8.1 that, as— oo, for
anyd = 6, ands = &, En g, k,{|Sa/n' ™" + W, /027" — n"m,| | A,(6)} has the same limit

1
fR exp|— %g(z) (Z)2?]dz

-/|x|exp[—%g(2)(x)x2]dx = Z.
R
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By sendingn — oc in the inequality in part (a), we have

zZ = lim EnﬁmKnﬂSn/nl_“ + Wn/nl/z_“ — n"my,| ‘ An(61)}
> limsup E, s, 1, {|Sn/n' ™" + W, /n'/>7% — nm,,| ‘ Sp/n > dm,}
> liminf E, g, &, {|Sn/n'™" + W, /0?7 — n"m,| ‘ Sp/n > om,}

lim B, g, 1, {|Sn/n*™" 4+ W, /n?7% — nfm,| ‘ An(62)}

zZ.
Because the first and last terms in this display are the safioipivs that

lim B, g, k,{|Sn/n* ™" + W, /027" — n"m,,| ‘ Sp/n > dmy,}

1 X i )
- - 1@ ()22 dr —
Jz exp[—%g@) (z)2?]dx /R|f| exp|—359'9(T)z?]dx = Z.

On the other hand, by part (b) of Lemma 8.1 witk- §

lim E, g, 1, {|Sn/n' ™" + W, /0275 — nfim,| ‘ An(0)}

1 X . )
- - 1@ (7)22|dy =
fR exp[—%g@) (2)a?]dx /R|x| exp|—59(z)z%]dr = Z.

The proof of part (b) of Lemma 8.4 is completé.

We now put together the pieces to complete the proof of pauaf(fheorem 6.1. Let be
any number satisfyindh < § < 1, whereA € (0, 1) is determined in part (b) of Lemma 7.5.
The proof of part (b) of Theorem 6.1 is divided into Step 1, Sap 2a, and Substep 2b. Step 1
is done in part (b) of Lemma 8.1. There we prove that With §

lim B, g, x,{|Sn/n* ™" + W, /n}>7% — n*m,,| ‘ So/n + Wy /n'? > dmy,}

1 X . )
- - 1@ (7)22)dy =
fR exp[—%g@) (2)a?]dx /R|x| exp|—59(z)z*]dr = Z.

Substep 2a is done in Lemma 8.3. There we provelithat... |C,, — D, | = 0, where

Cn=FE,p, x,{|5 '~ —n"m,| | S, /n > dm,
,Bn,

and
D, = E~n75n7Kn{|Sn/n1_” + Wn/nl/z_“ —nm,| ‘ Sp/n > omy,}.
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Substep 2b is done in part (b) of Lemma 8.4. There we prove that
lim D,
= lim E, g, x,{|Sn/n'™" + W, /0?7 — n"m,,| ‘ Sn/n+ Wy /nt? > 6m,}
1 1 _ _
= . —1,2 Adr = 7.
Jg exp[—39P(z)2?]dx /R [zl expl=39(@)a]de = 2
Combining these limits yields

lim E, g, 1, {|Sn/n' " — n"m,| ‘ Sp/n > om,}
= lim EnﬁmKnﬂSn/nl_“ + Wn/nl/z_“ —n"my| ‘ Sp/n + I/Vn/nl/2 > dmpy}
1 Lo B
= . — 1,2 Adr = 7.
Jz expl—29®(z)x?)dx /R 2l expl=3g 7 (@)a]de = 2
This gives the conditional limit stated in part (b) of Theoré.1:
lim n*E, g, 1, {|Sn/n — m(Bn, Ky)| ‘ Sn/n > om(Bn, Kn)}

= lim En,ﬁn,KnﬂSn/nl_H - nﬁm(ﬁna Kn)| ‘ Sn/n > 6m(6n7 Kn)} = Z.

The proof of part (b) of Theorem 6.1 is compleie.

Appendix

A Proof That Sequences la—5a Satisfy the Limits in Hypoth-
esis (iif) of Theorem 4.1

In this appendix we prove that sequences la—5a satisfyntiits in hypothesis (if) of Theorem
4.1. These limits take the following form.

(a) Assume thag has degree 4. Fofa € (0, o) and forj = 2,3,4

lim na/ag—jGQG(ﬁlen (m(ﬁm Kn)) = g(J) (j)

(b) Assume thay has degreé. ForVa € (0, ap) and forj = 2,3,4,5,6

lim na/ag—jGQG(ﬁlen (m(ﬁm Kn)) = g(J) (j)

n—oQ
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We do this by verifying the limits (A.1) and (A.3) in Lemma A llet¢,, denote a sequence that
converges to 0 and that represents the various error tersingggin the proof. We use the same
notatione,, to represent different error terms.

Lemma A.1. We assume the hypotheses of The@emWe also assum@.1) when the degree
of the Ginzburg-Landau polynomialis 4 and(A.3) when the degree @fis 6.

