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We consider a general class of statistical mechanical models of coherent struc-
tures in turbulence, which includes models of two-dimensional fluid motion,
quasi-geostrophic flows, and dispersive waves. First, large deviation principles
are proved for the canonical ensemble and the microcanonical ensemble. For
each ensemble the set of equilibrium macrostates is defined as the set on which
the corresponding rate function attains its minimum of 0. We then present com-
plete equivalence and nonequivalence results at the level of equilibrium macro-
states for the two ensembles. Microcanonical equilibrium macrostates are
characterized as the solutions of a certain constrained minimization problem,
while canonical equilibrium macrostates are characterized as the solutions of
an unconstrained minimization problem in which the constraint in the first
problem is replaced by a Lagrange multiplier. The analysis of equivalence and
nonequivalence of ensembles reduces to the following question in global
optimization. What are the relationships between the set of solutions of the
constrained minimization problem that characterizes microcanonical equilibrium
macrostates and the set of solutions of the unconstrained minimization problem
that characterizes canonical equilibrium macrostates? In general terms, our
main result is that a necessary and sufficient condition for equivalence of ensem-
bles to hold at the level of equilibrium macrostates is that it holds at the level
of thermodynamic functions, which is the case if and only if the microcanonical
entropy is concave. The necessity of this condition is new and has the following
striking formulation. If the microcanonical entropy is not concave at some value
of its argument, then the ensembles are nonequivalent in the sense that the
corresponding set of microcanonical equilibrium macrostates is disjoint from
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any set of canonical equilibrium macrostates. We point out a number of models
of physical interest in which nonconcave microcanonical entropies arise. We
also introduce a new class of ensembles called mixed ensembles, obtained by
treating a subset of the dynamical invariants canonically and the complemen-
tary set microcanonically. Such ensembles arise naturally in applications where
there are several independent dynamical invariants, including models of disper-
sive waves for the nonlinear Schro� dinger equation. Complete equivalence and
nonequivalence results are presented at the level of equilibrium macrostates for
the pure canonical, the pure microcanonical, and the mixed ensembles.

KEY WORDS: Large deviation principle; equilibrium macrostates; equiv-
alence of ensembles; microcanonical entropy.

1. INTRODUCTION

1.1. Overview

A wide variety of complex physical systems described by nonlinear partial
differential equations exhibit asymptotic phenomena that are much too
complicated to study by purely analytic methods. In order to gain a fuller
understanding of such phenomena, analytic methods are supplemented by
numerical simulations or the systems are modeled via the formalism of
statistical mechanics, which often yields uncannily accurate predictions
concerning the system's asymptotic behavior.

An important class of complex physical systems for which the for-
malism of statistical mechanics provides accurate predictions arises in the
study of turbulence; e.g., two-dimensional fluid motions, quasi-geostrophic
flows, two-dimensional magnetofluids, plasmas, and dispersive waves. In
each case important features of the asymptotic behavior of the underlying
nonlinear partial differential equation��the two-dimensional Euler equa-
tions, the quasi-geostrophic potential vorticity equation, the magneto-
hydrodynamic equations, the Vlasov�Poisson equation, and the nonlinear
Schro� dinger equation��can be effectively captured in a statistical mechanical
model. A distinguishing feature of such systems is that a free evolution from
a generic initial condition exhibits a separation-of-scales behavior: coherent
structures are formed on large scales��e.g., vortices and shears in the case
of fluid motion or solitons in the case of dispersive waves��while random
fluctuations are generated on small scales. A major goal of any description
of the system, whether analytic, numeric, or statistical, is to predict the
formation, interaction, and persistence of such coherent structures.
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The purpose of the present paper is to provide the theoretical basis for
statistical mechanical studies of specific models of turbulence that are
analyzed elsewhere. These include two-dimensional fluids, (6) quasi-geo-
strophic flows, (16) and dispersive waves. (17) In each case the model is
defined on a fixed flow domain in terms of a sequence of finite-dimensional
systems indexed by n # N. Coherent structures are studied in the continuum
limit, obtained by sending n � �. They are characterized by variational
principles, the solutions of which define equilibrium macrostates. In con-
trast to the detailed description required by the associated nonlinear partial
differential equation and by the finite-dimensional systems that discretize
them, these equilibrium macrostates provide a vastly contracted description.
The variational principles are derived and analyzed via the theory of large
deviations and duality theory for concave functions.

In these models the sequence of finite-dimensional systems is defined
on a fixed domain in terms of a long-range interaction with a local mean-
field scaling. In order to obtain a nontrivial limit, one must scale the
inverse temperature by a parameter tending to infinity. By altering the
scaling and making other superficial changes, our results can also be applied
to classical lattice models such as the Ising model of a ferromagnet. Such
models are typically defined in terms of the thermodynamic limit of a
sequence of finite-dimensional systems having a finite-range or summable
interaction. In such applications a basic stochastic process that arises in the
large deviation analysis is the empirical field, which has been studied by a
number of authors including refs. 12, 20, 21, and 40. Other papers that
investigate the equivalence of ensembles in the traditional thermodynamic
or bulk limit include refs. 1 and 47.

There is a large literature on the equivalence of ensembles for classical
lattice systems and related models. It is reviewed in part in the introduction
to ref. 33, to which the reader is referred for references. In particular, a num-
ber of papers including refs. 12, 21, 32, and 46 investigate the equivalence of
ensembles using the theory of large deviations. Of these papers, ref. 32 con-
siders the problem in the greatest generality, obtaining a criterion for the
equivalence of ensembles in terms of the vanishing of the specific information
gain of a sequence of conditioned measures with respect to a sequence of
tilted measures. However, despite the mathematical sophistication of these
and other studies, none of them explicitly addresses the general issue of the
nonequivalence of ensembles, which seems to be the typical behavior for the
models of turbulence that the present paper analyzes. In ref. 32, Section 7.3
and ref. 33, Section 7 there is a discussion of the nonequivalence of ensembles
for the simplest mean-field model in statistical mechanics; namely, the
Curie�Weiss model of a ferromagnet. For a general class of local mean-field
models of turbulence, the present paper addresses this and related issues.
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In much of the classical literature on statistical mechanical approaches
to two-dimensional turbulence, it is tacitly assumed that the microcanonical
and canonical ensembles give equivalent results.(30, 39) Recently, however, in
the context of the point vortex and related models, this tacit assumption
has been directly addressed. Questions concerning the equivalence and
nonequivalence of ensembles for these models have been investigated by a
number of authors, including refs. 9, 19, 26, and 28. The present paper,
inspired in part by ref. 19, is the first to present complete and definitive
results for a general class of models, with a particular emphasis upon the
nonequivalence of ensembles.

An unexpected connection of our work in this paper is to dynamic
stability analysis. To date, all studies of the nonlinear stability of two-
dimensional flows have been carried out using the Lyapunov functionals
introduced by Arnold.(2, 3, 35) When these deterministic results are reformu-
lated in the setting of statistical mechanical models, they can be expressed
in terms of the second-order conditions satisfied by canonical equilibrium
macrostates. In the cases when the microcanonical entropy is not concave
and thus the ensembles are nonequivalent, the Arnold sufficient conditions
for nonlinear stability are not satisfied by the microcanonical equilibrium
macrostates. Nevertheless, the second-order conditions satisfied by these
macrostates allow us to refine the classical Arnold theorems by proving the
nonlinear stability of a new class of two-dimensional flows. In ref. 16 these
ideas are developed for the quasi-geostrophic potential vorticity equation,
which describes the dynamics of rotating, shallow water systems in nearly
geostrophic balance. The work in that paper has possible applications to
the stability of planetary flows; specifically, to the stability of zonal shear
flows and embedded vortices in Jovian-type atmospheres.

In the next two subsections we present an overview of the main results
in this paper, stripped of all technicalities. This is done in the context of
a well-known statistical mechanical model of the two-dimensional Euler
equations known as the Miller�Robert model. Results formulated in great
generality to apply to this and other models of turbulence are given in
Sections 2�5 of this paper. We start by presenting large deviation principles
with respect to the canonical ensemble and the microcanonical ensemble.
For each ensemble we then define the set of equilibrium macrostates as
the set on which the associated rate function attains its minimum of 0.
A fundamental question arises. Are the two ensembles equivalent at the
level of equilibrium macrostates? That is, does each equilibrium macro-
state with respect to one ensemble correspond to an equilibrium macro-
state with respect to the other ensemble? In Section 4, definitive and
sharp results on the equivalence and nonequivalence of the ensembles are
presented.
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In general terms, our main result is that a necessary and sufficient con-
dition for the equivalence of ensembles to hold at the level of equilibrium
macrostates is that it holds at the level of thermodynamic functions. In
proving this, we go beyond the important work in ref. 32, which proves that
for a general class of models, including the classical lattice gas, thermo-
dynamic equivalence of ensembles is a sufficient condition for macrostate
equivalence of ensembles. Our proof that thermodynamic equivalence is also
a necessary condition for macrostate equivalence is perhaps the most striking
discovery of our work. Specifically, we show that whenever a quantity
known as the microcanonical entropy is not concave, the ensembles are non-
equivalent in the sense that the set of microcanonical equilibrium macro-
states is richer than the set of canonical equilibrium macrostates. In fact, the
latter set contains none of the microcanonical equilibrium macrostates
corresponding to nonconcave portions of the entropy [see Thm. 4.5(b)].
Useful, but less concrete, connections between the nonconcavity of the
microcanonical entropy and nonequivalence of ensembles can also be
deduced from the abstract results in ref. 32 [see their Sections 5 and 6]. On
the other hand, our results are formulated in order to apply directly to
statistical mechanical models of turbulence for which nonconcave micro-
canonical entropies frequently and naturally arise, particularly in physically
interesting regions corresponding to a range of negative temperatures.
Several such examples are mentioned in Section 1.4.

Besides the results on equivalence and nonequivalence of ensembles,
we also prove that for the Miller�Robert model and other models micro-
canonical equilibrium macrostates have an equivalent characterization in
terms of constrained maximum entropy principles (see Remark 3.4). Our
approach to this question seems simpler and more intuitive than the
approach taken in refs. 37, 42, and 43. The derivation of constrained maxi-
mum entropy principles based on the microcanonical ensemble brings to
fruition the work begun in ref. 6, where unconstrained maximum entropy
principles based on the canonical ensemble are derived. Our proof that
microcanonical equilibrium macrostates are characterized as solutions of
constrained maximum entropy principles is an important contribution
because such principles are the basis for numerical computations of equi-
librium macrostates and coherent structures for the Miller�Robert model
and other models.(14, 51, 52)

In systems having multiple conserved quantities, one also has the
option of studying mixed ensembles. These are defined by treating a subset
of the conserved quantities canonically and the complementary subset of
conserved quantities microcanonically. In Section 5 we derive large devia-
tion principles with respect to such ensembles and give complete results
on their equivalence and nonequivalence, at the level of equilibrium
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macrostates, with the microcanonical ensemble and the canonical ensemble.
Although mixed ensembles arise naturally in a number of applications, they
have not been studied in a general setting in the statistical mechanical
literature.

An important application of mixed ensembles is to the study of disper-
sive waves and soliton turbulence for the nonlinear Schro� dinger equation.(17)

This equation has two conserved quantities, the Hamiltonian and the particle
number. In the associated statistical mechanical model, the canonical
ensemble cannot be defined because the partition function does not con-
verge. Instead, one must consider either a microcanonical ensemble or a
mixed ensemble in which the Hamiltonian is treated canonically and the
particle number microcanonically. By applying to the mixed ensemble a
large deviation result for Gaussian processes derived in ref. 18, in ref. 17 we
are able to justify rigorously a mean-field theoretic approach to soliton tur-
bulence presented in ref. 24. The agreement between the predictions of the
statistical mechanical model and long-time simulations of the microscopic
dynamics is excellent.(23)

1.2. Ensembles and Large Deviation Principles

The Euler equations describe the time evolution of the velocity and
pressure fields of an inviscid, incompressible fluid in a spatial domain,
which for simplicity we take to be the unit torus T 2 with periodic boundary
conditions. At time t>0 the velocity field at a position x=(x1 , x2) # T 2 is
denoted (v1(x, t), v2(x, t)). The Euler equations can be cast in the form of
an infinite-dimensional Hamiltonian system having a family of other con-
served quantities called generalized enstophies. A central goal of theoreti-
cal, numerical, and statistical studies is to relate the asymptotic behavior of
the vorticity |(x, t).v2, x1

(x, t)&v1, x2
(x, t) to the formation, interaction,

and persistence of coherent structures of the fluid motion.
A model that can be used to carry this out was proposed indepen-

dently by Miller et al.(38, 39) and Robert et al.(43, 44) and is known as the
Miller�Robert model. In order to define it, one first discretizes the con-
tinuum dynamics described by the Euler equations, and then in terms of
the discretized dynamics one defines a sequence of statistical equilibrium
models on suitable finite lattices Ln of T 2. Details are given in part (b) of
Example 2.3. These lattice models describe the joint probability distribu-
tions of certain vorticity random variables `(s) defined for each site s # Ln .
We denote by ` the configuration or microstate [`(s), s # Ln]; by an the
number of sites in Ln ; by Y the common range of `(s); by Hn(`) the
Hamiltonian for `, which is a certain quadratic function of the `(s)
that approximates the continuum Hamiltonian; by An(`) the generalized
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enstrophy of `, which approximates the continuum generalized enstrophy;
and by Pn the prior distribution of `, which is a certain product measure
on the configuration space Yan. In order to simplify the present description,
we absorb An in Pn ; in ref. 16 a physical justification is given, in the con-
text of a related model, for absorbing the generalized enstrophy An in the
prior distribution Pn . Thus for the purpose of this introduction, the Miller�
Robert model is defined in terms of a single conserved quantity, the
Hamiltonian. As in many other models of turbulence, the Hamiltonian in
the Miller�Robert model has a long-range interaction and incorporates a
local mean-field scaling.

For other models of turbulence having the Hamiltonian as the only
conserved quantity, much of the following discussion is valid with minimal
changes in notation; in particular, the forms of the large deviation principles
in the present subsection and the results on equivalence and nonequivalence
of ensembles in the next subsection. For models having multiple conserved
quantities, the following discussion is easily adapted by replacing certain
scalars with vectors. The general class of models considered in this paper
is defined in terms of the quantities in Hypotheses 2.1. In order for a large
deviation analysis of the model to be feasible, these quantities must satisfy
Hypotheses 2.2.

We begin our overview of the main results in this paper by appealing
to the formalism of equilibrium statistical mechanics, which provides two
joint probability distributions for microstates ` # Yan. The physically
fundamental distribution known as the microcanonical ensemble models
the fact that the Hamiltonian is a constant of the Euler dynamics.
Probabilistically, this is expressed by conditioning Pn on the energy shell
[` # Yan : Hn(`)=u], where u # R is determined by the initial conditions.
However, in order to avoid problems with the existence of regular condi-
tional probability distributions, we shall condition Pn on the thickened
energy shell [Hn(`) # [u&r, u+r]], where r>0. Thus, the microcanonical
ensemble is the measure defined for Borel subsets B of Yan by

Pu, r
n [B]=Pn[B | Hn # [u&r, u+r]]=

Pn[B & [Hn # [u&r, u+r]]]
Pn[Hn # [u&r, u+r]]

this is well defined provided the denominator in the last expression is
positive. The letter u is used in the definition of the microcanonical ensemble
rather than the more usual letter E because this is a special case of a
general theory that applies to models having multiple conserved quantities;
for such models u # R is replaced by a vector u representing a fixed value
of the vector of conserved quantities.
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A mathematically more tractable joint probability distribution is the
canonical ensemble, defined for Borel subsets B of Yan by

Pn, ;[B].
1

Z(n, ;)
} |

B
exp[&;Hn] dPn

Here ; is a real number denoting the inverse temperature and Z(n, ;) is the
partition function �Yan exp[&;Hn] dPn . This is a normalization constant
that makes Pn, ; a probability measure.

The main mathematical tool that we shall use to predict the formation
of coherent structures is the theory of large deviations. In the case of the
Miller�Robert model, a crucial innovation implemented in ref. 6 for the
canonical ensemble is to study the asymptotic behavior of a random prob-
ability measure Yn(`) that is closely related to a certain coarse graining of
the random vorticity field (see part (b) of Example 2.3). This coarse grain-
ing is defined in terms of the empirical measures of `(s) for s in certain
macrocells of the lattice Ln . Yn takes values in a certain subset X of the
space of probability measures on T 2_Y. Elements + of X are called
macrostates. While Yn is basic to analyzing the asymptotic behavior of the
model, its definition is far from obvious. For that reason we call Yn a
hidden process and X a hidden space for the Miller�Robert model.

