Relationships of Solutions of Constrained and Unconstrained Minimization Problems with Applications to Nonequivalence of Ensembles in Statistical Mechanics

Richard S. Ellis
Department of Mathematics and Statistics
University of Massachusetts Amherst

Collaborators:
Bruce Turkington, Peter Otto
Department of Mathematics and Statistics
University of Massachusetts Amherst

Kyle Haven
Courant Institute of Mathematical Sciences
New York University

Hugo Touchette
Department of Physics and School of Computer Science
McGill University, Montréal, Québec, Canada

May 29, 2003

Presentation at the conference celebrating the 65th birthday of Mark I. Freidlin
Research supported by a grant from the National Science Foundation (NSF-DMS-0202309)
Email: rsellis@math.umass.edu
Mathematical Motivation

- \mathcal{X} a complete, separable metric space
- I a rate function on \mathcal{X}: l.s.c., compact level sets, $I : \mathcal{X} \to [0, \infty]$
- f bounded and continuous, $f : \mathcal{X} \to \mathbb{R}$

Mathematical core of this talk: investigate the relationships between the solutions of the following two minimization problems.

1. Minimization with a constraint for u given:

 Minimize $I(\nu)$ over \mathcal{X} subject to $f(\nu) = u$.

2. Dual minimization without a constraint for β given:

 Minimize $I(\nu) + \beta f(\nu)$ over \mathcal{X}.

Main results

- Problems 1. and 2. express the asymptotic behavior of the microcanonical ensemble and the canonical ensemble. Derive via large deviations.
- There are only three possible relationships between solutions of 1. and 2. These relationships are expressed by concavity properties of the microcanonical entropy

 $$s(u) \doteq -\inf\{I(\nu) : \nu \in \mathcal{X}, f(\nu) = u\}.$$
Physical Motivation

Two choices of probability distributions in equilibrium statistical mechanics:

<table>
<thead>
<tr>
<th>Microcanonical ensemble</th>
<th>Canonical ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u = \text{const}$</td>
<td>β or $T = \text{const}$</td>
</tr>
</tbody>
</table>

- Are the two probability distributions equivalent?

- Equivalence of ensembles:
 - Example: perfect gas
 - General conditions: short-range interactions

- Nonequivalence of ensembles:
 - Example: before the thermodynamic limit
 - Examples in the thermodynamic limit
 * Models of fluid and geostrophic turbulence
 * Lattice spin systems
 - General conditions: long-range interactions?
 - Physical consequences for observables?
Outline of talk

- Statistical mechanical ensembles: short review

- Large deviation methodology

- Thermodynamic nonequivalence
 - At level of microcanonical entropy and canonical free energy per particle

- Macrostate nonequivalence
 - At level of microcanonical and canonical equilibrium macrostates

- Comments on models of turbulence
 - Use statistical theories to predict the formation, interaction, and stability of large-scale, coherent structures; e.g., vortices and shears in fluid motion, Earth ocean waves, the Great Red Spot of Jupiter, solitons.

- Illustration of results: mean-field Blume-Emery-Griffiths spin model

- Relationship with phase transitions

- Conclusion

- Bibliography
Statistical mechanical ensembles

Boltzmann (1872), Gibbs (1876, 1902)

- ω_i, $i = 1, 2, \ldots, n$, each $\omega_i \in \Lambda$ (spins or vorticities or . . .)
- Microstates: $\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in \Lambda^n$
- Hamiltonian or energy function: $H_n(\omega)$
- Energy per particle: $h_n(\omega) \doteq \frac{1}{n} H_n(\omega)$
- A priori measure P_n; e.g., if Λ is a finite set,
 \[P_n(\{\omega\}) = \frac{1}{|\Lambda|^n} \text{ for each } \omega \]
- Macroscopic variable $L_n(\omega)$ bridging microscopic and macroscopic descriptions: $L_n(\omega)$ maps Λ^n into a space \mathcal{X} ($[-1, 1]$ or $\mathcal{P}(\Lambda)$ or $L^2(\Lambda)$ or . . .).
 - \mathcal{X} is space of macrostates.
 - Require bounded, continuous energy representation function f mapping \mathcal{X} into \mathbb{R}: as $n \to \infty$
 \[h_n(\omega) = f(L_n(\omega)) + o(1) \text{ uniformly over } \omega. \]
 - Require basic LDP with respect to P_n:
 \[P_n\{\omega : L_n(\omega) \approx \nu\} \approx e^{-nI(\nu)}, \]
 $I(\nu)$ rate function for macrostates $\nu \in \mathcal{X}$.
Example: Curie-Weiss spin model