(a) Assume thag has degree and that fora € (0, ) and forj = 2,3,4

lim na/a(’_jeaG(ﬁlen (z/n%) = ¢ (z) (A.1)

n—oQ

uniformly forx in compact subsets &. Then we have

lim na/ao—ﬂ’aagjxn (m(Bn, Kn)) = g9 (2). (A.2)

(b) Assume thay has degre® and that fora: € (0, o) and forj = 2,3,4,5,6

lim n®/*0=9GY o (2/n) = gV (x) (A.3)

n—oQ

uniformly forz in compact subsets &. Then we have

lim n®/*0=%GY) (1 (B,, K,)) = ¢V (7). (A.4)

n—oQ

Proof. We writem,, = m((,, K,). Wheng has degred, we have for; = 2, 3, 4, and whery
has degreé, we have for; = 2,3,4,5,6
|na/a0_j6aG(5{3Kn (mn) — g(j) (j')| < |na/a()—j9aG(ﬁngn (né)amn/né)a) _ g(j) (nt‘)amn)|
+lgV (n"*my) — gV (7)]. (A.5)

Let = be any compact subset Bf By hypothesis (A.1) foy = 2, 3,4 wheng has degree 4 and
by hypothesis (A.3) foj = 2, 3,4, 5,6 wheng has degree 6

lim sup |na/a°_j9aG(ﬁj2 i, (@/n*) = gV ()| = 0.

=00 peE o
According to Theorem 3.13*m,, — z, and so for any > 0 the sequence’m,, lies in
the compact st — ¢, z + <] for all sufficiently largen. It follows that the first term on the
right-hand side of (A.5) converges to 0 as— oo. Because of the limit?*m, — z and
the continuity ofg\?), the second term on the right-hand side of (A.5) also comgtg 0 as
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n — oo. We conclude that fof = 2, 3,4 wheng has degree 4 and fgr= 2, 3,4, 5,6 wheng
has degree 6 '
|na/a°_j9aG(ﬁjg7Kn (my) — g¥(Z)] — 0 as n — oo.

This completes the proof of the lemmia.

The main point of this section is to justify rigorously theilts in (A.1) and (A.3) for se-
guences la-5a. We start by doing some preparatory workvingothe Taylor expansion of

G(ﬁjn)Kn(x/n”’) for v > 0.

Case 1: g has degreé, | = 2, 3, 4. This case arises for sequences 1 and 2, which converge
to a second-order poirt3, K(3)) for 0 < g < (.. We consider the Taylor expansions of

GglKn(x/m) to order 4 with error terms. SincE () = (45 + 2)/403 is continuous and
(Gn, K,,) converges ta3, K(3)), we haves, K, /K (5,) — (. Thus the coefficients in Taylor

expansion O’G(gl x, (x/n7) are given by

8GK.  20,K.(K(8,) — K,)
efrn 42 K(6,)

G, (0) =0,

2(28,K,)4 (4 — ePr
G(ﬁi),Kn(O) X (66n)_|_(2)2 -

Letcy(B) = (ef +2)2(4 — eP) /(8 - 4!). Since23,K,, — 28K (3) = (e’ + 2)/2, we have

G (0) = (€% +2)%(4 — e")(1+ £,)/8 = ca(B)(1 + £,) - 4.

Thus for alln € N, anyy > 0, anyR > 0, and allz € R satisfying|z/n”| < R, we have the
Taylor expansion

G(4) 0 2 1
6o/ = 6 0) + 2D 2o LYo

21 n2y n3y
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Multiplying both sides by:! =27 for u > 0 yields

4
nl_“_zﬁ’G(gi),Kn(x/nw) - n2~i1+u G(ﬁzn)Kn(U) + n4~i1+u ’ G(ﬁn);(!n(o)xz (A.6)
Fofih)
= 28K () — K (14 e)
Lt

Foralln € N, anyy > 0, anyR > 0, and allz € R satisfying|x/n”| < R, we have the
Taylor expansion

x 1
) = G0 2 011

n2

Multiplying both sides by:' =3 for u > 0 yields

1 1
nl_“_?’“’G(gi),Kn (z/n7) = nAy—1+u 'G(B?,Kn(o) Tt O(W) z? (A7)
1 | 1 2
= W'C4(ﬁ)(1+5n)'4-'x+ O ndY—1+u L

Foralln € N, anyy > 0, anyR > 0, and allz € R satisfying|x/n?| < R, we have the
Taylor expansion

1
G(ﬁaKn(x/n“f) = G(ﬁﬂKn(O) + O(H) x.
Multiplying both sides by:! =% for u > 0 yields

1 1
' IGE) (/) = G ke, (0) + 0(—) " (A-8)

nAv—1+u noY—1+u

1 1

In formulas (A.6)—(A.8) the big-oh terms are uniform fore (—Rn”, Rn”). We will use
(A.6)—(A.8) to verify hypothesis (A.1) for sequences la dad

Case 2: g has degre@ j = 2, 3, 4, 5, 6. This case arises for sequences 3, 4 and 5, whieh co
verge to the tricritical points., K(5.)). We consider the Taylor expansions@§37Kn(x/n7)
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to order 6 with error terms. SincE (5) = (45 + 2)/403 is continuous andg,, K,,) con-
verges to(5., K(6.)), we haves, K,,/K(5,) — (.. Thus the coefficient in Taylor expansion

of G(B{i x, (x/n7) are given by

8O2K:  2B.K.(K(Bn) — K,)
ey 2 K(3,)

Gonrc,(0) = 0.