The hidden process Yn has two properties that make a large deviation
analysis of the Miller�Robert model possible. For details, the reader is
referred to ref. 6. First, an application of Sanov's Theorem shows that with
respect to the a priori distribution Pn , Yn satisfies the large deviation prin-
ciple on X with rate function I(+) given by the relative entropy of + # X

with respect to a certain base measure. We record this fact by the formal
notation

Pn[Yn # B(+, :)]rexp[&anI(+)] as n � �, : � 0 (1.2.1)

In this formula B(+, :) denotes the open ball with center + and radius :
with respect to an appropriate metric on X. Second, there exists a bounded
continuous function H� mapping X into R with the property that uniformly
over microstates the Hamiltonian Hn(`) is asymptotic to H� (Yn(`)) as
n � �; in symbols,

lim
n � �

sup
` # Yan

|Hn(`)&H� (Yn(`))|=0 (1.2.2)

H� is called the Hamiltonian representation function.
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Using (1.2.2), one derives from the large deviation principle for the
Pn -distributions of Yn the asymptotic behavior of Yn with respect to the
two ensembles Pu, r

n and Pn, an ; . For appropriate values of u and ; these are
expressed by the formal notation

Pu, r
n [Yn # B(+, :)]rexp[&anI u(+)] as n � �, r � 0, : � 0 (1.2.3)

and

Pn, an ;[Yn # B(+, :)]rexp[&anI;(+)] as n � �, : � 0 (1.2.4)

In these formulas Iu and I; are rate functions that map X into [0, �] and
are defined in terms of the relative entropy I appearing in (1.2.1). Because
the Miller�Robert model is defined in terms of a long-range interaction
having a local mean-field scaling, in order to obtain a nontrivial asymptotic
theory ; must be scaled by an in the definition of the canonical ensemble
Pn, ; [ref. 6, Section 3]. For the general formulation of (1.2.3) and (1.2.4)
as large deviation principles for a general class of models, the reader is
referred to Theorem 3.2 and Theorem 2.4, respectively.

It is not difficult to motivate the forms of Iu and I; . In order to do so,
we introduce two basic thermodynamic functions, one associated with each
ensemble. Since the groundbreaking work of Lanford on equilibrium
macrostates in classical statistical mechanics, (31) it has been recognized that
the basic thermodynamic function associated with the microcanonical
ensemble is the microcanonical entropy s. In terms of the distribution
Pn[Hn # } ], this quantity measures the multiplicity of microstates ` # Yan

consistent with a given energy value u. It is defined by

s(u). lim
r � 0

lim
n � �

1
an

log Pn[Hn # [u&r, u+r]] (1.2.5)

For appropriate values of u, the limit exists and is given by (3.2), which is
a variational formula over macrostates +. For ; # R the basic thermo-
dynamic function associated with the canonical ensemble is the canonical
free energy

.(;).& lim
n � �

1
an

log Z(n, an;) (1.2.6)

The limit exists and is given by (2.6), which is also a variational formula
over macrostates.
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We first motivate the form of I; . If Yn # B(+, :), then for all sufficiently
small : and all sufficiently large n (1.2.2) implies that

Hn(`)rH� (Yn(`))rH� (+)

Hence for all sufficiently small : and all sufficiently large n, the asymptotic
formula (1.2.1) and the definition of . yield

Pn, an ;[Yn # B(+, :)].
1

Z(n, ;) |
[Yn # B(+, :)]

exp[&an;Hn] dPn

r
1

Z(n, ;)
exp[&an;H� (+)] Pn[Yn # B(+, :)]

rexp[&an(I(+)+;H� (+)&.(;))]

Comparing this with the desired asymptotic form (1.2.4) motivates the
formula

I;(+)=I(+)+;H� (+)&.(;) (1.2.7)

The actual proof of the large deviation principle for the Pn, an ; -distributions
of Yn with this rate function follows the sketch presented here and is
not difficult. Related large deviation principles have been obtained by
numerous authors.

We now motivate the form of Iu. Suppose that H� (+)=u. Then for all
sufficiently large n depending on r the set of ` for which both Yn(`) #
B(+, :) and Hn(`) # [u&r, u+r] is approximately equal to the set of ` for
which both Yn(`) # B(+, :) and H� (Yn(`)) # [u&r, u+r]. Since H� is con-
tinuous and H� (+)=u, for all sufficiently small : compared to r this set
reduces to [`: Yn(`) # B(+, :)]. Hence for all sufficiently small r, all suf-
ficiently large n depending on r, and all sufficiently small : compared to r,
(1.2.1) and the definition (1.2.5) of s yield

Pu, r
n [Yn # B(+, :)].

Pn[[Yn # B(+, :)] & [Hn # [u&r, u+r]]]
Pn[Hn # [u&r, u+r]]

r
Pn[Yn # B(+, :)]

Pn[Hn # [u&r, u+r]]

rexp[&an(I(+)+s(u))]

On the other hand, if H� (+){u, then a similar calculation shows that for
all sufficiently small r, all sufficiently small :, and all sufficiently large n
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Pu, r
n [Yn # B(+, :)]=0. Comparing these approximate calculations with the

desired asymptotic form (1.2.3) motivates the formula

Iu(+).{I(+)+s(u)
�

if H� (+)=u,
if H� (+){u

(1.2.8)

In Section 3 we offer two proofs of the large deviation principle for the
Pu, r

n -distributions of Yn . Both are straightforward; the first follows fairly
closely the heuristic sketch just given. Forms of this large deviation principle
are given, for example, in refs. 12, 32, and 33.

The asymptotic formulas (1.2.3) and (1.2.4) give rise to several inter-
pretations of the rate functions. Through the distributions Pu, r

n [Yn # } ] and
Pn, an ;[Yn # } ], I u and I; measure the multiplicity of microstates ` # Yan

consistent with a given macrostate +. Because of these asymptotic formulas,
it also makes sense to say that for i=Iu or i=I; a macrostate +1 # X is
more predictable than a macrostate +2 # X if i(+1)<i(+2). Since i is non-
negative, the most predictable or most probable macrostates + solve
i(+)=0. It is natural to call such + equilibrium macrostates. Specifically,
+ # X satisfying Iu(+)=0 is called a microcanonical equilibrium macro-
state; Eu denotes the set of all such macrostates. Analogously, a measure
+ # X satisfying I;(+)=0 is called a canonical equilibrium macrostate;
E; denotes the set of all such macrostates. In terms of equilibrium macro-
states +, one can analyze the formation of coherent structures by defining
the mean vorticity as an appropriate average of + and comparing it, say by
simulation, with the long-time behavior of the vorticity |(x, t).v2, x1

(x, t)
&v1, x2

(x, t) as given by the Euler equations. (39, 44, 51, 52)

1.3. Equivalence and Nonequivalence of Ensembles

The microcanonical ensemble is physically fundamental, and the
canonical ensemble can be heuristically derived from it by considering a
small subsystem of a large reservoir.(4) Aside from physical considerations
concerning which ensemble is more appropriate in the construction of a
statistical model, the more mathematically tractable canonical ensemble is
often introduced as an approximation to the microcanonical ensemble,
which is somewhat difficult to analyze. However, in order to justify this use
of the canonical ensemble, one must address a basic issue. At the level of
equilibrium macrostates, do the two ensembles give equivalent results? This
involves answering the following two questions.

1. For every ; and every + in the set E; of canonical equilibrium
macrostates, does there exist a value of u such that + lies in the set Eu of
microcanonical equilibrium macrostates?
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2. Conversely, for every u and every + # Eu does there exist a value
of ; such that + # E;?

Whether or not the answers are yes, a more refined issue is to determine
the precise relationships between Eu and E; . For example, if the answers
are both yes, then given ; in question 1 (resp., u in question 2), how does
one determine the corresponding value of u (resp., ;)? It is with these
issues, appropriately formulated in terms of a general class of models having
multiple conserved quantities, that Sections 4 and 5 of the present paper is
occupied. In those sections definitive and sharp results on the equivalence
and nonequivalence of ensembles are derived.

As we will see, in general question 1 in the preceding paragraph has
the answer yes; namely, every + # E; lies in Eu for some value of u. As we
illustrate by a number of examples given in Section 1.4, question 2 can
have the answer no; namely, it can be the case that the set of microcanoni-
cal equilibrium macrostates is richer than the set of canonical equilibrium
macrostates. As we show in Theorem 4.4, this behavior has a striking
formulation in terms of the microcanonical entropy s, which is defined in
(1.2.5). If s is not concave at a given value of u, then the ensembles are non-
equivalent in the sense that Eu is disjoint from the sets E; for all values
of ;.

This general result has been anticipated in a number of works, includ-
ing those discussed in Section 4.2 of ref. 49 and in refs. 27 and 29. These
works exhibit nonconcave entropy curves for a number of physical models
that include a gravitating system of fermions and a system of circular
vortex filaments in an ideal fluid confined to a three-dimensional torus; see
Fig. 34 in ref. 49, Fig. 3 in ref. 27, and Fig. 2 in ref. 29. They also point out
that certain equilibrium macrostates corresponding to nonconcave portions
of the entropy are only realizable in the continuum limit of the micro-
canonical ensemble but not of the canonical ensemble. Other examples of
nonconcave entropies are given in Section 1.4 of the present paper.

The question as to whether the microcanonical and canonical ensem-
bles give equivalent results at the level of equilibrium macrostates is for-
mulated as a problem in global optimization. Let u and ; be given. By
definition, a macrostate +� belongs to Eu if and only if I u(+� )=0. This is the
case if and only if +� solves the following constrained minimization problem:

minimize I(+) over + # X subject to the constraint H� (+)=u (1.3.1)

It is worth noting that since the relative entropy I(+) equals negative the
physical entropy, this display defines a maximum entropy principle with
the energy constraint H� (+)=u. By definition, a macrostate +� belongs to E;
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if and only if I;(+� )=0. This is the case if and only if +� solves the following
unconstrained minimization problem:

minimize (I(+)+;H� (+)) over + # X (1.3.2)

In the unconstrained problem ; is a Lagrange multiplier dual to the con-
straint H� (+)=u in (1.3.1). Under general conditions, solutions of the
constrained minimization problem (1.3.1) are extremal points of (I+;H� )
on X.(22, 53) The question as to whether the microcanonical and canonical
ensembles give equivalent results is equivalent to answering the following
refined question related to this property. What are the relationships
between the sets of solutions of the constrained and unconstrained mini-
mization problems (1.3.1) and (1.3.2)?

We now describe our results on the equivalence and nonequivalence of
ensembles by relating them to the behavior of the two basic thermo-
dynamic functions, s and .. The following discussion applies to the Miller�
Robert model as well as to a class of other models that have the Hamiltonian
as a single conserved quantity. The discussion generalizes to a wide class of
other models having multiple conserved quantities. We first motivate a for-
mula relating s and .. To do this, we use the definition of s, which we sum-
marize by the formula

Pn[Hn # du]rexp[ans(u)] du

We now calculate

.(;)=& lim
n � �

1
an

log Z(n, an;)

=& lim
n � �

1
an

log |
Yan

exp[&an;Hn] dPn

=& lim
n � �

1
an

log |
R

exp[&an ;u] Pn[Hn # du]

r& lim
n � �

1
an

log |
R

exp[&an(;u&s(u))] du

According to the heuristic reasoning that underlies Laplace's method, the
main contribution to the integral comes from the largest term. This
motivates the relationship

.(;)= inf
u # R

[;u&s(u)] (1.3.3)

which expresses . as the Legendre�Fenchel transform s* of s.
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For the Miller�Robert model and other models of turbulence con-
sidered in this paper, s is nonpositive and upper semicontinuous on R
[Proposition 3.1(a)]. If it is the case that s is concave on R, then (1.3.3)
can be inverted to give s in terms of .; namely, for all u # R

s(u)= inf
; # R

[;u&.(;)] (1.3.4)

Hence, when s is concave on R, each basic thermodynamic function can be
obtained from the other by a similar formula. It is natural to say that in
this case the microcanonical ensemble and the canonical ensemble are ther-
modynamically equivalent.(28, 33) As we will see in Theorems 4.4 and 4.9,
thermodynamic equivalence of ensembles is mirrored by equivalence-of-
ensemble relationships at the level of equilibrium macrostates.

By virtue of its definition (1.2.6) or formula (1.3.3), . is a finite,
concave, continuous function on R. In the case of classical systems such as
considered by Lanford, (31) a superadditivity argument based on the fact
that the underlying Hamiltonian has finite range shows that the analogue
of s is an upper semicontinuous, concave function on R. In general, how-
ever, because of the local mean-field, long-range nature of the Hamiltonians
in the Miller�Robert model and other models of turbulence considered in
this paper, the associated microcanonical entropies are typically not concave
on subsets of R corresponding to a range of negative temperatures.

In order to see how concavity properties of s determine relationships
between the sets of equilibrium macrostates, we define for u # R the concave
function

s**(u). inf
; # R

[;u&s*(;)]= inf
; # R

[;u&.(;)] (1.3.5)

Because of (1.3.4), it is obvious that s is concave on R if and only if s and
s** coincide. Whenever s(u)>&� and s(u)=s**(u), we shall say that s
is concave at u.

Now assume that s is not concave on R; i.e., there exists u # R for
which &�<s(u){s**(u). In this case, one easily shows that s** equals
the smallest upper semicontinuous, concave function majorizing s. In par-
ticular, when s is not concave on R, it cannot be recovered from . via a
Legendre�Fenchel transform.

As we now explain, concavity and nonconcavity properties of the
microcanonical entropy s have crucial implications for the equivalence and
nonequivalence of ensembles at the level of equilibrium macrostates. In
terms of such properties of s, we now give preliminary and incomplete
statements of the relationships between the sets Eu and E; of equilibrium
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macrostates for the two ensembles. The reader is referred to Theorems 4.4,
4.6, and 4.8 for precise statements. For easy reference they are summarized
in Fig. 1 in Section 4.

For a given value of u, there are three possible relationships that can
occur between Eu and E; . If there exists a value of ; such that Eu=E; , then
the ensembles are said to be fully equivalent. If instead of equality Eu is a
proper subset of E; for some ;, then the ensembles are said to be partially
equivalent. It may also happen that Eu & E;=< for all values of ;. If this
occurs, then the microcanonical ensemble is said to be nonequivalent to
any canonical ensemble or that nonequivalence of ensembles holds. It is
convenient to group the first two cases together. If for a given u there exists
; such that either Eu equals E; or Eu is a proper subset of E; , then the
ensembles are said to be equivalent.

The relationships between Eu and E; depend on concavity and non-
concavity properties of s, expressed through the equality or nonequality of
s(u) and s**(u). These relationships are given next in items 1�3 together
with references to where the results are stated precisely. Criteria for equiv-
alence of ensembles related to item 2 have been obtained in various settings
by a number of authors, including refs. 12, 19, 32, and 33. However, the
results underlying items 1 and 3 are new.

1. Canonical is always microcanonical. For every ; and every
+ # E; , there exists u such that + # Eu [Theorem 4.6].

2. Equivalence. If &�<s(u)=s**(u)��i.e., if s is concave at
u��then there exists ; such that the ensembles are equivalent [Remark 4.2
and Theorem 4.4(a)].

3. Nonequivalence. If &�<s(u)=% s**(u)��i.e., if s is not concave
at u��then the corresponding microcanonical ensemble is nonequivalent to
any canonical ensemble [Remark 4.2 and Theorem 4.4(b)].

Let u be a point in R such that s(u)>&�. According to items 2 and 3,
the ensembles are equivalent if and only if s is concave at u. Under another
natural hypothesis on u, one shows that s is concave at u if and only if
there exists a supporting line to the graph of s at (u, s(u)) [Lem. 4.1(a)];
i.e., there exists ; # R such that

s(w)�s(u)+;(w&u) for all w # R

In Theorem 4.8 we refine this necessary and sufficient condition for equiv-
alence of ensembles by showing that the ensembles are fully equivalent if
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and only if there exists a supporting line to the graph of s that touches the
graph of s only at (u, s(u)); i.e., there exists ; # R such that

s(w)<s(u)+;(w&u) for all w{u

A sufficient condition that guarantees this property of s is that s(u)=
s**(u) and s** is strictly concave in a neighborhood of u.