- n spins $\omega_i \in \{-1, 1\}$
- Microstates: $\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in \{-1, 1\}^n$
- Hamiltonian:
 \[H_n(\omega) \doteq - \frac{1}{2n} \left(\sum_{i=1}^{n} \omega_i \right)^2 \]
- Energy per particle:
 \[h_n(\omega) \doteq - \frac{1}{n} H_n(\omega) = - \frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^{n} \omega_i \right)^2 \]
- A priori measure:
 \[P_n(\{\omega\}) \doteq \frac{1}{2^n} \text{ for each } \omega \]
- Macroscopic variable:
 \[L_n(\omega) \doteq \frac{1}{n} \sum_{i=1}^{n} \omega_i \in [-1, 1] \]
 - Energy representation function f:
 \[h_n(\omega) = f(L_n(\omega)), f(\nu) \doteq -\frac{1}{2} \nu^2 \text{ for } \nu \in [-1, 1] \]
 - Basic LDP:
 Cramér’s Theorem: $P_n \{ \omega : \frac{1}{n} \sum_{i=1}^{n} \omega_i \approx \nu \} \asymp e^{-nI(\nu)}$
 \[I(\nu) \doteq \frac{1-\nu}{2} \log (1 - \nu) + \frac{1+\nu}{2} \log (1 + \nu) \text{ for } \nu \in [-1, 1] \]
Models to which formalism has been applied

- Miller-Robert model of fluid turbulence based on the 2D Euler equations
- Model of geophysical flows based on equations describing barotropic, quasi-geostrophic turbulence
- Model of soliton turbulence based on a class of generalized nonlinear Schrödinger equations
- Q-state Curie-Weiss-Potts spin model
- Mean-field Blume-Emery-Griffiths spin model
• **A priori measure**: \(P_n(\{\omega\}) \overset{\triangle}{=} \frac{1}{|\Lambda|^n} \) for each \(\omega \in \Lambda^n \)

• **Assumption**: \(L_n(\omega) \) maps \(\Lambda^n \) into \(\mathcal{X} \) such that

 o \(h_n(\omega) = f(L_n(\omega)) + o(1) \) for bdd. cont. \(f: \mathcal{X} \to \mathbb{R} \)

 o \(\exists \) rate function \(I(\nu) \) for macrostates \(\nu \in \mathcal{X} \):
 \[
P_n\{\omega : L_n(\omega) \approx \nu\} \asymp e^{-nI(\nu)}
 \]

Microcanonical ensemble \(P^u_n \)

\[
P^u_n(d\omega) = P_n(d\omega \mid h_n(\omega) \approx u)
\]

• **Postulate of equiprobability.** If \(\Lambda \) is a finite set and \(P_n(\{\omega\}) = \frac{1}{|\Lambda|^n} \) for each \(\omega \), then the conditional probability \(P^u_n \) is constant on energy shell \(\{\omega : h_n(\omega) \approx u\} \).

• **Microcanonical entropy** \(s(u) \):

\[
P_n\{\omega : h_n(\omega) \approx u\} \asymp e^{ns(u)}, \quad s(u) \overset{\triangle}{=} -\inf\{I(\nu) : f(\nu) = u\}
\]

\[
P_n\{\omega : h_n(\omega) \approx u\} \approx P_n\{\omega : f(L_n(\omega)) \approx u\}
\]

\[
= P_n\{\omega : L_n(\omega) \in f^{-1}(u)\}
\]

\[
\asymp \sup\{\exp[-nI(\nu) : \nu \in f^{-1}(u)]\}
\]

\[
= \exp[-n \cdot \inf\{I(\nu) : f(\nu) = u\}]
\]

\[
= \exp[-ns(u)]
\]
• Asymptotic P_n^u-distribution for $L_n(\omega)$:

If $\nu \in \mathcal{X}$ satisfies $f(\nu) = u$, then

$$
P_n^u\{\omega : L_n(\omega) \approx \nu\} = P_n\{\omega : L_n(\omega) \approx \nu, h_n(\omega) \approx u\} \cdot \frac{1}{P_n\{\omega : h_n(\omega) \approx u\}}
$$

$$
\approx P_n\{\omega : L_n(\omega) \approx \nu, f(L_n(\omega)) \approx u\} \cdot \frac{1}{P_n\{\omega : h_n(\omega) \approx u\}}
$$

$$
= P_n\{\omega : L_n(\omega) \approx \nu\} \cdot \frac{1}{P_n\{\omega : h_n(\omega) \approx u\}} \approx \exp[-n(I(\nu) + s(u))].
$$

If $f(\nu) \neq u$, then $P_n^u\{\omega : L_n(\omega) \approx \nu\} \approx 0$.