228, K4 (4 — e
G(ﬁi),Kn(O) = ( (eﬁn)—l—(2)2 )

Letcy = 3/16. Since23,K,, — 28.K(8.) = (e +2)/2 = 3 andefr + 2 — e + 2 = 6, we
have

GO (0) =2+ 3" (4 — e™)(1+2,)/6% = ca(d — ™) (1 + £,) - 41,
5
G (0)=0.
Let cs = 9/40, sinceGgaKn(O) — G(ﬁi),K(ﬁc)(O) = 2.3, we have

Thus for alln € N, anyy > 0, anyR > 0, and allz € R satisfying|z/n”| < R, we have the
Taylor expansion

G0 22 QY (0) o 1

Multiplying both sides by:! =27 for u > 0 yields

4)

1—u—2vy ~(2) _ 1 ) 1 Gy, x,(0)
n A/GﬁnyKn (l’/n,\/) - nz’”/—l-'ru GﬁnyKn (0) + n4~/—1+u ) 2] Z (Ag)
(6)

1 G 0 1

- X 5n7Kn( )1,4_|_ O( )1,5
nby—1+u 4! n7—1+u
1
T it 2B:(K(Bp) — Kn)(1 + €5)

1 ca(d—eP)1+e,) -4,  cg(l+e,)-6
+n4“/—1+u ' 2! v 4! !

1 5
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Foralln € N, anyy > 0, anyR > 0, and allz € R satisfying|x/n?| < R, we have the
Taylor expansion

(6) 3
3 4 x Gﬁn,Kn(O) T 1
Gl o) = G, (0)- 5+ == T 0 )t

Multiplying both sides by:! ~+=37 for u > 0 yields

(6)
—UuU— 1 1 G n n(o)

n' 3WG(5?;),Kn (I/nw) - nir—1+u ’ G(B?,Kn (O) Tt nby—1+u = é(' o (A.lO)
1 4
+ O(m) v

1 1 c6(1+¢,) - 6!
— Br L6 n 3
T A1t ca(d—em)(1+e,) -4+ nbr—1+u 3! x

1 4

Foralln € N, anyy > 0, anyR > 0, and allz € R satisfying|x/n?| < R, we have the
Taylor expansion

Gy x,(0) 22 1
80 af) = Gl 0+ Lot 2o LY s

Multiplying both sides by:! =% for u > 0 yields

(6)
oy (4 1 1 1 Gy, x,(0)

n' 4A{G(511)7Kn (z/n7) = nAv—1+u G(ﬁn)Kn(O) T nb6y—1+u 21 -’ (A.11)
1 3
+ O(m) v

1 1 ce(1 +e,) - 6!
— Bn 6 n 2
T opA1ltu ca(d —e™)(1+en) -4 + nb6rv—1+u 91 "

1 3

Foralln € N, anyy > 0, anyR > 0, and allz € R satisfying|x/n?| < R, we have the
Taylor expansion

x 1
G ke, (/) = G e, (0) - — + o<%) a2,
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Multiplying both sides by:! =+~ for u > 0 yields

e 1 1
WG (/) = g G, (O 0(—) 7 (A12)
1 1 )

Foralln € N, anyy > 0, anyR > 0, and allz € R satisfying|x/n?| < R, we have the
Taylor expansion

1
GO (a/n7) =GP (0) + o( ) .

ny

Multiplying both sides by:! =57 for u > 0 yields

o 1 6 1
77,1 GA/G(ﬁi),Kn (l'/’nf/) — n67—1+u . G(@B’Kn (0) -+ O(W) X (A13)
1 | 1
= p6—1tu c(1+e,)-6!-4+ 0 i—vu | U

In formulas (A.9)—(A.13) the big-oh terms are uniform foe (—Rn”, Rn”). We will use
(A.9)—(A.13) to verify assumption (A.3) for sequences 3a,38.