The relationships given in items 1-3 refine the relationships between
the thermodynamic functions . and s. In fact, the thermodynamic equiv-
alence of ensembles that holds when s=s** on R is reflected in the equiv-
alence of ensembles for a given value of u when &�<s(u)=s**(u) [item 2].
On the other hand, when &�<s(u){s**(u) for some value of u, the
lack of symmetry between . and s as expressed by (1.3.3) and (1.3.5) is
mirrored by a lack of symmetry between the microcanonical and canonical
ensembles at the level of equilibrium macrostates. For each ;, every
canonical equilibrium macrostate in E; lies in Eu for some u [item 1].
However, for any u for which &�<s(u){s**(u) the corresponding micro-
canonical ensemble is nonequivalent to any canonical ensemble [item 3].

We also prove a number of interesting results that follow easily from
the main theorems. For example, in Corollary 4.7 we show that if E; con-
sists of a unique macrostate +, then Eu consists of the unique macrostate
+ for a corresponding value of u (u=H� (+)). The uniqueness of an equi-
librium macrostate corresponds to the absence of a phase transition.

1.4. Examples of Nonconcave Microcanonical Entropies

The most striking of our results on equivalence and nonequivalence of
ensembles is given in item 3 near the end of the preceding subsection. If,
for a given value of u, &�<s(u){s**(u), then Eu is disjoint from the sets
E; for all values of ;. We next point out a number of statistical mechanical
models having a nonconcave microcanonical entropy and thus exhibiting,
for a range of values of u, the nonequivalence of ensembles that is for-
mulated in item 3.

1. Point Vortex System. This is the first statistical mechanical model
proposed in the literature for studying the two-dimensional Euler equa-
tions. It is defined in terms of a singular interaction function, which is a
Green's function. The model was introduced by Onsager;(41) was further
developed in the 1970's, notably by Joyce and Montgomery;(25) and con-
tinues to be the subject of important studies, including refs. 5, 8, 9, 26,
and 28. Proposition 6.2 in ref. 9 isolates a class of flow domains for which
the microcanonical entropy in the point vortex model is not a concave
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function of its argument. As pointed out in ref. 28, Section 6, the Monte
Carlo study of a point vortex system in a disk carried out in ref. 48 also
displays a nonconcave microcanonical entropy. Strictly speaking, the
results on nonequivalence of ensembles given in the present paper apply
only to a point vortex model in which the singular interaction function in
the classical model has been regularized; see part (a) of Example 2.3.
Nevertheless, special arguments can be invoked to extend them to the
classical model with singular point vortices.

2. Two-Dimensional Turbulence. A natural generalization, and also
regularization, of the point vortex model is the Miller�Robert model. In an
unpublished numerical study, Turkington and Liang consider the Miller�
Robert model in a disk with constraints on the energy, the total circulation,
and the angular momentum (or impulse) and with a prior distribution on
the vorticity that corresponds to vortex patch dynamics; this problem is the
simplest Miller�Robert analogue of the problem studied in ref. 48 in the
point-vortex formulation. For fixed values of the total circulation and the
angular momentum, Turkington and Liang compute microcanonical
entropies as a function of energy using the algorithm developed in ref. 51.
They find that the microcanonical entropy-energy curve is concave on a
certain interval and nonconcave on a complementary interval. These com-
putations produce equilibrium macrostates that are vortices embedded in
circular shear flows.

3. Quasi-Geostrophic Turbulence on a ;-Plane. The statistical
equilibrium models proposed in ref. 50 are implemented in ref. 14 for
barotropic, quasi-geostrophic flow in a channel on the ;-plane. Various
prior distributions on the potential vorticity are considered; these include
a saturated model, in which the maximum and minimum of the potential
vorticity constrain the microstate, and a dilute model, in which only the
mean potential-vorticity magnitude is imposed. Even in the absense of
geophysical effects (;=0), the dilute model exhibits a nonconcave entropy-
energy curve, as displayed in Fig. 4 of ref. 14. The equilibrium macrostates
corresponding to values of the energy for which the entropy is nonconcave
are shears that transition to monopolar vortices and then to dipolar vortices
as the energy increases. When the dilute model is replaced by the corre-
sponding saturated model, in which an upper bound on the microscopic
potential vorticity is enforced, the equilibrium macrostates are modified,
particularly at high energies. As is shown in Fig. 16 of ref. 14, the noncon-
cavity of the entropy-energy curve persists at low energies; at high enough
energies, however, it becomes concave, unlike in the dilute case. At these
high energies the equilibrium macrostates are not dipolar vortices, but
rather shear flows.
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4. Quasi-Geostrophic Turbulence over Topography. A more com-
plete study of the concavity of the microcanonical entropy is carried out
in ref. 16 for equivalent-barotropic, quasi-geostrophic flow over bottom
topography on an f -plane. As in ref. 14 a channel geometry is imposed, but
for simplicity only shear flows are considered. Within this symmetry class,
the topography is chosen to be sinusoidal, the energy and circulation are
used as global invariants, and the prior distribution is taken to be a
Gamma distribution with mean 0, variance 1, and nonzero skewness. As a
function of the energy and the circulation, the entropy is nonconcave in
more than half of its domain. These two-constraint results are described in
detail in Section 6 of ref. 16.

5. Two-Layer Quasi-Geostrophic Turbulence. The one-layer model
studied in ref. 14 is extended to a two-layer system in ref. 13, where it is
used to describe the physically important phenomenon of open-ocean con-
vection. In Figs. 2 and 12 in that paper, the entropy-energy curve is seen
to be nonconcave; the microcanonical equilibrium macrostates correspond-
ing to values of the energy in the nonconcave region are asymmetric
baroclinic monopoles.

1.5. Contents of This Paper

In Section 2 we introduce the class of statistical mechanical models
that will be analyzed in this paper. These models generalize the Miller�
Robert model by incorporating a finite sequence of interaction functions
Hn, i rather than just the Hamiltonian. In order to carry out the large
deviation analysis, we assume that there exists a hidden process Yn that
takes values in a complete separable metric space X and has the following
two properties: (a) for each interaction function there exists a representa-
tion function H� i such that uniformly over microstates |Hn, i&H� i b Yn | � 0
as n � �; (b) with respect to the prior measure Pn in the model, Yn satisfies
the large deviation principle on X. In Section 2 we show that with respect
to the canonical ensemble Yn satisfies the large deviation principle, and we
derive several properties of the set of canonical equilibrium macrostates.

In Section 3 we consider the microcanonical ensemble, proving a large
deviation principle and studying properties of the set of microcanonical
equilibrium macrostates. We also point out the constrained maximum
entropy principles that characterize microcanonical equilibrium macro-
states in certain models including the Miller�Robert model.

Section 4 is devoted to the presentation of our complete results on the
equivalence and nonequivalence of the two ensembles. The results are
proved in Theorems 4.4, 4.6, and 4.8 and are summarized in Fig. 1.
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In Section 5.1 we introduce mixed ensembles obtained by treating a
subset of the dynamical invariants canonically and the complementary sub-
set of dynamical invariants microcanonically. We then prove the large
deviation principle for these ensembles. Section 5.2 presents complete
equivalence and nonequivalence results for the pure canonical and mixed
ensembles while Section 5.3 does the same for the mixed and the pure
microcanonical ensembles. The results in Sections 5.2 and 5.3 follow from
those in Section 4 with minimal changes in proof. They are summarized in
Figs. 2 and 3.

2. CANONICAL ENSEMBLE: LDP AND EQUILIBRIUM
MACROSTATES

In this section we present a large deviation principle for the canonical
ensemble in a wide range of statistical mechanical models [Thm. 2.4(b)].
In terms of that principle, the set of canonical equilibrium macrostates is
defined and some of its properties derived [Thms. 2.4(c)�2.5]. After defining
the class of models under consideration, we specify in Example 2.3 a number
of specific models to which the theory applies.

The models that we consider are defined in terms of the following
quantities.

Hypotheses 2.1.

v A sequence of probability spaces (0n , Fn , Pn) indexed by n # N;
0n are the configuration spaces for the statistical mechanical models.

v A positive integer _ and for each n # N a sequence of interaction
functions [Hn, i , i=1,..., _], which are bounded measurable functions map-
ping 0n into R. We define Hn.(Hn, 1 ,..., Hn, _), which maps 0n into R_.

v A sequence of positive scaling constants an � �.

Let ( } , } ) denote the Euclidean inner product on R_. We define for
each n # N, ;=(;1 ,..., ;_) # R_, and set B # Fn the partition function

Zn(;).|
0n

exp _& :
_

i=1

; i Hn, i& dPn=|
0n

exp[&(;, Hn)] dPn

which is well defined and finite, and the probability measure

Pn, ;[B].
1

Zn(;) |
B

exp[&(;, Hn)] dPn (2.1)

1017Large Deviation Principles and Complete Equivalence



The measures Pn, ; are Gibbs states that define the canonical ensemble for
the given model. For ; # R_, we also define

.(;).& lim
n � �

1
an

log Zn(an;)

if the limit exists and is nontrivial. In this formula ; is scaled with an , as
is usual in studying the continuum limit of models of turbulence [ref. 6,
Section 3]. We refer to .(;) as the canonical free energy. If _=1 and Hn, 1

is the Hamiltonian of the system, then ;=;1 is the inverse temperature.
The first application of the theory of large deviations in this paper is

to express .(;) as a variational formula. Let X be a Polish space (a com-
plete separable metric space), Yn random variables mapping 0n into X, Qn

probability measures on (0n , Fn), and I a rate function on X. Thus I maps
X into [0, �] and for each M # [0, �) the set [x # X : I(x)�M ] is com-
pact (compact level sets). For A a subset of X, we define I(A).infx # A I(x).
We say that with respect to Qn the sequence Yn satisfies the large deviation
principle, or LDP, on X with scaling constants an and rate function I if for
any closed subset F of X the large deviation upper bound

lim sup
n � �

1
an

log Qn[Yn # F ]�&I(F ) (2.2)

is valid and for any open subset G of X the large deviation lower bound

lim inf
n � �

1
an

log Qn[Yn # F ]�&I(G) (2.3)

is valid. We say that with respect to Qn the sequence Yn satisfies the
Laplace principle on X with scaling constants an and rate function I if for
all bounded continuous functions f mapping X into R

lim
n � �

1
an

log |
0n

exp[an f (Yn)] dQn

= lim
n � �

1
an

log |
X

exp[an f (x)] Qn[Yn # dx]

=sup
x # X

[ f (x)&I(x)]

As pointed out in Theorems 1.2.1 and 1.2.3 in ref. 15, Yn satisfies the LDP
with scaling constants an and rate function I if and only if Yn satisfies the
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Laplace principle with scaling constants an and rate function I. Evaluating
the large deviation upper bound (2.2) for F=X and the large deviation
lower bound (2.3) for G=X yields I(X)=0, and since I is nonnegative and
has compact level sets, the set of x # X for which I(x)=0 is nonempty and
compact. In the sequel we shall usually omit the phrase ``with scaling con-
stants an '' in the statements of LDP's and Laplace principles.

A large deviation analysis of the general model is possible provided we
can find, as specified in Hypotheses 2.2, a hidden space, a hidden process,
and a sequence of interaction representation functions, and provided the
hidden process satisfies the LDP on the hidden space.

Hypotheses 2.2.

v Hidden space. This is a Polish space X.

v Hidden process. This is a sequence Yn , where each Yn is a random
variable mapping 0n into X.

v Interaction representation functions. This is a sequence [H� i , i=
1,..., _] of bounded continuous functions mapping X into R such that as
n � �

Hn, i (|)=H� i (Yn(|))+o(1) uniformly for | # 0n (2.4)

i.e., limn � � sup| # 0n
|Hn, i (|)&H� i (Yn(|))|=0. We define H� .(H� 1 ,..., H� _),

which maps X into R_.

v LDP for the hidden process. There exists a rate function I
mapping X into [0, �] such that with respect to Pn the sequence Yn

satisfies the LDP on X, or equivalently the Laplace principle on X, with
rate function I.

In this context we use the term ``hidden'' because in many cases the choices
of the space X and the process Yn are far from obvious. K

We next present several models of turbulence to which the results of
this paper can be applied.

Example 2.3.

(a) Regularized Point Vortex Model. This model, analyzed in ref. 19,
is an approximation to the point vortex model, which we first define.
Let 4 be a smooth, bounded, connected, open subset of R2; g(x, x$) the
Green's function for &2 on 4 with Dirichlet boundary conditions; h the
continuous function mapping 4 into R defined by h(x). 1

2 g~ (x, x), where
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g~ (x, x$) is the regular part of the Green's function g(x, x$); and % nor-
malized Lebesgue measure on 4 satisfying %(4)=1. For n # N the point
vortex model is defined on the configuration spaces 0n.4n with the Borel
_-field. Pn equals the product measure on 0n with identical one-dimen-
sional marginals %, and an.n. Configurations ` # 4n give the locations
`1 ,..., `n of the n vortices. The interaction function for the point vortex
model is the Hamiltonian

Hn(`).
1

2n2 :
1�i< j�n

g(`i , `j )+
1
n2 :

1�i�n

h(`i ) (2.5)

Because g(x, x$) and h(x) are not bounded continuous functions of x
and x$ in 4, the point vortex model cannot be studied by the methods of
this paper, but must be analyzed by other techniques.(5, 8, 9, 26, 28) The
regularized point vortex model is defined like the point vortex model
except that in the formula for Hn g(x, x$) is replaced by a suitable bounded
continuous function V(x, x$) on 42 and h is replaced by a suitable bounded
continuous k on 4.

For the regularized point vortex model the hidden space is the space
X of probability measures on 4 while the hidden process is the sequence
of empirical measures

Yn(`)=Yn(`, dx).
1
n

:
n

i=1

$`i
(dx)

By Sanov's Theorem, this sequence satisfies the large deviation principle
on X with rate function the relative entropy R(+ | %) of + with respect
to %.(10, 11, 15) For + # X the interaction representation function is defined by

H� (+). 1
2 |

4_4
V(x, x$) +(dx) +(dx$)

The approximation property (2.4) is easily verified.

(b) Miller�Robert Model. This model of the two-dimensional Euler
equations is analyzed in ref. 6, which explains in detail the physical back-
ground. For simplicity, let the flow domain be T 2, the unit torus
[0, 1)_[0, 1) with periodic boundary conditions. For each n # N let Ln be
a uniform lattice of an.22n sites t in T 2. The intersite spacing in each coor-
dinate direction is 2&n. Each such lattice of an sites induces a dyadic parti-
tion of T 2 into an squares called microcells, each having area 1�an . For
each s # Ln we denote by M(s) the unique microcell containing the site s in
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its lower left corner. The configuration spaces for the Miller�Robert model
are 0n.Yan, where Y is a given compact subset of R. Microstates are
denoted by `=[`(s), s # Ln]. Let \ be a probability measure on R with
support Y. Pn equals the product measure on 0n with identical one-dimen-
sional marginals \.

There are two classes of interaction functions, the Hamiltonian and
the generalized enstrophies. For ` # 0n the Hamiltonian is defined by

Hn, 1(`).
1

2n2 :
s, s$ # L

gn(s&s$) `(s) `(s$)

where gn(s&s$) is a certain bounded continuous approximation to the
Green's function

g(s&s$). :
0{! # Z2

|2?!|&2 exp[2?i(!, s&s$)]

Fix : # N. For i=2,..., :+1 the generalized enstrophies are defined by

Hn, i (`).
1
n

:
s # Ln

a i (`(s))

where the ai are continuous functions mapping Y into R.
Hypotheses 2.2 are verified in ref. 6, to which the reader is referred for

details. Let % denote Lebesgue measure on T 2. The hidden space is the
space X of probability measures +(dx_dy) on T 2_Y with first marginal %.
The hidden process is the sequence of measures

Yn(dx_dy)=Yn(`, dx_dy).%(dx)� :
s # Ln

1M(s)(x) $`(s)(dy)

For + # X the Hamiltonian interaction function is given by

H� 1(+). 1
2 |

(T2_Y)2
g(x&x$) yy$+(dx_dy) +(dx$_dy$)

while for i=2,..., :+1 the interaction functions for the generalized
enstrophies are given by

H� i (+).|
T 2_Y

ai ( y) +(dx_dy)

For i=1 one verifies (2.4) by a detailed Fourier analysis. For i=2,..., :+1
(2.4) is easily verified to hold with no error term.
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Given n # N and an even integer q<2n, we consider a dyadic partition
of the lattice Ln into 2q blocks, each block containing an �2q lattice sites.
In correspondence with this partition we have a dyadic partition [Dq, k ,
k=1,..., 2q] of T 2 into macrocells. Each macrocell is the union of an �2q

microcells M(s). The large deviation principle for Yn with respect to Pn is
verified by comparing Yn with the doubly indexed process

Wn, q(dx_dy)=Wn, q(`, dx_dy).%(dx)� :
2q

k=1

1Dq, k
(x) Ln, q, k(`, dy)

where Ln, q, k denotes the empirical measure (1�an �2q) �s # Dq, k
$`(s)(dy).

