Erratum

Monotone Decrease of Characteristic Functions

Richard S. Ellis

Received June 30, 1977

The hypotheses of the theorem in my paper(1) are incorrectly stated. I thank Mark Pinsky for pointing this out to me.

Let \(\rho \) denote the probability measure associated with the \(n \)-dimensional distribution function \(F(x) \); i.e., for any Borel set \(A \subseteq \mathbb{R}^n \), we define

\[
\rho(A) = \int_A dF(x)
\]

Then hypotheses (1a) and (1b) should read as follows:

\[
\rho \text{ is symmetric} \quad (1a)
\]

\[
\infty > \int (tx)^2 dF(x) > 0, \quad \text{all } t \in \mathbb{R}^n, \quad t \neq 0 \quad (1b)
\]

Hypothesis (1a) implies that the characteristic function \(f(t) = \int \exp(it \cdot x) dF(x) \), \(t \in \mathbb{R}^n \), is real-valued.(2) Also, in order to avoid any confusion, the last sentence in the theorem should read as follows: “Thus, in a suitable neighborhood of the origin, \(f \) is monotonically decreasing along rays starting at the origin.”

REFERENCES

1 Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts.

107