Sequence la

This sequence is defined in (5.5). For sequenceyles degree 4. Sinck (3,) — K, =
(K'(B)b — k)/n® + O(1/n*®), it follows from (A.6) that for alln € N, anyu > 0, any~y > 0,
any R > 0, and allz € R satisfying|z/n”| < R, we have

1 '
nl_“_%G(gi),Kn (z/nY) = g W 28(K'(8)b — k)(1 4 &,) (A.14)
L alB)(te) 4,
+n4“f‘1+“ . 2! v

1 1 ,
+ O<n2~,—1+u+2a) + O<n5~,—1+u) L

We now definey = fa andu = 1 — a/ay, and we recall thaty, = 1/2, 6 = 1/2. With these
choices ofy andu, the powers of. appearing in the first two terms in (A.14) are 0, and the
powers ofn appearing in the last two terms in (A.14) are positive. lbgfth — oo in (A.14),

we have uniformly forr in compact subsets @t

lim nl_“_27G(ﬁi)7Kn(x/n7) = lim na/a(’_zeaG(ﬁaKn(x/n”’)
cy(B) - 4!
= 2@ k) + R o)
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The same choices efandu ensure that the powers afappearing in the first termin (A.7)
and (A.8) are 0, and the powerswofappearing in the last term in (A.7) and (A.8) are positive.
Takingn — oo in (A.7) and (A.8) gives

lim nl_“_37G(ﬁ?7Kn(x/n7) = lim na/a()_geaG(ﬁ?7Kn(x/n7)

= aB) -4z =g ().
and

lim nl_“_MG(ﬁ?’Kn(x/n“’) = lim na/ao_waG(ﬁ?’Kn(x/n”’)

= (@)A1 =gV w).

uniformly for x in compact subsets &. Thus sequence 1 satisfies hypothesis (A.1) in Lemma
A.1, and so the conclusion (A.2) in Lemma A.1 follows fo& 2, 3, 4. This is the convergence
in hypothesis (iil) of Theorem 4.1.

Sequence 2a

This sequence is defined in (5.6). For sequencey2ss degree 4. Sinck (3,) — K, =
(K®)(B) — O)b? /plnP> 4+ O(1 /n>®+1) it follows from (A.6) that for alln € N, anyu > 0, any
v > 0,anyR > 0, and allz € R satisfying|x/n"| < R, we have

WG () = o B(KW(F) — (1 +5)  (ALS)

n2y—1l+uta pl

1 ci(B)(1+e,) -4,
nir—1+u ’ 21 x

1 1 ,
+0 <n27—1+u+(p+1)a) +0 <n57—1+u) L

We now definey = fa andu = 1 — o/ap, and we recall thatyy, = 1/2p, 6 = p/2. With
these choices of andu, the power of, appearing in the first two terms in (A.15) are 0, and the
power ofn appearing in the last two terms in (A.15) are positive. logtit — oo in (A.15), we
have uniformly forz in compact subsets @t

_|_

lim nl_“_sz(ﬁi{Kn (x/n”) = lim na/ao_zeaG(ﬁi{Kn(x/n”’)
1 4!
— () - oy + L )

The same choices efandu ensure that the powers ofappearing in the first termin (A.7)
and (A.8) are 0, and the powerswofappearing in the last term in (A.7) and (A.8) are positive.
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Takingn — oo in (A.7) and (A.8) gives

lim nl_“_37G(ﬁ?7Kn(x/n7) = lim na/a()_geaG(ﬁ?7Kn(x/n7)

n—oQ n—oQ

= (@) 4w =g )
and

lim nl_“_hG(ﬁ?’Kn(x/n“’) = lim na/ao_waG(ﬁ?’Kn(x/n”’)

n—oQ n—oQ

= a(®)-4 =),

uniformly for x in compact subsets &. Thus sequence 2 satisfies hypothesis (A.1) in Lemma
A.1, and so the conclusion (A.2) in Lemma A.1 follows fo& 2, 3, 4. This is the convergence
in hypothesis (iil) of Theorem 4.1.

Sequence 3a

This sequence is defined in (5.7). For sequencegy3ss degree 6. Sinck (3,) — K, =
(K'(B:)b — k)/n® 4+ O(1/n**), it follows (A.9), (A.10), and (A.11) that for alh € N, any
u >0, anyy > 0, anyR > 0, and allz € R satisfying|z/n"| < R, we have the following:

1 /

1 ca(—4b)(1+&,) - 41
nt—1tuta 2l v

+n6~/—1+u 4! n2y—1+ut2a

1 2 1 5
+ O <n4~/—1+u+2a) "+ O <n7~/—1+u) z,

1

G @) = () (L) 4 (A.17)

1 06(1 + gn) . 6' 3
+n6~/—1+u ’ 3! ’

1 1 ,
+O<W)f+ O(m)f»
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and

1
W) = e D)+ e) 4 (A.18)
1 c6(l+en) -6 ,
+716“/—1% . 2! -

1 1 ,
+0 <n4~/—1+u+2a) r+ O <n7~/—1+u) L

We now definey = a andu = 1 — a/ay, and we recall thatyy = 2/3, 6 = 1/4. With these
choices ofy andu, the powers ofi appearing in the first term and the third termin (A.16) are O,
and the powers af appearing in the second term and the last three terms in Y Arégoositive.
Lettingn — oo in (A.16), we have uniformly for: in compact subsets @t

lim nl_“_27G(ﬁ?7Kn(x/n7) = lim na/ao_zeaG(ﬁi{Kn(x/n”’)

n—od n—oQ

= 2B.(K'(B)b— k) + & 6!334 — ().