Through these empirical measures, Wn, q introduces an averaging over the
intermediate scale of the macrocells and thus corresponds to a coarse
graining of the vorticity field. Using Sanov's Theorem, one verifies that as
n � �, q � �, Wn, q satisfies the two-parameter LDP on X with rate
function the relative entropy R(+ | %_\) of +(dx_dy) with respect to the
product measure %(dx)_\(dy) [ref. 6, Section 5]. An approximation result
relating Yn and Wn, q then allows one to prove that Yn satisfies the LDP
on X with the same rate function.

(c) Quasi-Geostrophic Potential Vorticity Model. This model of
the quasi-geostrophic potential vorticity equation, described in detail in
refs. 14 and 16, incorporates the geophysical terms associated with the
Coriolis effect, the deformation of an upper free surface, and bottom
topography. The large deviation analysis of the model is carried out in ref. 16.

(d) Dispersive Wave Model for the Nonlinear Schro� dinger Equation.
This model is defined in refs. 23 and 24, to which the reader is referred for
details. The hidden process is a Gaussian process taking values in L2[0, 1]
and satisfying the LDP with respect to the prior distribution that is proved
in ref. 18. The large deviation analysis of this model is the subject of ref. 17. K

We now return to the general model. Its large deviation analysis with
respect to the canonical ensemble is summarized in the next theorem. Part
(a) states a variational formula for .(;), and part (b) gives the LDP for
the hidden process Yn with respect to the sequence of Gibbs measures Pn, ; .
Part (c) describes the set E; consisting of points at which the rate function
in part (b) attains its minimum of 0. Part (d) gives a concentration
property of E; . As we point out after the statement of the theorem, E; can
be identified with the set of equilibrium macrostates of the statistical
mechanical model. The mathematical tractability of the canonical ensemble
is reflected in the simplicity of the proof of Theorem 2.4.
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Theorem 2.4. We assume Hypotheses 2.1 and 2.2. For ; # R_ the
following conclusions hold.

(a) .(;).&limn � �(1�an) log Zn(an ;) exists and is given by

.(;)= inf
x # X

[(;, H� (x))+I(x)] (2.6)

.(;) is a finite, concave, continuous function on R_.

(b) With respect to Pn, an ; , Yn satisfies the LDP on X with rate function

I;(x).I(x)+(;, H� (x)) & inf
y # X

[I( y)+(;, H� ( y))]

=I(x)+(;, H� (x)) &.(;)

(c) The set E; .[x # X : I;(x)=0] is a nonempty, compact subset
of X. A point x� lies in E; if and only if

I(x� )+(;, H� (x� ))= inf
y # X

[I( y)+(;, H� ( y))]=.(;)

equivalently, if and only if x� solves the following unconstrained minimization
problem:

minimize (I(x)+(;, H� (x)) ) over x # X

(d) If A is any Borel subset of X whose closure A� satisfies A� & E;=<,
then I;(A� )>0 and for some C<�

Pn, an ;[Yn # A]�C exp[&an I;(A� )�2] � 0 as n � �

Proof. (a) Since Yn satisfies the LDP with respect to Pn , Yn satis-
fies the Laplace principle with respect to Pn with the same rate function I.
Hence by the approximation property (2.4) and the boundedness and
continuity of the function mapping x [ (;, H� (x)) ,

.(;)=& lim
n � �

1
an

log Zn(an;)

=& lim
n � �

1
an

log |
0n

exp[&an(;, Hn)] dPn

=& lim
n � �

1
an

log |
0n

exp[&an(;, H� (Yn))] dPn

= inf
x # X

[(;, H� (x)) +I(x)]
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This formula exhibits . as a finite, concave function on R_, which is there-
fore continuous on R_.

(b) I; is a rate function since I is a rate function and the function
mapping x [ (;, H� (x)) is bounded and continuous. In order to prove
that with respect to Pn, an ; , Yn satisfies the LDP with rate function I; , it
suffices to prove that with respect to Pn, an ; , Yn satisfies the Laplace prin-
ciple with rate function I; . This is an immediate consequence of (2.4) and
part (a); for details, see the proof of part (b) of Theorem 3.1 in ref. 6.

(c) E; is a nonempty, compact subset of X because I; is a rate func-
tion. The equivalent characterizations of x� # E; follow from the definition
of I; .

(d) If A� & E;=<, then for each x # A we have I;(x)>0. Since I; is
a rate function, it follows that I;(A� )>0. The large deviation upper bound
in part (b) yields the display in part (d) for some C<�. The proof of the
theorem is complete. K

Part (d) of Theorem 2.4 can be regarded as a concentration property
of the Pn, an ;-distributions of Yn . This property justifies calling E; the set of
equilibrium macrostates with respect to Pn, an ;[Yn # dx] or, for short, as
the set of canonical equilibrium macrostates.

The next theorem further justifies the designation of E; as the set of
canonical equilibrium macrostates by relating weak limits of subsequences
of Pn, an ;[Yn # } ] to E; . For example, if one knows that E; consists of a
unique point x~ , then it follows that the entire sequence Pn, an ;[Yn # } ] con-
verges weakly to $x~ . This situation corresponds to the absence of a phase
transition. For specific models, more detailed information about weak
limits of subsequences of Pn, an ; have been obtained by a number of authors
including refs. 9, 19, 26, and 36.

Theorem 2.5. We assume Hypotheses 2.1 and 2.2. For ; # R_, any
subsequence of Pn, an ;[Yn # } ] has a subsubsequence converging weakly to
a probability measure 6; on X that is concentrated on E; .[x # X :
I;(x)=0]; i.e., 6;[(E;)c]=0. If E; consists of a unique point x~ , then the
entire sequence Pn, an ;[Yn # } ] converges weakly to $x~ .

Proof. Define a*.minn # N an>0. As shown in the proof of Lemma 2.6
in ref. 34, the large deviation upper bound given in part (b) of Theorem 2.4
implies that for each M # (0, �) there exists a compact subset K of X such
that for all n # N

Pn, an ;[Yn # K c]�
e&anM

1&e&M �
e&a*M

1&e&M
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It follows that the sequence Pn, an ;[Yn # } ] is tight and therefore that any
subsequence has a subsubsequence Pn$, an$ ;

[Yn$ # } ] converging weakly as
n$ � � to a probability measure 6; on X [Prohorov's Theorem]. In order
to show that 6; is concentrated on E; , we write the open set (E;)c as a
union of countably many open balls Vj such that the closure V� j of each Vj has
empty intersection with E; . By part (c) of Theorem 2.4, Pn$, an$ ;

[Yn$ # V j ] � 0
as n$ � �, and so

0=lim inf
n$ � �

Pn$, an$ ;
[Yn$ # Vj ]�6;[Vj ]

It follows that 6;[Vj ]=0 and thus that 6;[(E;)c]=0, as claimed.
Now assume that E;=[x~ ]. Then the only probability measure on X

that is concentrated on E; is $x~ . Since by the first part of the proof any sub-
sequence of Pn, an ;[Yn # } ] has a subsubsequence converging weakly to $x~ ,
it follows that the entire sequence Pn, an ;[Yn # } ] converges weakly to $x~ .
This completes the proof. K

In the next section we consider the LDP for Yn when conditioning is
present.

3. MICROCANONICAL ENSEMBLE: LDP AND EQUILIBRIUM
MACROSTATES

As in the preceding section, we consider models defined in terms of a
sequence of interaction functions [Hn, i , i=1..., _], which are bounded
measurable functions mapping 0n into R. In general, the interaction func-
tions represent conserved quantities with respect to some dynamics that
underlies the model. For suitable values of (u1 ,..., u_) # R_ the ideal way to
define the microcanonical ensemble is to condition the probability measure
Pn on the set [Hn, 1=u1 ,..., Hn, _=u_]. However, in order to avoid problems
concerning the existence of regular conditional probability distributions, we
shall condition Pn on [Hn, 1 # [u1&r, u1+r],..., Hn, _ # [u_&r, u_+r]],
where r # (0, 1). These conditioned measures, given in (3.4), define the
microcanonical ensemble. Theorem 3.2 proves the LDP for the distribu-
tions of Yn with respect to the microcanonical ensemble in the double limit
obtained by sending first n � � and then r � 0. We then define, in terms
of the rate function in this LDP, the set of microcanonical equilibrium
macrostates and derive some of its properties.

For u=(u1 ,..., u_) # R_ a key role in the large deviation analysis of the
microcanonical ensemble is played by

J(u).inf[I(x): x # X, H� (x)=u] (3.1)
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In terms of J the canonical free energy .(;), given in part (a) of Theorem 2.4
by

.(;)= inf
x # X

[(;, H� (x))+I(x)]

can be rewritten as

.(;)= inf
u # R _

[inf[(;, H� (x))+I(x) : x # X, H� (x)=u]]

= inf
u # R _

[(;, u) +J(u)]

Introducing the microcanonical entropy

s(u). &J(u)=&inf[I(x): x # X, H� (x)=u] (3.2)

we have

.(;)= inf
u # R _

[(;, u) &s(u)] (3.3)

This formula expresses . as the Legendre�Fenchel transform of s. The
microcanonical entropy will play a central role in the results on equiv-
alence and nonequivalence of the canonical and microcanonical ensembles
to be presented in Section 4.

The function J plays other roles in the theory. Since each H� i is a bounded
continuous function mapping X into R and since with respect to Pn , Yn

satisfies the LDP on X with rate function I, it follows from the contraction
principle that with respect to Pn , H� (Yn)=(H� 1(Yn),..., H� _(Yn)) satisfies the
LDP on R_ with rate function J [ref. 10, Thm. 4.2.1]. When expressed in
terms of the equivalent Laplace principle, this means that for any bounded
continuous function g mapping R_ into R

lim
n � �

1
an

log |
0n

exp[an g(H� (Yn))] dPn= sup
u # R_

[g(u)&J(u)]

Because of the approximation property (2.4), this readily extends to the
Laplace principle on R_, and thus the LDP on R_, for Hn.(Hn, 1 ,..., Hn, _).

In part (a) of the next proposition we record the LDP's just discussed
and two properties of the microcanonical entropy. When applied to the
regularized point vortex model, the LDP for the Pn -distributions of Hn
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generalizes the large deviation estimates obtained in [ref. 19, Thm. 2.1]. In
parts (b) and (c) of the proposition some related facts needed later in this
section are given. We define dom J to be the set of u # R_ for which
J(u)<�. For r # (0, 1) and u # dom J, we also define

[u](r).[u1&r, u1+r]_ } } } _[u_&r, u_+r]

Part (b) is a consequence of the LDP for Hn given in part (a) and of the
bound J(int([u] (r)))�J(u). Part (c) follows from the lower semicontinuity
of J and from part (b).

Proposition 3.1. We assume Hypotheses 2.1 and 2.2. The following
conclusions hold.

(a) With respect to Pn , the sequences H� (Yn) and Hn satisfy the LDP
on R_ with rate function J. Hence s.&J is nonpositive and upper semi-
continuous.

(b) For u # dom J and any r # (0, 1)

&J(u)�lim inf
n � �

1
an

log Pn[Hn # [u](r)]

�lim sup
n � �

1
an

log Pn[Hn # [u] (r)]�&J([u](r))

(c) As r � 0, J([u] (r))ZJ(u). Hence

lim
r � 0

lim
n � �

1
an

log Pn[Hn # [u] (r)]=&J(u)

The main theorem of this section is the LDP for Yn with respect to the
microcanonical ensemble, given in Theorem 3.2. For A # Fn this ensemble
is defined by the conditioned measures

Pu, r
n [A].Pn[A | Hn # [u] (r)] (3.4)

where u # dom J and r # (0, 1). For all sufficiently large n it follows from
part (b) of Proposition 3.1 that Pn[Hn # [u] (r)]>0 and hence that Pu, r

n is
well defined.
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Theorem 3.2. Take u # dom J and assume Hypotheses 2.1 and 2.2.
With respect to the conditioned measures Pu, r

n , Yn satisfies the LDP on X,
in the double limit n � � and r � 0, with rate function

Iu(x).{I(x)&J(u)
�

if H� (x)=u,
otherwise

That is, for any closed subset F of X

lim
r � 0

lim sup
n � �

1
an

log Pu, r
n [Yn # F ]�&I u(F ) (3.5)

and for any open subset G of X

lim
r � 0

lim inf
n � �

1
an

log Pu, r
n [Yn # G]� &I u(G) (3.6)

We first prove that I u defines a rate function. Clearly Iu is nonnegative.
For u # dom J and M<�

[x # X : Iu(x)�M ]=[x # X : I(x)�M+J(u)] & H� &1([u])

Since J(u)<�, I has compact level sets, and H� &1([u]) is closed, it follows
that Iu has compact level sets.

Concerning the large deviation bounds in Theorem 3.2, we offer two
proofs. The first is preferred because it is close to the heuristic sketch of
the LDP given in the introduction. Throughout the two proofs we fix
u # dom J.

The first proof of the large deviation upper bound actually derives a
stronger inequality. Namely, for all sufficiently small r # (0, 1) and any
closed subset F of X

lim sup
n � �

1
an

log Pu, r
n [Yn # F ]�&Iu(F ) (3.7)

For any x # X and :>0 we denote by B� (x, :) and B(x, :) the closed ball
and the open ball in X with center x and radius :. Let $>0 be given. Since
I is lower semicontinuous, for any x # X and all sufficiently small :>0 we
have I(B� (x, :))�I(x)&$. Now take any x # X such that H� (x)=u. For any
r # (0, 1) and all sufficiently small : the large deviation upper bound for Yn

with respect to Pn and part (b) of Proposition 3.1 yield

1028 Ellis et al.



lim sup
n � �

1
an

log Pu, r
n [Yn # B� (x, :)]

�lim sup
n � �

1
an

log Pn[[Yn # B� (x, :)] & [Hn # [u] (r)]]

&lim inf
n � �

1
an

log Pn[Hn # [u] (r)]

�lim sup
n � �

1
an

log Pn[Yn # B� (x, :)]&lim inf
n � �

1
an

log Pn[Hn # [u](r)]

� &I(B� (x, :))+J(u)

� &I(x)+J(u)+$

=&Iu(x)+$ (3.8)

Now take any x # X such that H� (x){u. Thus I u(x)=�, and there
exists t # (0, 1) such that H� (x) � [u](t). By the approximation property (2.4)
and the continuity of H� , for any r # (0, t), all sufficiently small :>0, and
all sufficiently large n we have

[Yn # B� (x, :)] & [Hn # [u] (r)]/[Yn # B� (x, :)] & [H� (Yn) # [u] (t)]=<

Hence for such r and :

lim sup
n � �

1
an

log Pu, r
n [Yn # B� (x, :)]

�lim sup
n � �

1
an

log Pn[[Yn # B� (x, :)] & [Hn # [u] (r)]]

&lim inf
n � �

1
an

log Pn[Hn # [u] (r)]

=&�=&I u(x)

We have proved that for any x # X, all sufficiently small r # (0, 1), and
all sufficiently small :>0

lim sup
n � �

1
an

log Pu, r
n [Yn # B� (x, :)]�&Iu(x)+$
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Let F be a compact subset of X. We can cover F with finitely many closed
balls B� (xi , :i ) with xi # F and :i>0 so small that the last display is valid
for x=xi , all sufficiently small r # (0, 1), and :=:i . It follows that for all
sufficiently small r # (0, 1)

lim sup
n � �

1
an

log Pu, r
n [Yn # F ]�&min

i
I u(x i )+$�&I(F )+$

Sending $ � 0 yields the upper bound (3.7). Finally, for any closed set F
the upper bound (3.7) is a consequence of the following uniform exponential
tightness estimate.

