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Using the theory of large deviations, we analyze the phase transition structure of
the Curie–Weiss–Potts spin model, which is a mean-field approximation to the
nearest-neighbor Potts model. It is equivalent to the Potts model on the complete
graph onn vertices. The analysis is carried out both for the canonical ensemble and
the microcanonical ensemble. Besides giving explicit formulas for the microcanoni-
cal entropy and for the equilibrium macrostates with respect to the two ensembles,
we analyze ensemble equivalence and nonequivalence at the level of equilibrium
macrostates, relating these to concavity and support properties of the microcanoni-
cal entropy. The Curie–Weiss–Potts model is the first statistical mechanical model
for which such a detailed and rigorous analysis has been carried out. ©2005
American Institute of Physics.fDOI: 10.1063/1.1904507g

I. INTRODUCTION

The nearest-neighbor Potts model, introduced in Ref. 40, takes its place next to the Ising
model as one of the most versatile models in equilibrium statistical mechanics.49 Section I C of
Ref. 49 presents a mean-field approximation to the Potts model, defined in terms of a mean
interaction averaged over all the sites in the model. We refer to this approximation as the Curie–
Weiss–Potts model. Both the nearest-neighbor Potts model and the Curie–Weiss–Potts model are
defined by sequences of probability distributions ofn spin random variables that may occupy one
of q different statesu1, . . . ,uq, whereqù3. Forq=2 the Potts model reduces to the Ising model
while the Curie–Weiss–Potts model reduces to the much simpler mean-field approximation to the
Ising model known as the Curie–Weiss model.14

Two ways in which the Curie–Weiss–Potts model approximates the Potts model, and in fact
gives rigorous bounds on quantities in the Potts model, are discussed in Refs. 31 and 39. Proba-
bilistic limit theorems for the Curie–Weiss–Potts model are proved in Ref. 19, including the law of
large numbers and its breakdown as well as various types of central limit theorems. The model is
also studied in Ref. 20, which focuses on a statistical estimation problem for two parameters
defining the model.

In order to carry out the analysis of the model in Refs. 19 and 20, detailed information about
the structure of the set of canonical equilibrium macrostates is required, including the fact that it
exhibits a discontinuous phase transition as the inverse temperatureb increases through a critical
valuebc. This information plays a central role in the present paper, in which we use the theory of
large deviations to study the equivalence and nonequivalence of the sets of equilibrium mac-
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rostates for the microcanonical and canonical ensembles. An important consequence of the dis-
continuous phase transition exhibited by the canonical ensemble in the Curie–Weiss–Potts model
is the implication that the nearest-neighbor Potts model onZd also undergoes a discontinuous
phase transition wheneverd is sufficiently largesRef. 4, Theorem 2.1d.

In Ref. 15 the problem of the equivalence of the microcanonical and canonical ensembles was
completely solved for a general class of statistical mechanical models including short-range and
long-range spin models and models of turbulence. This problem is fundamental in statistical
mechanics because it focuses on the appropriate probabilistic description of statistical mechanical
systems. While the theory developed in Ref. 15 is complete, our understanding is greatly enhanced
by the insights obtained from studying specific models. In this regard the Curie–Weiss–Potts
model is an excellent choice, lying at the boundary of the set of models for which a complete
analysis involving explicit formulas is available.

For the Curie–Weiss–Potts model ensemble equivalence at the thermodynamic level is studied
numerically in Ref. 29, Secs. 3–5. This level of ensemble equivalence focuses on whether the
microcanonical entropy is concave on its domain; equivalently, whether the microcanonical en-
tropy and the canonical free energy, the basic thermodynamic functions in the two ensembles, can
each be expressed as the Legendre–Fenchel transform of the othersRef. 15, pp. 1036–1037d.
Nonconcave anomalies in the microcanonical entropy partially correspond to regions of negative
specific heat and thus thermodynamic instability.