4!

The same choices of andu ensure that the powers afappearing in the second term in
(A.17) and (A.18) are 0, and the powersrohppearing in the first term and last two terms in
(A.17) and (A.18) are positive. Taking— oo in (A.17) and (A.18) gives that

nll_% nl_“_37G(ﬁ?7Kn (x/n7) = 7}1_{1;) na/a(’_geaG(ﬁ?7Kn (x/n7)
_ 063-!6!x3 _ ()
and
7}1_{2() nl_“_‘”G(ﬁﬁKn (x/n7) = 7}1_{1;) na/a“_‘waG(ﬁaKn (x/n7)
_ 062-!6!x2 _ 4 (2).

uniformly for = in compact subsets &. Similarly, the powers of. appearing in the first term
in the expansions (A.12) and (A.13) are 0, and the powers abpearing in the last term in
the expansions (A.12) and (A.13) are positive. Letting> oo in (A.12) and (A.13), we have
uniformly for x in compact subsets @t

S G e (o) =l G )

= ¢g-6lz = g(5)(x)
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and

lim ot G (/) = lim a0 GE) (/)
= ¢5-6! =g ().

Thus sequence 3 satisfies hypothesis (A.3) in Lemma A.1, arthes conclusion (A.4) in
Lemma A.1 follows forj = 2,3,4,5,6. This is the convergence in hypothesis’Yiof The-
orem 4.1.

Sequence 4a
This sequence is defined in (5.8). For sequence fas degree 6. Since
K(B,) - K, = K(@.+1/n%) - K,
= K(B.) + K'(B:) - 1/n* + K"(B) - 1/2In** + K"(3.) - 1/3In°
+0(1/n*) — K,

= (K"(B) = 0)/20* + (K"'(8.) — £) /60" + O(1/n"*)

and
4 —ePr = —4/n™ + O(1/n*),

it follows from (A.9), (A.10), and (A.11) that for alk € N, anywu > 0, any~y > 0, any R > 0,
and allz € R satisfying|z/n”| < R, we have the following:

e 1
n' G (a0 = trarea | 2P (K"(B:) = 0)/2- (1+¢n)  (A19)
1 (=) (144,
ni—ltuta 92 t
1 06(1 + gn) . 6' 4
+n6~/—1+u : Al "

1 1
+ O<n2~/—1+u+3a) + O<n2~/—1+u+4a)

1 2 1 5
+O<m) T+ O(m) %

1

n'IGE (o) = —mre (I e 4l (A.20)
+n67‘1+“ . 3! o

1 1 ,
+O<W) T+ O(m) s,
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and
1

n! NG (a/n) = e a1 ) - 4! (A.21)
+716“/—1% . 2! -

1 1 ,
+ O<n4~/—1+u+2a) + O<n77—1+u) L

We now definey = a andu = 1 — o/, and we recall that, = 1/3, 6 = 1/2. With these
choices ofy andu, the powers of: appearing in the first three terms in (A.19) are 0, and the
powers ofn appearing in the last four terms in (A.19) are positive. ibgti — oo in (A.19),

we have uniformly forr in compact subsets @t

lim nl_“_27G(ﬁ?7Kn(x/n7) = lim na/ao_zeaG(ﬁi{Kn(x/n”’)

—4) - 4! - 6!
= 203 - 02+ St = g0 )

The same choices of andu ensure that the powers efappearing in the first two terms
in (A.20) and (A.21) are 0 and the powers:obppearing in the last two terms in (A.20) and
(A.21) are positive. Taking — oo in (A.20) and (A.21) gives

7}1_{2() nl_“_g”’G(ﬁ?’Kn(x/n”’) = 7}1_{1;) na/a(’_geaGgKﬂ (x/n7)
= c4(—4) -4z + 663.'6!x3 = ¢®(z)
and
7}1_{2() nl_“_hG(ﬁﬁKn (x/n7) = 7}1_{1;) na/a“_‘waG(ﬁaKn (x/n7)
ce - 6!

= cy(—4) -4+ T = gD (x).

uniformly for = in compact subsets &. Similarly, the powers of. appearing in the first term
in the expansions (A.12) and (A.13) are 0 and the powens appearing in the last term in
the expansions (A.12) and (A.13) are positive. Letting> oo in (A.12) and (A.13), we have
uniformly for x in compact subsets @t

S G e (o) =l G )

= ¢g-6lz = g(5)(x)
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and

lim n' "G - (2/n7)

n—oQ

= lim p/®0 %G (2/n)

n—oQ

= ¢-6!=g92).

Thus sequence 4 satisfies hypothesis (A.3) in Lemma A.1, anthes conclusion (A.4) in
Lemma A.1 follows forj = 2,3,4,5,6. This is the convergence in hypothesis'Yiof The-

orem4.1.