Lemma 3.3. Fix u # dom J. Then for all sufficiently large M # (0, �)
there exists a compact subset D of X such that for every r # (0, 1)

lim sup
n � �

1
an

log Pu, r
n [Yn # Dc]� &M

Proof. Given u # dom J, we take M>J(u). As shown in the proof of
Lemma 2.6 in ref. 34, the large deviation upper bound satisfied by Yn with
respect to Pn implies that there exists a compact subset D of X such that

lim sup
n � �

1
an

log Pn[Yn # Dc]�&2M

Since for every r # (0, 1)

Pu, r
n [Yn # Dc]�

Pn[Yn # Dc]
Pn[Hn # [u] (r)]

it follows from part (b) of Proposition 3.1 that

lim sup
n � �

1
an

log Pu, r
n [Yn # Dc]

�lim sup
n � �

1
an

log Pn[Yn # Dc]&lim inf
n � �

1
an

log Pn[Hn # [u] (r)]

�&2M+J(u)�&M

This completes the proof. K

1030 Ellis et al.



We next prove the large deviation lower bound in Theorem 3.2 by
showing that for any fixed r # (0, 1) and any open subset G of X

lim inf
n � �

1
an

log Pu, r
n [Yn # G]�&I u(G)+J([u](r))&J(u) (3.9)

Sending r � 0 and using part (c) of Proposition 3.1 yields the large deviation
lower bound in Theorem 3.2.

Let x be any point in G such that H� (x)=u. By the approximation
property (2.4) and the continuity of H� , for any number r& satisfying
0<r&<r and all sufficiently large n, we can choose :>0 to be so small
that B(x, :)/G and

[Yn # B(x, :)] & [Hn # [u] (r)]#[Yn # B(x, :)] & [H� (Yn) # [u] (r&)]

=[Yn # B(x, :)]

Hence for such :, the large deviation lower bound for Yn with respect to
Pn and part (b) of Proposition 3.1 yield

lim inf
n � �

1
an

log Pu, r
n [Yn # G]

�lim inf
n � �

1
an

log Pu, r
n [Yn # B(x, :)]

�lim inf
n � �

1
an

log Pn[[Yn # B(x, :)] & [Hn # [u] (r)]]

&lim sup
n � �

1
an

log Pn[Hn # [u] (r)]

�lim inf
n � �

1
an

log Pn[Yn # B(x, :)]&lim sup
n � �

1
an

log Pn[Hn # [u](r)]

� &I(B(x, :))+J([u](r))

� &I(x)+J([u](r))

=&Iu(x)+J([u] (r))&J(u)

Now take any x # X such that H� (x){u. Since I u(x)=�, it follows that

lim inf
n � �

1
an

log Pu, r
n [Yn # G]�&�=&Iu(x)+J([u](r))&J(u)
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We have thus obtained the same lower bound for all x # G. We conclude
that

lim inf
n � �

1
an

log Pu, r
n [Yn # G]�sup

x # G
[&I u(x)]+J([u](r))&J(u)

=&I u(G)+J([u](r))&J(u)

This completes the proof of the large deviation lower bound (3.9). The
proof of Theorem 3.2 is done.

The second proof of the large deviation bounds in Theorem 3.2 uses
the following alternate representation for the rate function:

Iu(x)=I([x] & H� &1([u]))

Let F be any closed subset of X. We choose � to be any function mapping
(0, 1) onto (0, 1) with the properties that �(r)>r for all r # (0, 1) and
limr � 0 �(r)=0. Clearly, as r a 0, [u] (�(r)) a [u]. We need the limit

lim
r � 0

I(F & H� &1([u](�(r))))=I(F & H� &1(u))

which follows from routine calculations using the continuity of H� and the
fact that Iu is a rate function. The proof of this limit is omitted. The rest
of the proof of the large deviation upper bound is straightforward. By the
approximation property (2.4) and the continuity of H� , for any r # (0, 1) and
all sufficiently large n

Pn[[Yn # F ] & [Hn # [u] (r)]]�Pn[[Yn # F ] & [H� (Yn) # [u](�(r))]]

Then the large deviation upper bound for Yn with respect to Pn and part
(c) of Proposition 3.1 yield

lim
r � 0

lim sup
n � �

1
an

log Pu, r
n [Yn # F ]

� lim
r � 0

lim sup
n � �

1
an

log Pn[Yn # [F & H� &1([u](�(r)))]]

& lim
r � 0

lim inf
n � �

1
an

log Pn[Hn # [u] (r)]

� &lim
r � 0

I(F & H� &1([u] (�(r))))+J(u)

=&I(F & H� &1(u))+J(u)=&I u(F )

This is the large deviation upper bound (3.5).
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Now let G be any open subset of X. Again by the approximation
property (2.4) and the continuity of H� , for any number r& satisfying
0<r&<r and all sufficiently large n

Pn[[Yn # G] & [Hn # [u](r)]]�Pn[[Yn # G] & [H� (Yn) # [u] (r&)]]

�Pn[Yn # G & H� &1(int[u] (r&))]

The large deviation lower bound for Yn with respect to Pn and part (c) of
Proposition 3.1 yield

lim
r � 0

lim inf
n � �

1
an

log Pu, r
n [Yn # G]

� lim
r � 0

lim inf
n � �

1
an

log Pn[Yn # [G & H� &1(int[u] (r&))]]

& lim
r � 0

lim
n � �

1
an

log Pn[Hn # [u](r)]

� &lim
r � 0

I(G & H� &1(int[u] (r&)))+J(u)

� &I(G & H� &1(u))+J(u)

=&I u(G)

This is the large deviation lower bound (3.6), completing the second proof
of the large deviation bounds in Theorem 3.2. The proof of Theorem 3.2 is
done.

In Section 2 the large deviation analysis of the canonical ensemble led
us to define, in terms of the rate function in the corresponding LDP, the
set of canonical equilibrium macrostates. Analogously, for u # dom J we
define, in terms of the rate function I u in Theorem 3.2, the set of micro-
canonical equilibrium macrostates

Eu.[x # X : I u(x)=0]

Thus x� # Eu if and only if I(x� )=J(u) and H� (x� )=u. We next point out that
in certain models elements of Eu have an equivalent characterization in
terms of constrained maximum entropy principles.

Remark 3.4. Equivalent characterization in terms of constrained
maximum entropy principles. Since J(u) equals the infimum of I over all
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elements x satisfying the constraint H� (x)=u, we see that x� # Eu if and only
if x� solves the following constrained minimization problem:

minimize I(x) over x # X subject to the constraint H� (x)=u

Both for the regulariued point vortex model and the Miller�Robert model
the rate function I equals a relative entropy, which in turn equals minus the
physical entropy. Hence for these models the last display gives an equiv-
alent characteriuation of microcanonical equilibrium macrostates in terms
of a constrained maximum entropy principle. K

Parts (c) and (d) of Theorem 2.4 state several properties of the set E;

of canonical equilibrium macrostates. The next theorem gives analogous
properties of Eu. The second of these properties is slightly more com-
plicated than in the canonical case because the microcanonical measures
Pu, r

n depend on the two parameters n # N and r # (0, 1).

Theorem 3.5. We assume Hypotheses 2.1 and 2.2. For u # dom J
the following conclusions hold.

(a) Eu.[x # X : I u(x)=0] is a nonempty, compact subset of X.
A point x� # X lies in Eu if and only if I(x� )=J(u) and H� (x� )=u; equiv-
alently, if and only if x� solves the following constrained minimization
problem:

minimize I(x) over x # X subject to the constraint H� (x)=u

(b) Let A be any Borel subset of X whose closure A� satisfies
A� & Eu=<. Then I u(A� )>0. In addition, there exists r0 # (0, 1) and for all
r # (0, r0] there exists Cr<� such that

Pu, r
n [Yn # A]�Cr exp[&an Iu(A� )�2] � 0 as n � �

Proof. (a) Eu is a nonempty, compact subset of X because Iu is a
rate function. The equivalent characterizations of x� # Eu follow from the
formula for Iu.

(b) If A� & Eu=<, then for each x # A we have I u(x)>0. Since Iu is
a rate function, it follows that I u(A� )>0. The large deviation upper bound
for the Pu, r

n -distributions of Yn given in (3.5) completes the proof. K

Part (b) of Theorem 3.5 can be regarded as a concentration property
of the Pu, r

n -distributions of Yn . This property justifies calling Eu the set of
microcanonical equilibrium macrostates.
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Theorem 2.5 studies compactness properties of the sequence of Pn, an ; -
distributions of Yn and shows that any weak limit of a convergent sub-
sequence of this sequence is concentrated on E; . In the next theorem we
formulate an analogue for the microcanonical ensemble, studying compact-
ness and weak limit properties of the Pu, r

n -distributions of Yn . In the case
of the classical lattice gas, a related result is given, for example, in ref. 12,
Lem. 4.1.

Theorem 3.6. We assume Hypotheses 2.1 and 2.2. For u # dom J
the following conclusions hold.

(a) For r # (0, 1), any subsequence of Pu, r
n [Yn # } ] has a subsubse-

quence Pu, r
n$ [Yn$ # } ] converging weakly to a probability measure 6u, r on

X as n$ � �.

(b) There exists r0 # (0, 1) such that for all r # (0, r0] 6u, r is concen-
trated on Eu; i.e., 6u, r[(Eu)c]=0. Thus if Eu consists of a unique point x~ ,
then for all r # (0, r0] the entire sequence Pu, r

n [Yn # } ] converges weakly to
$x~ as n � �.

(c) For any sequence rk/(0, 1) converging to 0, any subsequence of
6u, rk has a subsubsequence converging weakly to a probability measure 6u

on X that is concentrated on Eu.

Proof. (a) Define a*.minn # N an>0. The exponential tightness
estimate in Lemma 3.3 implies that for all sufficiently large M # (0, �)
there exists a compact subset D of X such that for all r # (0, 1) and all suf-
ficiently large n

Pu, r
n [Yn # Dc]�exp[&an M�2]�exp[&a*M�2] (3.10)

Since M can be taken to be arbitrarily large, this yields the tightness of the
sequence Pu, r

n [Yn # } ]. The tightness implies that any subsequence of
Pu, r

n [Yn # } ] has a subsubsequence Pu, r
n$ [Yn$ # } ] converging weakly to a

probability measure 6u, r on X as n$ � � [Prohorov's Theorem]. This
completes the proof of part (a).

(b) We use the value of r0 from part (b) of Theorem 3.5. As in the
proof of Theorem 2.5, in order to prove the concentration property of 6 u, r,
we write the open set (Eu)c as a union of countably many open balls V j

such that the closure V� j of each Vj has empty intersection with Eu. Let
Pu, r

n$ [Yn$ # } ] O 6u, r be the subsubsequence arising in the proof of part (a)
of the present theorem. For r # (0, r0], part (b) of Theorem 3.5 implies that
Pu, r

n$ [Yn$ # Vj ] � 0 as n$ � �, and so

0=lim inf
n$ � �

Pu, r
n$ [Yn$ # Vj ]�6 u, r[Vj ]
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It follows that 6u, r[Vj ]=0 and thus that 6u, r[(Eu)c]=0, as claimed.
If Eu consists of a unique point x~ , then as in the proof of Theorem 2.5,
one shows that as n � � Pu, r

n [Yn # } ] O $x~ . This completes the proof of
part (b).

(c) This follows from part (b), Prohorov's Theorem, and the com-
pactness of Eu. The proof of Theorem 3.6 is complete. K

4. EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

In the preceding section we presented, for the microcanonical ensemble,
analogues of results proved for the canonical ensemble in Section 2. These
include large deviation theorems and properties of the set of equilibrium
macrostates. Such analogues of results for the two ensembles point to a
much deeper relationship between them. As we will soon see, the two
ensembles are intimately related both at the level of thermodynamic func-
tions and at the level of equilibrium macrostates, and the results at these
two levels mirror each other.

Our main results on equivalence and nonequivalence of ensembles at
the level of equilibrium macrostates are presented in Theorems 4.4, 4.6, and
4.8 and are summarized in Fig. 1. Definitive and complete, they express, in
terms of concavity and other properties of the microcanonical entropy,
relationships between the sets of canonical and microcanonical equilibrium
macrostates. The proofs of these relationships are based on straightforward
concave analysis. Other results in this section explore related issues. For
example, Corollary 4.7 is a uniqueness result for equilibrium macrostates,
Theorem 4.10 relates the equivalence of ensembles to the differentiability of
the canonical free energy, and Theorem 4.11 shows that a certain equiv-
alence-of-ensemble relationship implies a concavity property of the micro-
canonical entropy.

We start our presentation by recalling an elementary result at the level
of thermodynamic functions. The microcanonical entropy is the non-
positive function defined for u # R_ by

s(u). &J(u).&inf[I(x): x # X, H� (x)=u]

We define dom s as the set of u # R_ for which s(u)>&�. As shown in
(3.3), the canonical free energy .(;) can be obtained from s by the formula

.(;)= inf
u # R _

[(;, u) &s(u)] (4.1)
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which expresses . as the Legendre�Fenchel transform s* of s. In general,
.=s* is finite, concave, and continuous on R_ [Thm. 2.4(a)], and s is
upper semicontinuous [Prop. 3.1(a)]. If it is the case that s is concave
on R_, then concave function theory implies that s equals the Legendre�
Fenchel transform of . [ref. 45, p. 104]; viz., for u # R_

s(u)=.*(u)= inf
; # R _

[(;, u)&.(;)] (4.2)

If s is concave on R_, then following standard terminology in the
statistical mechanical literature, we say that the canonical ensemble and the
microcanonical ensemble are thermodynamically equivalent.(28, 33) As we
will see, when properly interpreted, the nonconcavity of s at points u # R_

will imply that the ensembles are nonequivalent at the level of equilibrium
macrostates for those values of u [Thm. 4.4(b)]. Further connections
between thermodynamic equivalence of ensembles and equivalence of
ensembles at the level of equilibrium macrostates are made explicit in
Theorem 4.9. In particular, under a hypothesis on the domains of various
functions that is not necessarily satisfied in all models of interest, thermo-
dynamic equivalence of ensembles is a necessary and sufficient condition
for equivalence of ensembles to hold at the level of equilibrium macrostates
[Thm. 4.9(c)].

The concavity of s on R_ depends on the nature of I and H� . For example,
if I is concave on X and H� is affine, then s is concave on R_. However,
in general the concavity of s is not valid. In fact, because of the local mean-
field, long-range nature of the Hamiltonians arising in many models of
turbulence, including the Miller�Robert model [Example 2.3(b)], the asso-
ciated microcanonical entropies are typically not concave on subsets of R_

corresponding to a range of negative temperatures.
In order to see how concavity properties of s determine relationships

between the sets of equilibrium macrostates, we define for u # R_ the con-
cave function

s**(u). inf
; # R _

[(;, u) &s*(;)]= inf
; # R_

[(;, u)&.(;)]

Because of (4.2), it is obvious that s is concave on R_ if and only if s and
s** coincide. Whenever s(u)>&� and s(u)=s**(u), we shall say that s
is concave at u.

Now assume that s is not concave on R_. Since for any u # dom s and
all ; # R_ we have s(u)�(;, u) &s*(;), it follows that for all u # R_

s(u)� inf
; # R _

[(;, u) &s*(;)]=s**(u) (4.3)

1037Large Deviation Principles and Complete Equivalence



In addition, if f is any upper semicontinuous, concave function satisfying
s(u)� f (u) for all u # R_, then for all ; # R_ s*(;)� f *(;) and thus
s**(u)� f **(u)= f (u) for all u # R_. It follows that if s is not concave
on R_, then s** is the upper semicontinuous, concave hull of s; i.e., the
smallest upper semicontinuous, concave function on R_ that majorizes s. In
particular, if s(u)>&�, then s**(u)>&�; thus dom s/dom s**.

Since s** is an upper semicontinuous, concave function, we can intro-
duce a basic concept in concave function theory that will play a key role
in our results on equivalence and nonequivalence of ensembles. For
u # dom s** the superdifferential of s** at u is defined as the set �s**(u)
consisting of ; # R_ such that

s**(w)�s**(u)+(;, w&u) for all w # R_ (4.4)

any such ; is called a supergradient of s** at u. The effective domain of the
superdifferential of s** is defined to be the set dom �s** consisting of
u # R_ for which �s**(u) is nonempty. It can be shown that ref. 45, p. 217

ri(dom s**)/dom �s**/dom s** (4.5)

where for A a subset of R_ ri(dom A) denotes the relative interior of A.
These relationships imply that �s**(u) is nonempty for u # dom s** except
possibly for u in the relative boundary of dom s**.