• LDP for P_n^u-distribution of $L_n(\omega)$:

$$
P_n^u\{\omega : L_n(\omega) \approx \nu\} \approx e^{-nI_u(\nu)}
$$

$$
I_u(\nu) = \left\{
\begin{array}{ll}
I(\nu) + s(u) & \text{if } f(\nu) = u \\
\infty & \text{otherwise}
\end{array}
\right.
$$

• Microcanonical equilibrium macrostates defined by $I_u(\nu) = 0$:

$I_u(\nu) \geq 0$ for all ν

$I_u(\nu) > 0 \implies P_n^u\{\omega : L_n(\omega) \approx \nu\} \to 0$ exponentially fast

$I_u(\nu) = 0 \iff I(\nu) = -s(u) = \inf\{I(\mu) : f(\mu) = u\}$.

$$
\mathcal{E}^u = \{\nu \in \mathcal{X} : I(\nu) \text{ is minimized for } f(\nu) = u\}
$$
Canonical ensemble $P_{n,\beta}$

- **Heat bath**

 $\beta = \frac{1}{T} = \text{const}$

- Gibbs probability distribution:

 $P_{n,\beta}(d\omega) \doteq \frac{1}{Z_n(\beta)} e^{-\beta n h_n(\omega)} P_n(d\omega),$

 $Z_n(\beta) \doteq \int_{\Lambda_n} e^{-\beta n h_n(\omega)} P_n(d\omega) \asymp e^{-n \varphi(\beta)}$

 $\varphi(\beta)$ is canonical free energy per particle.

- LDP for $P_{n,\beta}$-distribution of $L_n(\omega)$:

 $P_{n,\beta}\{\omega : L_n(\omega) \approx \nu\} \asymp e^{-n I_\beta(\nu)}$

 $I_\beta(\nu) \doteq I(\nu) + \beta f(\nu) - \varphi(\beta)$

- Canonical equilibrium macrostates defined by $I_\beta(\nu) = 0$:

 $I_\beta(\nu) \geq 0$ for all ν

 $I_\beta(\nu) > 0 \Rightarrow P_{n,\beta}\{\omega : L_n(\omega) \approx \nu\} \rightarrow 0$ exponentially fast

 $\mathcal{E}_\beta = \{\nu \in \mathcal{X} : I(\nu) + \beta f(\nu) \text{ is minimized}\}$

- Microcanonical equilibrium macrostates defined by $I^u(\nu) = 0$:

 $\mathcal{E}^u = \{\nu \in \mathcal{X} : I(\nu) \text{ is minimized for } f(\nu) = u\}$
Nonequivalence of ensembles: thermodynamic point of view

- Canonical free energy per particle $\varphi(\beta)$:
 \[
 Z_n(\beta) \doteq \int_{\Lambda^n} e^{-\beta n h_n(\omega)} P_n(d\omega) \asymp e^{-n \varphi(\beta)},
 \]
 \[
 \varphi(\beta) \doteq -\lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta)
 \]

- Free energy φ is Legendre-Fenchel transform of entropy s:
 \[
 Z_n(\beta) = \int_{\mathbb{R}} e^{-\beta n u} P_n\{\omega : h_n(\omega) \in du\}
 \asymp \int_{\mathbb{R}} e^{-\beta n u} e^{ns(u)} du \asymp \exp \left[-n \cdot \inf_u \left\{ \beta u - s(u) \right\} \right]
 \]
 \[
 \varphi(\beta) = \inf_u \left\{ \beta u - s(u) \right\} = s^*(\beta)
 \]