Sequence 5a

This sequence is defined in (5.10). For sequence; 3&s degree 6. Sinck (5,) — K,, =
(K"(8.) —€)/2n** + O(1/n**) and4 — efr = 4/n> 4+ O(1/n2*), it follows from (A.9), (A.10),
and (A.11) that for allh € N, anyu > 0, anyy > 0, any R > 0, and allz € R satisfying

|x/n7| < R, we have the following:

e 2
nTNGY L (afn)) =

e 2 (KY(B) = 0/2 - (1+,)

(A.22)

_l_

1 -4-(1 n) -4l
Cy ( —|—€) 22

nir—ltuta 21

cs(l+e,) 60

nb6y—1+u 4!

+of

- T

1
n2y—1+u+3a

1 2 1 5
+ O<n4~/—1+u+2a) "+ O<n77—1+u) x5

Cu— 3
TG (afn) =

_l_

1
ndr—1l+uta

g4 (14e,) -4l (A.23)

1 1 n) - 6!

nb6y—1+u 3

1 1 A
+ O<n4~/—1+u+2a) T+ O<n77—1+u) s

and

e 4
G (afn) =

nAdr—1l+uta

1

g4 (14e,) -4l (A.24)

_l_

1 1 n) - 6!

nbr—1+u 21

1 1 ,
+ O<n4~/—1+u+2a) + O<n77—1+u) L
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We now definey = fa andu = 1 — o/, and we recall thady, = 1/3, 6 = 1/2. With these
choices ofy andu, the powers of: appearing in the first three terms in (A.22) are 0, and the
powers ofn appearing in the last three terms in (A.22) are positivetih@t — oo in (A.22),

we have uniformly forr in compact subsets @t

lim nl_“_%G(ﬁ?’Kn(x/n”’) = lim na/a“_zeaG(ﬁi)’Kn(x/n”’)

4.4 6!
= BUK"(B) —0))2+ =+ 2

The same choices of andu ensure that the powers afappearing in the first two terms
in (A.23) and (A.24) are 0 and the powers:obppearing in the last two terms in (A.23) and
(A.24) are positive. Taking — oo in (A.23) and (A.24) gives

lim nl_“_?’”’G(ﬁ?’Kn(x/n”’) = lim na/ao_geaG(ﬁaKn(x/n”’)

n—oQ n—oQ

- 6!
= ¢y -4-4lx+ 663‘ ® = g®(z)

2t = g@(x).

and
lim 0!G (ofn7) = lim o GE) (/)
- 6!
= C4- 4 . 4' —|— 662‘ 1'2 = g(4)([L')

uniformly for = in compact subsets &. Similarly, the powers of. appearing in the first term
in the expansions (A.12) and (A.13) are 0, and the powers abpearing in the last term in
the expansions (A.12) and (A.13) are positive. Letting> oo in (A.12) and (A.13), we have
uniformly for x in compact subsets @t

lim nl_“_‘r’”’G(ﬁi)’Kn (x/n?) = lim na/a()_59aG(ﬁi)7Kn (x/n")

n—oQ n—oQ

= -6l = g (x)

and
lim o' (ofn?) = lim 0GR (/)
= 56! = g% ().

Thus sequence 5 satisfies hypothesis (A.3) in Lemma A.1, arthes conclusion (A.4) in
Lemma A.1 follows forj = 2,3,4,5,6. This is the convergence in hypothesis’Yiof The-
orem 4.1.
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B Proof of the MDP in Part (a) of Theorem 6.2

In this appendix we give the proof of part (a) of the MDP statedheorem 6.2. We restate
the theorem here for easy reference. Concerning the prqudrdi(b) of Theorem 6.2, see the
comment before Lemma 6.3.

Theorem 6.2. Let (3, K,,) be a positive sequence converging either to a second-omiet p
(B,K(0)),0 < B < B, orto the tricritical point(3, K(3)) = (6., K(5.:)). We assume that
(Gn, K,,) satisfies the hypotheses of Theoredifor all 0 < « < ay. The following conclusions
hold.

(@) Forall 0 < a < ag, S,/n'~% satisfies the MDP with respect 8, s, x, With exponential
speedr! /% and rate functiod(z) = g(z) — inf,cr g(y); in symbols

P.s k. {S,./n'7% e dzx} < exp —pl=e/ooD ()] dx.
75”7 n

(b) The hypotheses of this theorem are satisfied by sequeré&adefined in Tablé. 1.

We work with an arbitraryy satisfyingd < o < «p. To ease the notation we write=
andu = 1 — a/ay. The hypotheses of Theorem 6.2 coincide with the hypothelsEseorem
4.1, which in turn consist of hypothesis {jiand the hypotheses of Theorem 3.1 folat o <
ap. Clearly we havé) < «w =1 — a/ag < 1 and by hypothesis (i 0 < v = fa < oy < 1/2.
In addition,1 — 2y — u = (1 — 20ag)a/c > 0, which impliesl — 2y > w.