The purpose of this section is to investigate, in terms of concavity
properties of s and s**, relationships between the set E; of canonical equi-
librium macrostates and the set Eu of microcanonical equilibrium macro-
states. We recall that for ; # R_ and u # dom s these sets are defined by

E;=[x # X : I;(x)=0]

=[x # X : I(x)+(;, H� (x))= inf
y # X

[I( y)+(;, H� ( y))]=.(;)]

and

Eu.[x # X : I u(x)=0]=[x # X : H� (x)=u, I(x)=&s(u)]

I; is the rate function in the LDP for the canonical ensemble [Thm. 2.4],
and Iu is the rate function in the LDP for the microcanonical ensemble
[Thm. 3.2]. As the sets of points at which the corresponding rate functions
attain their minimum of 0, both E; for ; # R_ and Eu for u # dom s are non-
empty and compact. It is convenient to extend the definition of Eu to all
u # R_ by defining Eu=< for u # R_ "dom s.
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First-order differentiability conditions show that relationships between
E; and Eu are plausible. In fact, the first-order condition for x* # X to be
in E; is

I$(x*)+(;, H� $(x*)) =0 (4.6)

where $ denotes the Frechet derivative and we assume that I and H� are
Frechet-differentiable. The first-order condition for x* # X to be in Eu is
also (4.6), where ; is a Lagrange multiplier dual to the constraint
H� (x*)=u. In order to see the precise relationships between Eu and E; , we
need a more detailed analysis.

As we will see, there are three possible relationships that can occur
between Eu and E; . If for a given u # dom s there exists ; # R_ such that
Eu=E; , then the ensembles are said to be fully equivalent or that full
equivalence of ensembles holds. If instead of equality Eu is a proper subset
of E; for some ; # R_, then the ensembles are said to be partially equivalent
or that partial equivalence of ensembles holds. It may also happen that
Eu & E;=< for all ; # R_. If this occurs, then the microcanonical ensemble
is said to be nonequivalent to any canonical ensemble or that non-
equivalence of ensembles holds. It is convenient to group the first two cases
together. If for a given u there exists ; such that either Eu equals E; or Eu

is a proper subset of E; , then the ensembles are said to be equivalent or
that equivalence of ensembles holds.

The probabilistic role played by Eu and E; should be kept in mind
when interpreting these relationships. According to part (c) of Theorem 2.4,
for any Borel subset A whose closure is disjoint from E; , Pn, an ;[Yn # A] � 0.
Theorem 2.5 refines this by showing that convergent subsequences of
Pn, an ;[Yn # } ] have weak limits with support in E; . Theorems 3.5 and 3.6
do the same for the microcanonical ensemble. Only when E;=Eu=[x]
can we be sure that the two ensembles give the same prediction in the sense
of weak convergence. A condition implying these equalities is given in
Corollary 4.7.

A key insight revealed by our results is that the set Eu of microcanoni-
cal equilibrium macrostates can be richer than the set E; of canonical equi-
librium macrostates. Specifically, every x # E; is also in Eu for some u, but
if the microcanonical entropy s is not concave at some u, then any x # Eu

does not lie in E; for any ; (nonequivalence of ensembles). This verbal
description is made precise in Theorems 4.4 and 4.6, while Theorems 4.4
and 4.8 give necessary and sufficient conditions for equivalence of ensem-
bles to hold. The content of Theorem 4.6 is summarized in Fig. 1(a). The
contents of Theorems 4.4 and 4.8 are summarized in Fig. 1(b).
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Theorem 4.4 gives a geometric condition that is necessary and suf-
ficient for equivalence of ensembles to hold. We define C to be the set of
u # R_ for which there exists a supporting hyperplane to the graph of s at
(u, s(u)). In symbols,

C.[u # R_ : _; # R_
% s(w)�s(u)+(;, w&u) for all w # R_] (4.7)

If u # C, then the ; appearing in this display is a normal vector to the sup-
porting hyperplane. According to part (a) of Theorem 4.4, for a particular
u # dom s equivalence of ensembles holds if and only if u # C. According to
part (b) of the theorem, for a particular u # dom s nonequivalence of
ensembles holds if and only if u � C.

Theorem 4.8 refines part (a) of Theorem 4.4 by giving a geometric
condition that is necessary and sufficient for full equivalence of ensembles
to hold. We define T to be the set of u # R_ for which there exists a support-
ing hyperplane to the graph of s that touches the graph of s only at (u, s(u)).
In symbols,

T.[u # R_ : _; # R_
% s(w)<s(u)+(;, w&u) for all w{u] (4.8)

Clearly, T is a subset of C, which is the set of u for which equivalence of
ensembles holds [Thm. 4.4(a)]. According to Theorem 4.8, for a particular
u # dom s full equivalence of ensembles holds if and only if u # T.

Before proving any results on the equivalence and nonequivalence of
ensembles, we point out an alternate representation of C that will elucidate
the connection between these results and concavity properties of s and s**.
In general s is not concave on R_. According to part (b) of Lemma 4.1,
C equals the set of u # dom �s** at which s is concave; i.e., the set of u #
dom �s** such that s(u) equals the value at u of the concave function s**.
It follows from part (b) of Lemma 4.1 that if s is not concave at some u #
dom s, then u � C and so nonequivalence of ensembles holds [Thm. 4.4(b)].

It is easy to find a sufficient condition on s** for full equivalence of
ensembles to hold. Suppose that for some u # R_, s(u)=s**(u) and that
there exists ; # R_ such that

s**(w)<s**(u)+(;, w&u) for all w{u (4.9)

i.e., the inequality (4.4) defining ; # �s**(u) holds with strict inequality for
all w{u. Since s(w)�s**(w), it follows that

s(w)<s(u)+(;, w&u) for all w{u (4.10)
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That is, u lies in T, which according to Theorem 4.8 is the subset of R_ for
which full equivalence of ensembles holds. If, for example, s** is strictly
concave in a neighborhood of u, then (4.9) holds for any ; # �s**(u) and
thus we have full equivalence of ensembles.

In order to find a sufficient condition on s** for partial equivalence of
ensembles to hold, let u be a point in R_ such that s** is affine in a
neighborhood of u. Then except in pathological cases, for any ; # R_ the
strict inequality (4.10) cannot be valid for all w{u, and so partial equiv-
alence of ensembles holds.

Part (b) of the next lemma gives the alternate representation of C to
which we referred three paragraphs earlier. This representation involves the
set

1.[u # R_ : s(u)=s**(u)]

Lemma 4.1. (a) For u and ; in R_, s(w)�s(u)+(;, w&u) for
all w # R_ if and only if both s(u)=s**(u) and ; # �s**(u).

(b) C=1 & dom �s**, and C/1 & dom s.

Remark 4.2. It is not difficult to refine the second assertion in part
(b) of this lemma by showing that

1 & ri(dom s)/C=1 & dom �s**/1 & dom s

This relationship implies that, except possibly for relative boundary points
of dom s, C consists of u # dom s for which s(u)=s**(u). According to
Theorem 4.4, equivalence of ensembles holds for a particular u # dom s if
and only if u # C. Combining this with the observation in the preceding
sentence, we see that, except possibly for relative boundary points of dom s,
equivalence of ensembles holds for u # dom s if and only if s(u)=s**(u).

Proof of Lemma 4.1. (a) We start the proof by first assuming that
s(w)�s(u)+(;, w&u) for all w # R_. It follows that u # dom s and that
(;, u)&s(u)�(;, w)&s(w) for all w # R_. Therefore

(;, u)&s(u)= inf
w # R_

[(;, w)&s(w)]=.(;)

Since s**(w)=inf# # R _ [(#, w) &.(#)]�(;, w) &.(;), the last display
and the inequality s(u)�s**(u) imply that for all w # R_

s**(w)�(;, w)&.(;)=s(u)+(;, w)&(;, u)

�s**(u)+(;, w&u)

Thus ; # �s**(u). Setting w=u yields s(u)=s**(u).
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Now assume that s(u)=s**(u) and that ; # �s**(u); thus for all
w # R_

s**(w)�s**(u)+(;, w&u)=s(u)+(;, w&u)

Since s(w)�s**(w) for all w # R_, it follows that for all w # R_

s(w)�s(u)+(;, w&u)

This completes the proof of part (a).

(b) The first assertion is an immediate consequence of part (a). As
mentioned in the proof of part (a), if u # C, then u # dom s. We conclude
that C/1 & dom s, as claimed. K

The next lemma will facilitate the proofs of a number of our results on
the equivalence and nonequivalence of ensembles. Part (b) refines one of
the conditions in part (a), substituting a weaker hypothesis that leads to
the same conclusion.

Lemma 4.3. For u and ; # R_ the following conclusions hold.

(a) The inequality s(w)�s(u)+(;, w&u) is valid for all w # R_ if
and only if Eu{< and Eu/E; .

(b) If Eu & E;{<, then s(w)�s(u)+(;, w&u) for all w # R_.

Proof. We first prove that if s(w)�s(u)+(;, w&u) for all w # R_,
then Eu{< and Eu/E; . The hypothesis implies that u # dom s and that
(;, u)&s(u)�(;, w)&s(w) for all w # R_. Therefore

(;, u)&s(u)= inf
w # R _

[(;, w)&s(w)]=.(;)= inf
y # X

[(;, H� ( y))+I( y)]

The fact that u is an element of dom s implies that Eu{<. Let x be an
arbitrary element in Eu. Since H� (x)=u and I(x)=&s(u), the display
implies that

(;, H� (x)) +I(x)= inf
y # X

[(;, H� ( y)) +I( y)]

and thus that x # E; . Since x is an arbitrary element in Eu, it follows that
Eu/E; .

In order to complete the proof of part (a), it suffices to prove part (b).
Thus suppose that Eu & E;{< and let x be an arbitrary element in

1042 Ellis et al.



Eu & E; . Since Eu{<, we have u # dom s. In addition, since H� (x)=u,
I(x)=&s(u), and

(;, H� (x)) +I(x)= inf
y # X

[(;, H� ( y)) +I( y)]=.(;)

it follows that for all w # R_

(;, u)&s(u)=.(;)= inf
w$ # R_

[(;, w$) &s(w$)]�(;, w) &s(w)

Therefore s(w)�s(u)+(;, w&u) for all w # R_, as claimed. K

The next theorem is our first main result. Part (a) states that for a par-
ticular u # dom s equivalence of ensembles holds if and only if u # C. In
Theorem 4.9 we make explicit the connection between part (a) and the
relationship between thermodynamic equivalence of ensembles and equiv-
alence of ensembles at the level of equilibrium macrostates. Part (b) of the
next theorem states that for a particular u # dom s nonequivalence of
ensembles holds if and only if u � C. In particular, if s is not concave at
some u # dom �s**, then the ensembles are nonequivalent at the level of
equilibrium macrostates. Theorem 4.4 was inspired by, and greatly
improves upon, the presentation on pp. 857�859 of ref. 19, which treats the
regularized point vortex model. While part (b) of Theorem 4.4 is related to
part (b) of Lemma 5.1 in ref. 32, our Theorem 4.4 makes the non-
equivalence of ensembles more explicit.

Theorem 4.4. We assume Hypotheses 2.1 and 2.2. For u # dom s
the following conclusions hold.

(a) u # C if and only if Eu/E; for some ; # R_.

(b) u � C if and only if Eu & E;=< for all ; # R_.

Proof. (a) This is an immediate consequence of part (a) of Lemma 4.3.

(b) If u � C, then for any ; # R_ the inequality s(w)�s(u)+
(;, w&u) does not hold for all w # R_. Part (b) of Lemma 4.3 implies that
Eu & E;=< for all ; # R_. To show the converse, assume that Eu & E;=<
for all ; # R_ and that u # C. But if u # C, then part (a) of Lemma 4.3
implies that Eu/E; for some ; # R_. This contradiction shows that u � C,
completing the proof. K

In the next proposition we refine part (a) of Theorem 4.4 by specifying
the set of ; for which Eu/E; .
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Proposition 4.5. We assume Hypotheses 2.1 and 2.2. Then for
u # C, Eu/E; for all ; # �s**(u) and Eu & E;=< for all ; � �s**(u).

Proof. For u # C, part (b) of Lemma 4.1 implies that s(u)=s**(u)
and �s**(u){<. If ; # �s**(u), then part (a) of the same lemma implies
that s(w)�s(u)+(;, w&u) for all w # R_. Part (a) of Lemma 4.3 then
implies that Eu/E; . This proves the first half of the proposition. On the
other hand, if ; � �s**(u), then it is not true that s(w)�s(u)+(;, w&u)
for all w # R_ [Lem. 4.1(a)]. It follows from part (b) of Lemma 4.3 that
Eu & E;=<. K

Theorem 4.4 considers u # dom s, proving that partial or full equiv-
alence of ensembles holds if and only if u # C. The next theorem is our
second main result. It shifts focus from u # dom s to ; # R_, proving that
every set E; of canonical equilibrium macrostates is a disjoint union of Eu

for u in a particular index set that depends on ;.

Theorem 4.6. We assume Hypotheses 2.1 and 2.2. Then for all
; # R_, H� (E;)/dom s and

E;= .
u # H� (E;)

Eu

The sets Eu, u # H� (E;), are nonempty and disjoint.

Proof. Let x be an arbitrary element in E; and define u~ .H� (x). Since
I;(x)=0, we have

I(x)+(;, H� (x))= inf
y # X

[I( y)+(;, H� ( y))]<�

and so s(u~ )� &I(x)>&�. Thus u~ # dom s. Because x is an arbitrary
element in E; , this proves that H� (E;)/dom s. Since u~ # dom s, Eu~ can be
characterized as the set of x # X satisfying H� (x)=u~ and I(x)=&s(u~ ).

We now prove that x # Eu~ . Since x # E; , it follows that for any y # X

I(x)+(;, u~ )=I(x)+(;, H� (x)) �I( y)+(;, H� ( y))

and thus for any y # X satisfying H� ( y)=u~ , we have I(x)�I( y). This
implies that

I(x)�inf[I( y): y # X, H� ( y)=u~ ]=&s(u~ )�I(x)
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and so I(x)=&s(u~ ). It follows that x # Eu~ . Since x is an arbitrary element
in E; , we have shown that

E;/ .
u # H� (E;)

Eu

In order to prove the reverse inclusion, we show that for any u # H� (E;)
we have Eu/E; . Any such u has the form u=H� ( y) for some y # E; . From
our work in the preceding two paragraphs we know that u # dom s and
y # Eu. Thus y # Eu & E; . Since Eu & E;{<, it follows from Theorem 4.4
that Eu/E; . This completes the proof of the display in the theorem.

The sets Eu, u # H� (E;), are nonempty since any such u lies in dom s.
The sets are also disjoint since for u{u$, x # Eu & Eu$ implies that H� (x)
equals both u and u$. The proof of the theorem is complete. K

The following useful corollary states that when E; consists of a unique
point x, then with u~ .H� (x), Eu~ consists of the unique point x. This follows
from Theorem 4.6 since H� (E;)=[H� (x)]. The corollary sharpens the result
on p. 861 of ref. 19, which needs the additional hypotheses that s is strictly
concave and essentially smooth in order to reach the same conclusion.

Corollary 4.7. Suppose that E;=[x] for some ; # R_. Then
Eu~ =[x], where u~ .H� (x).

We now turn our attention to a criterion for full equivalence of ensem-
bles, which is stated in terms of the set T defined in (4.8). Part (a) of
Theorem 4.4 states that for a particular u # dom s equivalence of ensembles
holds if and only if u # C. The next theorem refines this by showing that
full equivalence of ensembles holds if and only if u # T. Part (a) gives the
sufficiency and part (b) the necessity.

Theorem 4.8. We assume Hypotheses 2.1 and 2.2. The following
conclusions hold.

(a) If u # T, then there exists ; # �s**(u) such that Eu=E; .

(b) If u # C"T, then Eu / E; for all ; # �s**(u) and Eu & E;=< for
all ; � �s**(u).

Proof. (a) If u # T, then there exists ; # R_ such that s(w)<s(u)+
(;, w&u) for all w{u. Part (a) of Lemma 4.3 implies that Eu/E; .
Suppose that Eu is a proper subset of E; . Then Theorem 4.6 implies the
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Fig. 1. Equivalence and nonequivalence of ensembles.

existence of u${u such that Eu${< and Eu$/E; , and part (a) of
Lemma 4.3 yields

s(w)�s(u$)+(;, w&u$) for all w # R_

Setting w=u and using the fact that s(u$)<s(u)+(;, u$&u) , we see that

s(u)�s(u$)+(;, u&u$)<s(u)+(;, u$&u) +(;, u&u$) =s(u)

This contradiction shows that the assumption that Eu is a proper subset of
E; is false. The proof of part (a) is complete.