- Inversion of Legendre-Fenchel transform:
 \[
 s(u) \doteq \inf_{\beta} \left\{ \beta u - \varphi(\beta) \right\} = \varphi^*(u)
 \]
 - Equality if $s(u)$ is concave or $\varphi(\beta)$ differentiable
 * Thermodynamic equivalence of ensembles
 - $\varphi(\beta)$ is always concave.
• Concave hull $s^{**}(u)$ of $s(u)$:

$$
\begin{align*}
 s^{**}(u) & := \inf_{\beta} \{ \beta u - s^*(\beta) \} = \inf_{\beta} \{ \beta u - \varphi(\beta) \} \\
 \varphi(\beta) & = \inf_u \{ \beta u - s(u) \} = \inf_u \{ \beta u - s^{**}(u) \}
\end{align*}
$$

• **Thermodynamic** nonequivalence:

$$
 s^{**}(u) \neq s(u)
$$
From thermodynamic point of view, microcanonical ensemble is more basic

From \(s(u) \) to \(\varphi(\beta) \)

- \(s(u) \) was introduced as rate function in LDP

\[
P_n\{\omega : h_n(\omega) \approx u\} \asymp e^{ns(u)}, \quad s(u) \doteq -\inf\{I(\nu) : f(\nu) = u\}.
\]

This implies

\[
\varphi(\beta) \doteq -\frac{1}{n} \log Z_n(\beta) = \inf_u \{\beta u - s(u)\}.
\]

From \(\varphi(\beta) \) to \(s(u) \)

- Suppose one proves that \(\varphi(\beta) \) exists. Calculate rate function \(s(u) \) by Gärtner-Ellis Theorem. If \(\varphi(\beta) \) differentiable, then

\[
s(u) = \inf_{\beta} \{\beta u - \varphi(\beta)\}.
\]

By convex duality, \(s(u) \) is strictly concave.

Possibilities starting from \(\varphi \) (complicated)

- \(\varphi(\beta) \) differentiable \(\implies \) \(s(u) = \inf_{\beta} \{\beta u - \varphi(\beta)\} \) strictly concave

- \(\varphi(\beta) \) not differentiable \(\implies \)

 - EITHER \(s(u) = \inf_{\beta} \{\beta u - \varphi(\beta)\} \) (not strictly) concave
 - OR \(s(u) \) not concave, \(s(u) \neq s^{**}(u) = \inf_{\beta} \{\beta u - \varphi(\beta)\} \)
Nonequivalence of ensembles: point of view of equilibrium macrostates

<table>
<thead>
<tr>
<th>Properties of microcanonical equilibrium macrostates</th>
<th>Properties of canonical equilibrium macrostates</th>
</tr>
</thead>
</table>

- Microcanonical equilibrium macrostates (**minimization with constraint**):
 \[\nu^u = \arg \inf_{\{\nu : f(\nu) = u\}} I(\nu) \]
 Find extremal points of \(I(\nu) + \beta f(\nu) \) via
 \[\beta = \beta(u) : \text{ Lagrange multiplier dual to } f(\nu) = u. \]

- Canonical equilibrium macrostates (**dual minimization without constraint**):
 \[\nu_\beta = \arg \inf_\nu \{ I(\nu) + \beta f(\nu) \} \]

- Questions of equivalence and nonequivalence:
 - Does \(\nu^u = \nu_\beta \) for \(u \) or \(\beta \) given?
 - Do there exist \(\beta(u) \) such that \(\nu^u = \nu_\beta(u) \) and \(u(\beta) \) such that \(\nu^{u(\beta)} = \nu_\beta \)?
 - Max in \(\varphi(\beta) = \inf_u \{ \beta u - s(u) \} \) at \(\beta = \beta(u) = s'(u) \)
 - Unless \(s \) is strictly concave, \(\beta = s'(u) \) cannot be inverted to give unique \(u = u(\beta) = (s')^{-1}(\beta) \).
Thermodynamic vs. macrostate points of view

Full equivalence on the level of equilibrium macrostates

- \iff microcanonical entropy $s(u)$ is strictly concave.
- \iff canonical free energy $\varphi(\beta)$ is differentiable (absence of first-order phase transition).

Macrostate equivalence \iff thermodynamic equivalence

![Diagram showing microcanonical entropy and canonical free energy curves with critical points u_i, u_m, u_h]
\textbf{Concave hull s^{**} of s}

Define $s^{**} = (s^*)^*$, double-Legendre-Fenchel transform of s. s^{**} equals the u.s.c. concave hull of s.