The proof of Theorem 6.2 is analogous to the proof of Theorem8[6]. Let IV, be a
sequence of normal random variables with mean 0 and varighee(23, K,,)~! defined on a
probability spacé(2, 7, Q). Theorem 6.2 is proved in two steps.

Step 1., /n'/?77 is superexponentially small relative éap(n~"); i.e., for anys > 0

1
lim sup — log Q{|W,,/n'/*77| > 6} = — (B.1)
n-v

n—oQ

Step 2.With respect tdP, 5, k, x Q, S,/n'~7 + W, /n'/?>~7 satisfies the Laplace principle with
exponential speed—" and rate function'.

According to Theorem 1.3.3 in [7], if we prove Step 1 and Steph2n with respect to
P, 5, K, Sn/n' ™7 satisfies the Laplace principle with speedand rate functiof; i.e., for any
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bounded, continuous functian

lim —log / expIn"t(Su/n' )] dPa g, , = sup{ur(z) = D()}.

n—oo N, zeR

Since the Laplace principle implies the MDP (Thm 1.2.3 i [Theorem 6.2 follows.
Next, we prove Step 1 and Step 2.

Proof of Step 1.Sinceg, andK,, are bounded and uniformly positive overthe sequence?
is bounded and uniformly positive over We have

Q{IWo/n'?77 > 6} = Q{IN(0,07) > n'/*75}

V20, ~
AT el n! e 2a)
1 1/2—~ 1 V20, _1/2 nl=27§2
il < = v _
— log Q{|W,/n | >0} < — log N + log(n ) 207

The limit of the right hand side of the last inequality-iso sinceu > 0 and1 — 2v > u. Thus
(B.1) follows. The proof of Step 1 is done.

Proof of Step 2.Let ¢ be an arbitrary bounded, continuous function. Chooging exp|[n“i)]
andy = v in Lemma 7.1 yields

/A”XQ exp {n P (F + W)] d(Png, k, X Q) (B.2)

1

B [ exp[—nGg, K, (z/n7)]dx '/Re}(p[nu?/)(f)—”Gﬁn,Kn(x/n”’)]dx.

The proof of Step 2 rests on the following three properties®@§, r, (z/n”).

1. By hypothesis (iv) of Theorem 3.1 for< o < ay, there exists a polynomi&l satisfying
H(x) — oo as|z| — oo together with the following propertyd R > 0 such that for
Vn € N sufficiently large an®/z € R satisfying|z/n”| < R

nGg, k,(x/n") > n"H(x).
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2. LetA = sup,p{?(x) — g(z)}. SinceH(z) — oo andg(x) — oo as|z| — oo, there
existsM > 0 with the following three properties:

sup {¢(z) — H(z)} < —|A] -1,

the supremum of) — g onR is attained on the intervél- A, M|, and the supremum of
—g onR is attained on the interval- M, M]. In combination with item 1, we have that

for all n € N satisfyingRkn” > M

s {n“v(z) — nGg, k,(x/n")} (B.3)
< sup {n"¢(z) —n"H(z)}
M<|z|<RnY
< —n"(|]Al+1).

3. Let M be the number selected in item 2. By hypothesis (iii)(a) oédriem 3.1 fo) <
a < ap, forall z € R satisfying|z| < M, n'"“Gj, i, (z/n") converges uniformly to
g(x) asn — oo.

Item 3 implies that for any > 0 and all sufficiently large:
exp(-n') [ explu(v(a) — gla))}ds
{lz|<M}
< / exp[n“y(x) —nGg, k,(z/n")]dx
{lz|<M}
<expntd) [ explut(0(a) - gfo)))ds
{lz|<M}

In addition, item 2 implies that
/ exp[n“y(z) — nGg, k,(x/n")]de < 2RnY exp[—n"(|A] + 1)].
{M<|z|<Rn"}

Sincey is bounded, the last two displays show that there exists 0 anda, € R such that for
all sufficiently largen

/ exp|—nGg, i, (z/nY)]dx < a; exp(n“as).
{|z|<Rn7}
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Sinceu € (0, 1), by part (d) of Lemma 4.4 in [6] there exists > 0 such that for all sufficiently
largen

[ eplnGau /a0 < 2 exp(-nas).
{lz|>Rn"}
Together these three estimates show that for all suffigi¢athen
| exoln @) = G, )
R
= [ ep) G /)
{lz|<M}
o expln () — G, i, (a/n")da
{M<|z|<Rn"}
e enlnie) ~ i,k o/
{lz|>Rn"}

< o) [ expln(v() - gle)lds
{l=|<M}
+2Rn” exp[—n"(|A] 4+ 1)] 4+ 2a; exp(—nasz + n"||}||)-

Hence for all sufficiently large we have
exp(-n) [ explu(w(a) ~ gla))lds
{lz|<M}
< /exp[n“w(x) —nGp, K, (x/n7)|dx
R

< exp(n“s) / expln (4(z) — g(x))]dz + 6,

{l=|<M}
where

2Rn" exp[—n"(|]A] + 1)] + 2a; exp(—nas + n"||¥]]x0) (B.4)
4Rn” exp[—n"(|A| + 1)].