(b) For u # C"T, Proposition 4.5 implies that Eu/E; for all
; # �s**(u) and Eu & E;=< for all ; � �s**(u). We now show that for
any ; # �s**(u), Eu is a proper subset of E; . Since Eu/E; , part (a) of
Lemma 4.3 implies that s(w)�s(u)+(;, w&u) for all w # R_. Since u � T,
there exists u${u such that s(u$)=s(u)+(;, u$&u). Then for all w # R_

s(w)�s(u)+(;, w&u)=s(u$)+(;, w&u$)

It now follows from part (a) of Lemma 4.3 that Eu${< and Eu$/E; . Thus
Eu is a proper subset of E; , as claimed. K
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We recall that thermodynamic equivalence of ensembles is said to hold
when s is concave on R_. The next theorem addresses the issue of how ther-
modynamic equivalence of ensembles mirrors equivalence of ensembles at
the level of equilibrium macrostates. Part (a) shows that thermodynamic
equivalence is a sufficient condition for macroscopic equivalence to hold for
all u # dom �s. Since when s is concave on R_ we have ri(dom s)/dom �s
/dom s, it follows that thermodynamic equivalence is a sufficient condi-
tion for macroscopic equivalence to hold for all u # dom s except possibly
for relative boundary points. Part (b) proves a partial converse to (a). In
part (c) we point out that thermodynamic equivalence is equivalent to
macroscopic equivalence under an extra hypothesis on the domains of s,
s**, and �s**. The proof of the theorem follows readily from our previous
results. The theorem is related to Lemma 6.2 and Theorem 6.1 in ref. 32.

Theorem 4.9. (a) Assume that s is concave on R_. Then for all
u # dom �s, Eu/E; for some ; # �s(u). Thus, thermodynamic equivalence of
ensembles implies equivalence of ensembles at the level of equilibrium
macrostates for all u # dom �s.

(b) Assume that dom s=dom s** and that for all u # dom s there
exists ; # R_ such that Eu/E; . Then s is concave on R_. Thus, under the
hypothesis that dom s=dom s**, equivalence of ensembles at the level of
equilibrium macrostates for all u # dom s implies thermodynamic equiv-
alence of ensembles.

(c) Assume that dom s=dom s**=dom �s**. Then thermodynamic
equivalence of ensembles holds if and only if the ensembles are equivalent
at the level of equilibrium macrostates.

Proof. (a) If s is concave on R_, then s=s** on R_ and C=
dom �s**=dom �s [Lem. 4.1(b)]. Part (a) of Theorem 4.3 completes the
proof of part (a).

(b) The hypotheses imply that any element of dom s is an element of C,
which in turn is a subset of 1.[u # R_: s(u)=s**(u)]. It follows that s
and s** agree on dom s=dom s** and thus that s is concave on R_.

(c) This follows from parts (a) and (b). K

With Theorem 4.9 the presentation of the main results in this section
is complete. We end this section by giving two additional theorems in
which we explore further relationships involving E; , Eu, and the thermo-
dynamic functions . and s.

In part (a) of the next theorem we refine Theorem 4.6 by proving that
E;=�u # �.(;) & 1 Eu, where �.(;) denotes the superdifferential at ; of the
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concave function . and, as introduced in Lemma 4.1, 1.[u # R_ : s(u)=
s**(u)]. This in turn allows us to give, in part (b), a necessary and suf-
ficient condition for the differentiability of . at a point ;. Part (c) is a
special case of part (b).

Theorem 4.10. We assume Hypotheses 2.1 and 2.2. The following
conclusions hold.

(a) For all ; # R_

E;= .
u # H� (E;)

Eu= .
u # �.(;) & 1

Eu

(b) . is differentiable at ; if and only if both E;=Eu for some u and
�.(;)/1.

(c) If s is concave on R_, then . is differentiable at ; if and only if
E;=Eu for some u.

Proof. (a) It follows from part (a) of Lemma 4.3 and part (a) of
Lemma 4.1 that

Eu{< and Eu/E; if and only if s(u)=s**(u) and ; # �s**(u)

Since ; # �s**(u) if and only if u # �s*(;)=�.(;) [ref. 45, p. 218], it
follows that

Eu{< and Eu/E; if and only if u # �.(;) & 1 (4.11)

Thus

.
u # �.(;) & 1

Eu/E;

We complete the proof of part (a) by showing that we have equality
in this display. By Theorem 4.6, E; is a disjoint union of Eu for u #
H� (E;)/dom s. Hence for each u # H� (E;), Eu{< and Eu/E; . Thus (4.11)
implies that H� (E;)/�.(;) & 1. We conclude that

.
u # �.(;) & 1

Eu/E;= .
u # H� (E;)

Eu/ .
u # �.(;) & 1

Eu

and therefore �u # �.(;) & 1 Eu=E; .
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(b) We first assume that . is differentiable at ;. Since by part (a)
�.(;) & 1{< for any ;, the differentiability of . at ; implies that �.(;)
=[{.(;)]/1 and that E;=E{.(;). We now assume that E;=Eu for some
u and �.(;)/1. Since part (a) implies that �.(;) & 1=[u], we conclude
that �.(;)=�.(;) & 1=[u] and therefore that . is differentiable at ;.

(c) This follows from part (b) since the concavity of s on R_ implies
that 1=R_, and so �.(;)/1 is always true. K

The next theorem is the final result in this section. Under the
hypothesis that s is concave on R_, part (a) gives a simpler form of the
representation in part (a) of Theorem 4.10. Part (b) is a partial converse
of part (a).

Theorem 4.11. We assume Hypotheses 2.1 and 2.2. The following
conclusions hold.

(a) Assume that s is concave on R_. Then for all ; # R_

E;= .
u # H� (E;)

Eu= .
u # �.(;)

Eu

(b) Now assume that for all ; # R_

E;= .
u # �.(;)

Eu

Then s is a finite concave function on any convex subset of ri(dom s).

Proof. (a) Since s is concave on R_, 1 equals R_ and thus �.(;) & 1
=�.(;) for all ; # R_. Hence part (a) follows from part (a) of Theorem 4.10.

(b) Since by definition Eu=< for all u � dom s, it follows from the
hypothesis in part (b) and from part (a) of Theorem 4.10 that for all ; # R_

E;= .
u # �.(;) & dom s

Eu= .
u # �.(;) & 1

Eu

Thus �.(;) & dom s=�.(;) & 1. Taking the union over all ; # R_ yields

.
; # R _

�.(;) & dom s= .
; # R _

�.(;) & 1/1

By standard duality theory for upper semicontinuous, concave functions on
R_ [ref. 45, p. 218], �; # R _ �.(;)=dom �s**. Thus

(dom �s**) & (dom s)/1
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Since ri(dom s)/ri(dom s**)/dom �s**, we conclude that ri(dom s)/1
and therefore that s is concave on any convex subset of ri(dom s). The
proof of the theorem is complete. K

In the next section we extend the large deviation theorems in Sections 2
and 3 and the duality theorems in the present section to the study of mixed
ensembles.

5. MIXED ENSEMBLES

In broad terms the canonical ensemble differs from the microcanonical
ensemble by the manner in which the dynamical invariants are incorpo-
rated in the respective probability measures: exponentiation in the former
ensemble and conditioning in the latter ensemble. In Section 5.1 we define
two classes of mixed ensembles, a mixed canonical�microcanonical ensemble
and a mixed microcanonical�canonical ensemble, which differ only in the
order in which the exponentiation and the conditioning are performed. In
part (b) of Theorem 5.1.1 we show that with respect to both of these
ensembles the hidden process Yn satisfies the large deviation principle with
the same rate function. Hence the sets of equilibrium macrostates for both
of these ensembles are the same. In Section 5.2 we present complete equiv-
alence and nonequivalence results relating the sets of equilibrium macro-
states for the mixed and the pure canonical ensembles. In Section 5.3, we
do the same for the sets of equilibrium macrostates for the mixed and the
pure microcanonical ensembles. These results will be applied in future work
to a number of problems, including soliton turbulence for the nonlinear
Schro� dinger equation.(17)

5.1. Properties of the Mixed Ensembles

The definitions of the mixed ensembles involve quantities introduced
in Hypotheses 2.1 and 2.2. We shall use the notation Can(Hn ; Pn); to
denote the canonical ensemble Pn, ; , which is defined in (2.1), and the nota-
tion Micro(Hn ; Pn)u, r to denote the microcanonical ensemble Pu, r

n , which
is defined in (3.4). The LDP's for Yn with respect to the canonical ensemble
and with respect to the microcanonical ensemble are given in Theorems 2.4
and 3.2, respectively. The respective rate functions are

I;(x).I(x)+(;, H� (x))& inf
y # X

[I( y)+(;, H� ( y))]
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and for u # dom J

Iu(x).{I(x)&J(u)
�

if H� (x)=u,
otherwise

In the sequel we shall use the following alternate formula for Iu:

Iu(x)=I([x] & H� &1([u]))&J(u)

Analogous formulas will arise in the study of the mixed ensembles.
In order to introduce the mixed ensembles, we assume that _�2. Let

{ be an integer satisfying 1�{�_ and consider decompositions of Hn and
of H� defined as follows:

Hn=(H 1
n , H 2

n), where H 1
n .(Hn, 1 ,..., Hn, {) and H 2

n .(Hn, {+1 ,..., Hn, _)

H� =(H� 1, H� 2), where H� 1.(H� 1 ,..., H� {) and H� 2.(H� {+1 ,..., H� _)

Writing ;=(;1, ;2) # R{_R_&{ and u=(u1, u2) # R{_R_&{, we define

Can(H 1
n , H 2

n ; Pn);1, ; 2(d|)

.Can(Hn ; Pn); (d|)

=
1

Zn(;1, ;2)
exp[&(;1, H 1

n(|)) &(;2, H 2
n(|))] Pn(d|)

where Zn(;1, ;2).Zn(;), and we define

Micro(H 1
n , H 2

n ; Pn)u1, u2, r (d|).Micro(Hn ; Pn)u, r (d|)

=Pn(d| | H 1
n # [u1] (r), H 2

n # [u2] (r))

The function J(u).inf[I(x): x # X, H� (x)=u] plays a key role in the large
deviation analysis of the microcanonical ensemble. We rewrite this function
as

J(u1, u2).inf[I(x): x # X, H� 1(x)=u1, H� 2(x)=u2] (5.1.1)

The innovation of the present subsection is to consider the asymptotic
properties of two mixed ensembles, both at the level of thermodynamic
functions and at the level of equilibrium macrostates. We define a mixed
canonical�microcanonical ensemble by replacing the measure Pn in the
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canonical ensemble Can(H 1
n ; Pn);1 by the microcanonical ensemble

Micro(H 2
n ; Pn)u2, r. For u2 # R_&{ and ;1 # R{, the resulting measure is

given by

Can(H 1
n ; Micro(H 2

n ; Pn)u2, r);1 (d|)

.
1

Zn(;1, [u2](r))
exp[&(;1, H 1

n(|))] Pn(d| | H 2
n # [u2] (r))

where

Zn(;1, [u2](r)).|
0n

exp[&(;1, H 1
n(|))] Pn(d| | H 2

n # [u2] (r))

By a similar verification as in the paragraph after Proposition 3.1, the
microcanonical ensemble Micro(H 2

n ; Pn)u2, r, and thus this mixed ensemble,
are well defined for all sufficiently large n provided u2 lies in the domain of

J2(u2).inf[I(x): x # X, H� 2(x)=u2] (5.1.2)

In an analogous way, we define a mixed microcanonical�canonical
ensemble by replacing the measure Pn in the microcanonical ensemble
Micro(H 2

n ; Pn)u2, r by the canonical ensemble Can(Hn ; Pn);1 . For ;1 # R{

and u2 # R_&{, the resulting measure is given by

Micro(H 2
n ; Can(H 1

n ; Pn);1)u2, r (d|).Qn, ;1(d| | H 2
n # [u2] (r))

where

Qn, ;1(d|).
1

Zn(;1)
exp[&(;1, H 1

n(|))] Pn(d|)

This mixed ensemble is well defined for all sufficiently large n provided u2

lies in the domain of the function J;1 that stands in the same relationship to
the mixed ensemble as the function J in (5.1.1) stands to the microcanonical
ensemble. Since J is defined in terms of I, which is the rate function in the
LDP for Yn with respect to Pn , J;1 is defined in terms of the rate function for
Yn with respect to the canonical ensemble Can(H 1

n ; Pn)an ;1 . By Theorem 2.4,
this rate function is given by

I;1(x).I(x)+(;1, H� 1(x)) & inf
y # X

[I( y)+(;1, H� 1( y))]
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It follows that

J;1(u2).inf[I;1(x): x # X, H� 2(x)=u2]

=inf[I(x)+(;1, H� 1(x)): x # X, H� 2(x)=u2]

& inf
y # X

[I( y)+(;1, H� 1( y))] (5.1.3)

By the discussion earlier in this paragraph, the mixed ensemble Micro(H 2
n ;

Can(H 1
n ; Pn);1)u2, r is well-defined for all sufficiently large n provided u2 lies

in the domain of J;1 . Since H� 1(x) is finite for all x # X, u2 # dom J;1 if
and only if u2 # dom J2. By the same proof as that of Proposition 3.1, with
respect to Pn , the sequences H� 2(Yn) and H 2

n satisfy the LDP on R_&{ with
rate function J2. As a consequence, dom J 2 is nonempty as is dom J;1 .

We recall from Section 4 that

s(u). &J(u)=&inf[I(x): x # X, H� (x)=u]

defines the microcanonical entropy and that its Legendre�Fenchel trans-
form gives the canonical free energy. Both functions appear in relationships
involving E; and Eu that appear in that section. In an analogous way, for
;1 # R{ and u2 # R_&{, we define the entropy with respect to the mixed
ensemble Micro(H 2

n ; Can(H 1
n ; Pn)an ;1)u2, r to be

s;1(u2).&J;1(u2) (5.1.4)

This entropy and the associated free energy will appear in the results on
equivalence and nonequivalence of ensembles to be given in Section 5.2.

In order to complete the definitions of the various ensembles, we also
consider the pure ensembles

Can(H 1
n ; Can(H 2

n ; Pn);2);1 and Micro(H 1
n ; Micro(H 2

n ; Pn)u2, r)u1, r

which are defined similarly as above. We omit the simple calculation showing
that for all n and r

Can(H 1
n ; Can(H 2

n ; Pn);2);1 (d|)=Can(H 1
n , H 2

n ; Pn);1, ;2 (d|) (5.1.5)

and

Micro(H 1
n ; Micro(H 2

n ; Pn)u2, r)u1, r (d|)=Micro(H 1
n , H 2

n ; Pn)u1, u2, r (d|)

(5.1.6)
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On the other hand, for all n and r the mixed canonical�microcanonical
ensemble and the mixed microcanonical�canonical ensemble are different.
In the next theorem we record the LDP's satisfied by Yn with respect to the
various ensembles introduced in this subsection. The pleasant surprise is
that although the two mixed ensembles are different for all n and r, with
respect to each of them, with ;1 replaced by an ;1, Yn satisfies the LDP
with the identical rate function.

Before stating the theorem, we define the rate functions for each
ensemble. For ;=(;1, ;2) # R{_R_&{, u2 # dom J2, and u=(u1, u2) #
dom J, we define the following functions mapping X into [0, �]:

I;1, ; 2(x).I(x)+(;1, H� 1(x)) +(;2, H� 2(x))

& inf
y # X

[I( y)+(;1, H� 1( y))+(;2, H� 2( y))] (5.1.7)

I u2

;1(x).I([x] & (H� 2)&1([u2]))+(;1, H� 1(x))

&inf[I( y)+(;1, H� 1( y)): y # X, H� 2( y)=u2] (5.1.8)

and

Iu1, u2
(x).I([x] & (H� 1)&1 ([u1]) & (H� 2)&1 ([u2]))&J(u1, u2) (5.1.9)

Theorem 5.1.1. We assume Hypotheses 2.1 and 2.2. For (;1, ;2) #
R{_R_&{ the following conclusions hold.

(a) With respect to the canonical ensemble Can(H 1
n , H 2

n ; Pn)an ;1, an ; 2 ,
Yn satisfies the LDP on X with rate function I;1, ; 2 given in (5.1.7).