- Define s concave at u if $s(u) = s^{**}(u)$.
- Define s strictly concave at u if $s(u) = s^{**}(u)$ and s^{**} strictly concave at u.
- Define s nonconcave at u if $s(u) \neq s^{**}(u)$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{concave_hull.png}
\caption{Concave hull of s}
\end{figure}
Rigorous results: microcanonical ensemble is more basic

RSE, Kyle Haven, Bruce Turkington (JSP, 2000)

\[\mathcal{E}^u \doteq \{ \nu \in \mathcal{X} : I(\nu) \text{ is minimized for } f(\nu) = u \} \]

\[\mathcal{E}_\beta \doteq \{ \nu \in \mathcal{X} : I(\nu) + \beta f(\nu) \text{ is minimized} \} \]

- **Full equivalence of ensembles:**
 \[s(u) \doteq -\inf\{I(\nu) : f(\nu) = u\} \text{ strictly concave at } u \]
 \[\implies \mathcal{E}^u = \mathcal{E}_\beta \text{ for unique } \beta \]
 \[\implies \text{canonical } \equiv \text{ microcanonical} \]

- **Nonequivalence of ensembles:**
 \[s(u) \text{ nonconcave at } u \]
 \[\implies \mathcal{E}^u \cap \mathcal{E}_\beta = \emptyset \text{ for all } \beta \]
 \[\implies \text{microcanonical not realized within canonical} \]

- **Partial equivalence of ensembles:**
 \[s(u) \text{ (not strictly) concave at } u \implies \mathcal{E}^u \subsetneq \mathcal{E}_\beta \text{ for unique } \beta \]

- **Canonical ensemble is always realized within microcanonical ensemble:**
 \[\mathcal{E}_\beta = \bigcup_{u \in f(\mathcal{E}_\beta)} \mathcal{E}^u \]
Generalizations and Applications

- Canonical equilibrium macrostates are always realized microcannically. However, if s is not concave at u, then the microcanonical equilibrium macrostates are not realized canonically.

- Conclusion: the microcanonical ensemble is richer and more basic than the canonical ensemble.

- In classical models such as the Ising spin model, I is affine or convex and f is affine. Thus
 \[s(u) = -\inf\{I(\nu) : \nu \in \mathcal{X}, f(\nu) = u\} \]
 is concave. Full or partial equivalence of ensembles holds.

- Models of turbulence show additional features.
 - All our results generalize to multidimensional cases in which s is a function of energy u, enstrophy, circulation, and other quantities conserved by the underlying p.d.e.
 - The most spectacular application of statistical theories of turbulence is to the prediction of large scale, coherent structures of the atmosphere of Jupiter including the Great Red Spot.
 - The microcanonical equilibrium macrostates not realized canonically often include macrostates of physical interest; e.g., the Great Red Spot of Jupiter.
Mean-field Blume-Emery-Griffiths (BEG) spin model

M. Blume, V. J. Emery, R. B. Griffiths (1971)

Definition of the model

- n spins $\omega_i \in \{-1, 0, +1\}$
- Microstates: $\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in \{-1, 0, 1\}^n$
- Hamiltonian:
 \[
 H_n(\omega) = \sum_{i=1}^{n} \omega_i^2 - \frac{K}{n} (\sum_{i=1}^{n} \omega_i)^2
 = \left(N_{n,1} + N_{n,-1} \right) - \frac{K}{n} (N_{n,1} - N_{n,-1})^2,
 \]
 \[
 N_{n,j} = \sum_{i=1}^{n} 1_j \{\omega_i\} = \# \{i : \omega_i = j\}
 \]
- Energy per particle:
 \[
 h_n(\omega) = \frac{1}{n} H_n(\omega) = L_{n,1} + L_{n,-1} - K (L_{n,1} - L_{n,-1})^2
 \]
- Macroscopic variable (empirical vector):
 \[
 L_n = (L_{n,-1}, L_{n,0}, L_{n,1}),
 \]
 \[
 L_{n,j}(\omega) = \frac{1}{n} \sum_{i=1}^{n} 1_j (\omega_i) = \frac{1}{n} \cdot \# \{i : \omega_i = j\},
 \]
 \[
 L_{n,j} \geq 0, L_{n,-1} + L_{n,0} + L_{n,1} = 1 \implies L_n(\omega) \in \mathcal{P}(\{-1, 0, 1\})
 \]
- A priori measure:
 \[
 P_n(\omega) = \frac{1}{3^n} \text{ for each } \omega
Large deviation analysis of the mean-field BEG model