The present paper significantly extends Ref. 29, Secs. 3–5 by analyzing rigorously ensemble
equivalence at the thermodynamic level and by relating it to ensemble equivalence at the level of
equilibrium macrostates via the results in Ref. 15. As prescribed by the theory of large deviations,
the setEu of microcanonical equilibrium macrostates and the setEb of canonical equilibrium
macrostates are defined ins2.4d and s2.3d. These macrostates are, respectively, the solutions of a
constrained minimization problem involving probability vectors onRq and a related, uncon-
strained minimization problem. The equilibrium macrostates for the two ensembles are probability
vectors describing equilibrium configurations of the model in each ensemble in the thermody-
namic limit n→`. For eachi =1,2, . . . ,q, the ith component of an equilibrium macrostate gives
the asymptotic relative frequency of spins taking the spin-valueu i.

Defined via conditioning on the energy per particle, the microcanonical ensemble expresses
the conservation of physical quantities such as the energy. Among other reasons, the mathemati-
cally more tractable canonical ensemble was introduced by Gibbs22 in the hope that in then
→` limit the two ensembles are equivalent; i.e., all asymptotic properties of the model obtained
via the microcanonical ensemble could be realized as asymptotic properties obtained via the
canonical ensemble. Although most textbooks in statistical mechanics, including Refs. 1, 22, 28,
35, 41, and 44, claim that the two ensembles always give the same predictions, in general this is
not the case.48 There are many examples of statistical mechanical models for which nonequiva-
lence of ensembles holds over a wide range of model parameters and for which physically inter-
esting microcanonical equilibria are often omitted by the canonical ensemble. Besides the Curie–
Weiss–Potts model, these models include the mean-field Blume–Emery–Griffiths model,2,3,18 the
Hamiltonian mean-field model,12,36 the mean-fieldX–Y model,11 models of turbulence,6,16,21,33,42

models of plasmas,34,45 gravitational systems,23–25,37,47and a model of the Lennard-Jones gas.5 It
is hoped that our detailed analysis of ensemble nonequivalence in the Curie–Weiss–Potts model
will contribute to an understanding of this fascinating and fundamental phenomenon in a wide
range of other settings.

In the present paper, after summarizing the large deviation analysis of the Curie–Weiss–Potts
model in Sec. II, we give explicit formulas for the elements ofEb and the elements ofEu in Secs.
III and IV. This analysis shows thatEb exhibits a discontinuous phase transition at a critical
inverse temperaturebc and thatEu exhibits a continuous phase transition at a critical energyuc.
The implications of these different phase transitions concerning ensemble nonequivalence are
studied graphically in Sec. V and rigorously in Sec. VI, where we exhibit a range of values of the
energyu for which the microcanonical equilibrium macrostates are not realized canonically; i.e.,
Eu is disjoint fromEb for all b. As described in the main theorem in Ref. 15 and summarized here
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in Theorem 5.1, this range of values of the energy is precisely the set on which the microcanonical
entropy is not concave. The analysis of this bridge between ensemble nonequivalence at the
thermodynamic level and ensemble nonequivalence at the level of equilibrium macrostates is one
of the main contributions of Ref. 15 for general models and of the present paper for the Curie–
Weiss–Potts model. In a sequel to the present paper,9 we will extend our analysis of the Curie–
Weiss–Potts model to the so-called Gaussian ensemble7,8,26,27,30,46to show, among other results,
that for each value of the energy for which the microcanonical and canonical ensembles are
nonequivalent, we can find a Gaussian ensemble that is fully equivalent with the microcanonical
ensemble.10

II. SETS OF EQUILIBRIUM MACROSTATES FOR THE TWO ENSEMBLES

Let qù3 be a fixed integer and defineL=hu1,u2, . . . ,uqj, where theu i are anyq distinct
vectors inRq. In the definition of the Curie–Weiss–Potts model, the precise values of these vectors
is immaterial. For eachnPN the model is defined by spin random variablesv1,v2, . . . ,vn that
take values inL. The canonical and microcanonical ensembles for the model are defined in terms
of probability measures on the configuration spacesLn, which consist of the microstatesv
=sv1, . . . ,vnd. We also introduce then-fold product measurePn on Ln with identical one-
dimensional marginals

r̄ =
1

q
o
i=1

q

du i .