(b) Take u2 # dom J 2 [see (5.1.2)]. Both with respect to the mixed
canonical�microcanonical ensemble Can(H 1

n ; Micro(H 2
n ; Pn)u2, r)an ;1 and

with respect to the mixed microcanonical�canonical ensemble Micro(H 2
n ;

Can(H 1
n ; Pn)an ;1)u2, r, Yn satisfies the LDP on X, in the double limit n � �

and r � 0, with rate function I u2

;1 given in (5.1.8).

(c) Take u=(u1, u2) # dom J [see (5.1.1)]. With respect to the
microcanonical ensemble Micro(H 1

n , H 2
n ; Pn)u1, u2, r, Yn satisfies the LDP

on X, in the double limit n � � and r � 0, with rate function I u1, u2
given

in (5.1.9).

Proof. Part (a) is proved in Theorem 2.4, and part (c) is proved in
Theorem 3.2. In part (b) we first prove the LDP for Yn with respect to
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Micro(H 2
n ; Can(H 1

n ; Pn)an ;1)u2, r. Theorem 2.4 implies that with respect to
Can(H 1

n ; Pn)an ;1 , Yn satisfies the LDP with rate function

I;1(x).I(x)+(;1, H� 1(x)) & inf
y # X

[I( y)+(;1, H� 1( y)]

With Pn replaced by Can(H 1
n ; Pn)an ;1 and I replaced by I;1 , Theorem 3.2

guarantees that if u2 # dom J;1=dom J2, then with respect to Micro(H 2
n ;

Can(H 1
n ; Pn)an ;1)u2, r, Yn satisfies the LDP, in the double limit n � � and

r � 0, with rate function

(I;1)u2
(x).I;1([x] & (H� 2)&1 ([u2]))&inf[I;1( y): y # X, H� 2( y)=u2]

Substituting the definition of I;1 , we see that

(I;1)u2
(x)=I([x] & (H� 2)&1 ([u2]))+(;1, H� 1(x))

&inf[I( y)+(;1, H� 1( y)): y # X, H� 2( y)=u2]

This is the function I u2

;1 defined in (5.1.8). We have proved that with respect
to Micro(H 2

n ; Can(H 1
n ; Pn)an ;1)u2, r, Yn satisfies the LDP, in the double

limit n � � and r � 0, with rate function I u2

;1 .
We next consider the LDP for Yn with respect to Can(H 1

n ;
Micro(H 2

n ; Pn)u2, r)an ;1 . Since u2 # dom J2, Theorem 3.2 implies that with
respect to Micro(H 2

n ; Pn)u2
, Yn satisfies the LDP, in the double limit n � �

and r � 0, with rate function

Iu2
(x).I([x] & (H� 2)&1 ([u2]))&J2(u2)

One can easily modify the proof of Theorem 2.4 to handle the situation in
which Pn is replaced by a doubly indexed class of probability measures
such as Micro(H 2

n ; Pn)u2, r with the property that with respect to these
measures Yn satisfies the LDP. With this modification, replacing Pn by
Micro(H 2

n ; Pn)u2, r and I by I u2
, we see that with respect to Can(H 1

n ;
Micro(H 2

n ; Pn)u2, r)an ;1 , Yn satisfies the LDP, in the double limit n � � and
r � 0, with rate function

(Iu2
);1 (x).I u2

(x)+(;1, H� 1(x)) & inf
y # X

[Iu2
( y)+(;1, H� 1( y))]

=I([x] & (H� 2)&1 ([u2]))+(;1, H� 1(x))

&inf[I( y)+(;1, H� 1( y)): y # X, H� 2( y)=u2]

This is the function I u2

;1 defined in (5.1.8). We have shown that with respect
to Can(H 1

n ; Micro(H 2
n ; Pn)u2, r)an ;1 , Yn satisfies the LDP, in the double
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limit n � � and r � 0, with rate function I u2

;1 . The proof of the theorem is
complete. K

In the next two subsections, we consider equivalence and nonequiv-
alence results for the ensembles whose LDP's are derived in Theorem 5.1.1.
These results are derived as immediate consequences of our work in Sec-
tion 4, where equivalence and nonequivalence results for the canonical and
microcanonical ensembles were derived.

5.2. Equivalence and Nonequivalence of the Canonical and
Mixed Ensembles

In this subsection we study, at the level of equilibrium macrostates, the
equivalence and nonequivalence of the canonical ensemble Can(H 1

n , H 2
n ;

Pn)an ;1, an ;2 and the mixed ensemble Micro(H 2
n ; Can(H 1

n ; Pn)an ;1)u2, r. The
parameters ;1, ;2, and u2 satisfy ;1 # R{, ;2 # R_&{, and u2 # dom J2, where

J2(u2).inf[I(x): H� 2(x)=u2]

By a similar verification as in the paragraph after Proposition 3.1, this
condition on u2 guarantees that the mixed ensemble is well defined for all
sufficiently large n. The relationships between the sets of equilibrium
macrostates for the two ensembles follow immediately from Theorems 4.4,
4.6, and 4.8 with minimal changes in proof. Hence we shall only summarize
them in Fig. 2.

By Theorem 5.1.1, for (;1, ;2) # R{_R_&{, with respect to Can(H 1
n ,

H 2
n ; Pn)an ;1, an ;2 , Yn satisfies the LDP with rate function

I;1, ;2(x).I(x)+(;1, H� 1(x)) +(;2, H� 2(x))

& inf
y # X

[I( y)+(;1, H� 1( y)) +(;2, H� 2( y))] (5.2.1)

In addition, for (;1, u2) # R{_dom J2, with respect to Micro(H 2
n ; Can(H 1

n ;
Pn)an ;1)u2, r , Yn satisfies the LDP with rate function

I u2

;1(x).I([x] & (H� 2)&1 ([u2]))+(;1, H� 1(x)) )&�u2

;1 (5.2.2)

where

�;1(u2).inf[I( y)+(;1, H� 1( y)): y # X, H� 2( y)=u2]
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For ;1 # R{, ;2 # R_&{, and u2 # dom J 2, we define the corresponding sets
of equilibrium macrostates

E;1, ;2 .[x # X : I;1, ;2(x)=0]

and

Eu2

;1.[x # X : I u2

;1(x)=0]

=[x # X : H� 2(x)=u2, I(x)+(;1, H� 1(x))=�u2

;1]

As the sets of points at which the corresponding rate functions attain their
minimum of 0, both E;1, ;2 and Eu2

;1 are nonempty, compact subsets of X for
;1 # R{, ;2 # R_&{, and u2 # dom J 2. The main purpose of this subsection is
to record the relationships between these sets.

Before doing so, we point out a concentration property, relative to
the set Eu2

;1 , of the distributions of Yn with respect to the mixed ensemble
Micro(H 2

n ; Can(H 1
n ; Pn)an ;1)u2, r. This concentration property is an imme-

diate consequence of the LDP proved in part (b) of Theorem 5.1.1. It
justifies calling Eu2

;1 the set of equilibrium macrostates with respect to the
mixed ensemble. This concentration property is analogous to those for the
canonical ensemble and for the microcanonical ensemble given in part (c)
of Theorem 2.4 and in part (b) of Theorem 3.5; the proof is omitted.

Theorem 5.2.1. We assume Hypotheses 2.1 and 2.2. For ;1 # R{,
u2 # dom J 2, and A any Borel subset of X whose closure A� satisfies
A� & Eu2

;1=<, we have I u2

;1(A� )>0. In addition, there exists r0 # (0, 1) and for
all r # (0, r0] there exists Cr<� such that

Micro(H 2
n ; Can(H 1

n ; Pn)an ;1)u2, r [Yn # A]

�Cr exp[&anI u2

;1(A� )�2] � 0 as n � �

As in Theorem 3.6, one can also study compactness and weak limit
properties of the distributions of Yn with respect to Micro(H 2

n ; Can(H 1
n ;

Pn)an ;1)u2, r. We shall omit this topic.
We return to the relationships between E;1, ;2 and Eu2

;1 . Since for each n

Can(H 1
n , H 2

n ; Pn);1, ;2 and Can(H 2
n ; Can(H 1

n ; Pn);1);2

are equal, we can derive the relationships between these sets of equilibrium
macrostates by applying the results of Section 4 to the canonical ensemble
and microcanonical ensemble

Can(H 2
n ; Qn)an ;2 and Micro(H 2

n ; Qn)u2
, with Qn .Can(H 1

n ; Pn)an ;1
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To this end, we introduce the relevant thermodynamic functions. With
respect to Can(H 2

n ; Can(H 1
n ; Pn)an ;1)an ;2 the free energy is given by

.;1(;2)=& lim
n � �

1
an

log |
0n

exp[&an(;2, H 2
n)] d(Can(H 1

n ; Pn)an ;1)

= inf
x # X

[I(x)+(;1, H� 1(x)) +(;2, H� 2(x))]&.1(;1) (5.2.3)

where

.1(;1). & lim
n � �

1
an

log |
0n

exp[&an(;1, H 1
n)] dPn

= inf
y # X

[I( y)+(;1, H� 1( y))] (5.2.4)

The function .;1 is finite, concave, and continuous on R_&{. In (5.1.4) we
identified the entropy with respect to Micro(H 2

n ; Can(H 1
n ; Pn)an ;1)u2, r to be

s;1(u2).&J;1(u2)

=&inf[I;1(x): x # X, H� 2(x)=u2]

=&inf[I(x)+(;1, H� 1(x)): x # X, H� 2(x)=u2]+.1(;1) (5.2.5)

u2 # dom s;1 if and only if u2 # dom J 2.
As in Section 4, whether or not the entropy s;1 is concave on R_&{,

its Legendre�Fenchel transform s*;1 equals .;1 . If in addition s;1 is concave
on R_&{, then this formula can be inverted to give s;1=.*;1 .

For ;1 # R{ the relationships between E;1, ;2 and Eu2

;1 are summarized in
Fig. 2. These relationships depend on two sets that are the analogues of the
sets C and T defined in (4.7) and (4.8). For ;1 # R{ we define C;1 to be the
set of u2 # R_&{ for which there exists ;2 # R_&{ such that

s;1(w)�s;1(u2)+(;2, w&u2) for all w # R_&{

We also define T;1 to be the set of u2 # R_&{ for which there exists
;2 # R_&{ such that

s;1(w)<s;1(u2)+(;2, w&u2) for all w{u2

As in Lemma 4.1, it can be shown that C;1=1;1 & dom �s;1**, where 1;1.
[u2 # R_&{ : s;1(u2)=s;1**(u2)].
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Fig. 2. Equivalence and nonequivalence of canonical and mixed ensembles.

5.3. Equivalence and Nonequivalence of the Mixed and
Microcanonical Ensembles

In this subsection we study, at the level of equilibrium macrostates,
the equivalence and nonequivalence of the mixed ensemble Can(H 1

n ;
Micro(H 2

n ; Pn)u2, r)an ;1 and the microcanonical ensemble Micro(H 1
n , H 2

n ;
Pn)u1, u2, r. The parameters ;1, u1, and u2 satisfy ;1 # R{, u2 # dom J 2, and
(u1, u2) # dom J, where

J2(u2).inf[I(x): x # X, H� 2(x)=u2]

and

J(u1, u2).inf[I(x): x # X, H� 1(x)=u1, H� 2(x)=u2]

For any u1 and u2, J2(u2)�J(u1, u2). Hence, if (u1, u2) # dom J, then u2 #
dom J2. By a similar verification as in the paragraph after Proposition 3.1,
the condition that (u1, u2) # dom J guarantees that both the mixed ensemble
and the microcanonical ensemble are well defined for all sufficiently large n.
The relationships between the sets of equilibrium macrostates for the two
ensembles follow immediately from Theorems 4.4, 4.6, and 4.8 with minimal
changes in proof. Hence we shall only summarize them in Fig. 3.
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By Theorem 5.1.1, for (;1, u2) # R{_(dom J2), with respect to
Can(H 1

n ; Micro(H 2
n ; Pn)u2, r)an ;1 , Yn satisfies the LDP with rate function

I u2

;1(x).I([x] & (H� 2)&1 ([u2]))+(;1, H� 1(x))&�u2

;1 (5.3.1)

where

�u2

;1 .inf[I( y)+(;1, H� 1( y)): y # X, H� 2( y)=u2]

In addition, for (u1, u2) # dom J, with respect to Micro(H 1
n , H 2

n ; Pn)u1, u2, r ,
Yn satisfies the LDP with rate function

Iu1, u2
(x).I([x] & (H� 1)&1 ([u1]) & (H� 2)&1 ([u2]))&J(u1, u2)

For ;1 # R{, u2 # dom J2, and (u1, u2) # dom J, we define the corresponding
sets of equilibrium macrostates

Eu2

;1.[x # X : I u2

;1(x)=0]

=[x # X : H� 2(x)=u2, I(x)+(;1, H� 1(x))=�u2

;1]

and

Eu1, u2.[x # X : I u1, u2
(x)=0]

=[x # X : I(x)=J(u1, u2), H� 1(x)=u1, H� 2(x)=u2]

As the sets of points at which the corresponding rate functions attain their
minimum of 0, the set Eu2

;1 , for ;1 # R{ and u2 # dom J 2, and the set Eu1, u2
,

for (u1, u2) # dom J, are nonempty and compact. The purpose of this sub-
section is to record the relationships between these sets.

Since for (u1, u2) # dom J and each n

Micro(H 1
n , H 2

n ; Pn)u1, u2, r and Micro(H 1
n ; Micro(H 2

n ; Pn)u2, r)u1, r

are equal, we can derive the relationships between Eu2

;1 and Eu1, u2
by apply-

ing the results of Section 4 to the canonical ensemble and microcanonical
ensemble

Can(H 1
n ; Qn)an ;2 and Micro(H 1

n ; Qn)u1, r, with Qn.Micro(H 2
n ; Pn)u2, r

To this end, we introduce the relevant thermodynamic functions. By
Theorem 3.2, for u2 # dom J2 the rate function in the LDP for Yn with
respect to Micro(H 2

n ; Pn)u2, r is

Iu2
(x).I([x] & (H� 2)&1 ([u2]))&J2(u2)
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Hence by the Laplace principle, for u2 # dom J2 the free energy with respect
to the ensemble Can(H 1

n ; Micro(H 2
n ; Pn)u2, r)an ;1 is given by

.u2
(;1)=& lim

n � �

1
an

log |
0n

exp[&an(;1, H 1
n)] d(Micro(H 2

n ; Pn)u2, r)

= inf
x # X

[Iu2
(x)+(;1, H� 1(x))]

=inf[I(x)+(;1, H� 1(x)): x # X, H� 2(x)=u2]&J2(u2) (5.3.2)

The function .u2
is finite, concave, and continuous on R{. For u2 # dom J 2

we define

Ju2
(u1).inf[Iu2

(x): x # X, H� 1(x)=u1]

=inf[I(x): x # X, H� 1(x)=u1, H� 2(x)=u2]&J2(u2)

=J(u1, u2)&J2(u2) (5.3.3)

With respect to Micro(H 1
n ; Micro(H 2

n ; Pn)u2, r)u1, r, for u2 # dom J2 the
entropy is given by

su2
(u1).&Ju2

(u1) (5.3.4)

We have u1 # dom su2
if and only if (u1, u2) # dom J.

As in Section 4, whether or not su2
is concave on R{, its Legendre�

Fenchel transform (su2
)* equals .u2

. If su2
is concave on R{, then this

formula can be inverted to give su2
=(.u2

)* for all u1 # R{.
For u2 # dom J 2 the relationships between Eu2

;1 and Eu1, u2
are sum-

marized in Fig. 3. These relationships depend on two sets that are the
analogues of the sets C and T defined in (4.7) and (4.8). For ;1 # R{ we
define Cu2

to be the set of u1 # R{ for which there exists ;1 # R{ such that

su2
(w)�su2

(u1)+(;1, w&u1) for all w # R{

We also define T u2
to be the set of u1 # R{ for which there exists ;1 # R{

such that

su2
(w)<su2

(u1)+(;1, w&u1) for all w{u1

As in Lemma 4.1, it can be shown that Cu2
=1 u2

& dom �(su2
)**, where

1 u2.[u1 # R{ : su2
(u1)=(su2

)** (u1)].
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Fig. 3. Equivalence and nonequivalence of mixed and microcanonical ensembles.

With Fig. 3 we complete our presentation of the equivalence and non-
equivalence results for the mixed ensemble, the canonical ensemble, and the
microcanonical ensemble.
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