- A priori measure:
 \[P_n(\omega) = \frac{1}{3^n} \text{ for each } \omega \]

- Energy per particle:
 \[h_n(\omega) = L_{n,1} + L_{n,-1} - K(L_{n,1} - L_{n,-1})^2 \]

- Macroscopic variable (empirical vector):
 \[L_n = (L_{n,-1}, L_{n,0}, L_{n,1}), \]
 \[L_{n,j}(\omega) = \frac{1}{n} \sum_{i=1}^{n} 1_j(\omega_i) = \frac{1}{n} \# \{ i : \omega_i = j \} \]
 - Energy representation function:
 \[h_n(\omega) = f(L_n(\omega)), \quad f(\nu) = \nu_1 + \nu_{-1} - K(\nu_1 - \nu_{-1})^2 \]
 for \(\nu = (\nu_{-1}, \nu_0, \nu_1) \in \mathcal{P}(-1, 0, 1) \)
 - Basic LDP:
 \[P_n\{ \omega : L_n(\omega) \approx \nu \} \asymp e^{-nR(\nu)} \]

Sanov’s Theorem gives rate function
\[R(\nu) = \nu_{-1} \log(3\nu_{-1}) + \nu_0 \log(3\nu_0) + \nu_1 \log(3\nu_1), \]
relative entropy of \(\sum_{j=-1}^{1} \nu_j \delta_j \) w.r.t. \(\sum_{j=-1}^{1} \frac{1}{3} \delta_j \)

- Equilibrium macrostates:
 \[L_u = \arg \inf_{\nu} \{ R(\nu) : f(\nu) = u \} \]
 \[L_\beta = \arg \inf_{\nu} \{ R(\nu) + \beta f(\nu) \} \]
Exact comparison of equilibrium macrostates

\[s(u) \doteq -\inf\left\{ R(\nu) : \nu_1 + \nu_{-1} - K(\nu_1 - \nu_{-1})^2 = u \right\} \]

\[K = 1.11111111 \]

- \(s' \) monotonically decreasing \(\Rightarrow \) \(s \) strictly concave
- Complete equivalence of ensembles
- Continuous phase transitions in \(\beta \) and \(u \)
$K = 1.081651726$

- s' not decreasing $\Rightarrow s$ not concave
- $s(u) \neq s^{**}(u)$ for $u_l \doteq 0.3311 < u < u_h \doteq 0.33195$
- Canonical ph. tr. at β_c defined by Maxwell-equal-area line
- Nonequivalence of ensembles: for $u_l < u < u_h$ L^u is not realized by L_β for any β: $\mathcal{E}^u \cap \mathcal{E}_\beta = \emptyset$ for all β.
- First-order phase transition in β versus second-order in u
\[K = 1.080501698 \]

- \(s' \) not decreasing \(\Rightarrow \) \(s \) not concave
- \(s(u) \neq s^{**}(u) \) for \(u_l \doteq 0.32425 < u < u_h \doteq 0.32775 \)
- Canonical ph. tr. at \(\beta_c \) given by Maxwell-equal-area line
- Nonequivalence of ensembles: for \(u_l < u < u_h \) \(L^u \) is not realized by \(L_\beta \) for any \(\beta \): \(\mathcal{E}^u \cap \mathcal{E}_\beta = \emptyset \) for all \(\beta \).
- First-order phase transitions in \(\beta \) and \(u \)
\[K = 1.050001050 \]

- Similar features as on preceding transparency: nonequivalence of ensembles and first-order phase transitions in \(\beta \) and \(u \)
Conclusion

- Convexity theory and large deviation theory provide powerful methodology for studying equivalence and nonequivalence of ensembles.

- BEG model illustrates macrostate nonequivalence of ensembles: canonical ≠ microcanonical.

- Microcanonical ensemble is **richer** than canonical ensemble.

- In models of turbulence, the microcanonical equilibrium macrostates not realized as canonical equilibrium macrostates include macrostates of physical interest.

- Canonical ensemble is **always realized** within microcanonical ensemble.

- Macrostate nonequivalence of ensembles is associated with **nonconcavity** of \(s(u) \).

- Macrostate nonequivalence of ensembles is associated with **nondifferentiability** of \(\varphi(\beta) \) (canonical first-order phase transition).
Bibliography

Theory of Large Deviations

BEG Model

Nonequivalence of Ensembles