ININA
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It follows that

lim inf iu log {exp(—n“é) /{| o exp[n® (Y (z) — g(x))]dx] (B.5)

n—oo M

1
<liminf — log/ exp[n“y(z) —nGs, k,(x/n")]dx
R

n—oo N

1
< lim sup o log/ exp[n“y(x) — nGs, k, (x/n")]dx
R

n—oQ

< lim sup % log {exp(n“é) /{| o exp[n®(¢¥(z) — g(x))]dx + 5n] .

n—oQ

By Laplace’s method applied to the continuous function g on|z| < M and the fact that
the supremum of) — g onR is attained on the interva- A, M|, we have

lim — log / expln®((x) — g(x))]dx (B.6)
nmeo n {lz|<M}
- |S|1£4{?/)($) —g(x)} = ilelg{?/)(il?) —g(x)}.

Hence the first line of (B.5) equals

lim inf L {—n“é + log/ exp[n"(¢¥(z) — g(x))]dx (B.7)
{lz[<M}

n—oo NY

54 timinf L log / expln®(4(z) — g(x))]da
{|z|<M}

n—oo N

=5+ ilelg{?/)@) —g(x)}.

We have to work harder to evaluate the last line of (B.5). Aténd of the proof we will
show that the term,, can be neglected in evaluating the last line of (B.5); i.e.,

lim sup % log {exp(n“é) /{| o exp[n“(¢¥(z) — g(x))]dz + 5n] (B.8)

n—oQ

— limsup ni log [exp(n“é) /{ oy )~ g(x))]dx} |

n—oQ
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Under the assumption that this is true, by (B.6) the lastdi@.5) equals

lim sup % log {exp(n“é) /{| o exp[n“(¢Y(z) — g(x))]dx] (B.9)

n—oQ

— limsup — {n“é +log /{ oy ) - g(x))]dx}

n—oo 1

1
=0+ lim —lo expn“(v(x) — g(x))]dx
. o /{MSM} Pl (4 () — g(2))]

n—oo NY

=5+ 225{?/)@) —g(x)}

Sinced > 0 is arbitrary, combining (B.5), (B.7), and (B.9) yields
z€R

i o | expln"(e) = G /)]s = sup{(o) - g(o)}.

Using the fact that the supremum @fs attained on the interval- A/, M| (see item 2 in the
proof of Step 2), we apply the limitin the last display#tc= 0. We conclude from (B.2) that

lim L log/ exp {n“w ( S + ﬂ)] d( P K, X Q)
A" xQ

n—oo NY ni—v n1/2—~/

= lim iulog/ exp[n“y(z) — nGg, k,(x/n")]dx
R

n—oo N

1
— lim —ulog/exp[—nGngn(x/n“’)]dx
R

= ilelg{z/)(x) - 9(37)} + ilelg{_g(f)}
= 225{1/)(27) —g(x)} + Zijggg(y)

= sup{y(z) —[(2)}.
zeR
Except for the proof of (B.8) we have completed the proof @pS2, which show that with
respect taP, 5, x, x @, S,/n'~" + W, /n'/?~7 satisfies the Laplace principle with exponential

speedh " and rate function'.
To prove (B.8) we define

Ay =exp(n'd) [ expln’(w(o) - g(a)d,

{le|<M}
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It suffices to show that, /A,, — 0. To see this, we rewrite (B.8) as follows:

1
lim sup e log(A, + d,)

1
= limsup—ulog { (1 + —)}

= lim sup {—logA —l——log( A_)]

= lim sup — log An.
nu

Now we prove thab, /A, — 0. By (B.6) we have

1
limilogAn = 0+ lim —log/ exp[n(¢(z) — g(x))]dz
e e {le|<M}
= 0 +sup{(r) —g(z)}
Te
= J+A,

which implies that for all sufficiently large

A, > exp {n“ (g—l—A)] .

Since by (B.4) we have for all sufficiently large
dn < ARn” exp[—n"(]A] + 1)],
it follows that for any0 < ¢ < 1 and all sufficiently large:
60 < expln®(—|A] — 1 +¢))
and thus

0<j—< p{n“<—|A|—1+€—g—A)}. (B.10)

If A > 0,then 5 5
—|A|—1+5—§—A:—1+5—§—2A<0.

If A <0, then 5 5
—|A|—1+5—§—A:—1+5—§<0.
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Thus in all cases the limit of the right hand side of (B.10) .isThis completes the proof of
(B.8).

Together Step 1 and Step 2 prove that with respegLt9) ., S,/n' ™" satisfies the Laplace
principle with speed.~ and rate functioi’. The proof of Theorem 6.2 is complete.
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