Correction: Correction to "Laplace’s Method for Gaussian Integrals with an Application to Statistical Mechanics"

Richard S. Ellis; Jay S. Rosen

Stable URL:
http://links.jstor.org/sici?sici=0091-1798%28198305%2911%3A2%3C456%3ACCT%22MF%3E2.0.CO%3B2-%23

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The Annals of Probability is published by Institute of Mathematical Statistics. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ims.html.

The Annals of Probability
©1983 Institute of Mathematical Statistics

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR
CORRECTION

LAPLACE'S METHOD FOR GAUSSIAN INTEGRALS WITH AN APPLICATION TO STATISTICAL MECHANICS

BY RICHARD S. ELLIS AND JAY S. ROSEN

University of Massachusetts

Chii-Ruey Hwang and Tzau-Shuh Chiang have found an error on page 62 of our paper, which invalidates our proof of the upper bound (1.12). However, a correct proof of (1.12) has been found recently. In fact, E. Bolthausen has proved a large deviations result for sums of i.i.d. random vectors which take values in a real separable Banach space and which are distributed by probability measures \(\{ \mu_n \} \) converging weakly to a probability measure \(\mu \) (“On the Probability of Large Deviations in Banach Spaces”, Technische Universität Berlin preprint, 1982). This result includes the Gaussian bounds (1.12) and (1.13) as special cases.

The Error. On page 62, we claim that \(\cap r, \mathcal{K}_r, \subseteq \mathcal{A} \). This is wrong. Since \(\mathcal{K}_r \) is defined in terms of an \(L^2[0, 1] \)-neighborhood of \(\mathcal{A} \), it is easy to find examples of proper closed subsets \(\mathcal{A} \) in \(C[0, 1] \) for which \(\mathcal{K}_r \) is all of \(C[0, 1] \) and \(\cap r, \mathcal{K}_r \) is not a subset of \(\mathcal{A} \). Hence (1.12) is not proved correctly.

ACKNOWLEDGMENT OF PRIORITY

BY S. S. MITRA

Pennsylvania State University, DuBois Campus

1 Received October 1982.
2 Received October 1982.

456