Thus for all vPLn, Pnsvd=1/qn. For nPN and vPLn the Hamiltonian for theq-state Curie–
Weiss–Potts model is defined by

Hnsvd = −
1

2n
o
j ,k=1

n

dsv j,vkd,

wheredsv j ,vkd equals 1 ifv j =vk and equals 0 otherwise. The energy per particle is defined by

hnsvd =
1

n
Hnsvd.

For inverse temperaturebPR and subsetsB of Ln the canonical ensemble is the probability
measurePn,b defined by

Pn,bhBj =
1

ovPLn expf− nbhnsvdg
· o

vPB

expf− nbhnsvdg.

For energyuPR and r .0 the microcanonical ensemble is the conditioned probability measure
Pn

u,r defined by

Pn
u,rhBj = PnhBuhn P fu − r,u + rgj.

The key to our analysis of the Curie–Weiss–Potts model is to express both the canonical and the
microcanonical ensembles in terms of the empirical vector

Ln = Lnsvd = sLn,1svd,Ln,2svd, . . . ,Ln,qsvdd,

the ith component of which is defined by
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Ln,isvd =
1

n
o
j=1

n

dsv j,u
id.

This quantity equals the relative frequency with whichv j , j P h1, . . . ,nj, equalsu i. Ln takes values
in the set of probability vectors

P =Hn P Rq:n = sn1,n2, . . . ,nqd, eachni ù 0,o
i=1

q

ni = 1J .

As we will see, each probability vector inP represents a possible equilibrium macrostate for the
model.

There is a one-to-one correspondence betweenP and the setPsLd of probability measures on
L, nPP corresponding to the probability measureoi=1

q nidu i. The elementrPP corresponding to
the one-dimensional marginalr̄ of the prior measuresPn is the uniform vector having equal
components 1/q.

We denote byk·,·l the inner product onRq. Since

o
i=1

q

o
j=1

n

dsv j,j
id ·o

k=1

n

dsvk,j
id = o

j ,k=1

n

dsv j,vkd,

it follows that the energy per particle can be rewritten as

hnsvd = −
1

2n2 o
j ,k=1

n

dsv j,vkd = −
1

2
kLnsvd,Lnsvdl;

i.e.,

hnsvd = H̃sLnsvdd, whereH̃snd = − 1
2kn,nl for n P P. s2.1d

We call H̃ the energy representation function.
We appeal to the theory of large deviations to define the sets of microcanonical equilibrium

macrostates and canonical equilibrium macrostates. Sanov’s theorem states that with respect to the
product measuresPn, the empirical vectorsLn satisfy the large deviation principlesLDPd on P
with rate function given by the relative entropyRs·urd sRef. 14, Theorem VIII.2.1d. For nPP this
is defined by

Rsnurd = o
i=1

q

ni logsqnid.

We express this LDP by the formal notationPnhLnPdnj<expf−nRsn urdg. The LDPs forLn with
respect to the two ensemblesPn,b andPn

u,r in the thermodynamic limitn→`, r →0 can be proved
from the LDP for thePn-distributions ofLn as in Theorems 2.4 and 3.2 in Ref. 15, in which minor
notational changes have to be made. We express these LDPs by the formal notation

Pn,bhLn P dnj < expf− nIbsndg andPn
u,rhLn P dnj < expf− nIusndg, s2.2d

where fornPP

Ibsnd = Rsnurd −
b

2
kn,nl − const

and
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Iusnd = HRsnurd − const if − 1
2kn,nl = u,

` otherwise.
J

The constants appearing in the definitions ofIb andIu have the properties that infnPP Ibsnd=0 and
infnPP Iusnd=0. ThusIb and Iu mapP into f0,`d.

As the formulas ins2.2d suggest, ifIbsnd.0 or Iusnd.0, thenn has an exponentially small
probability of being observed in the corresponding ensemble in the thermodynamic limit. Hence it
makes sense to define the corresponding sets of equilibrium macrostates to be

Eb = hn P P:Ibsnd = 0j andEu = hn P P:Iusnd = 0j.

A rigorous justification for this is given in Ref. 15, Theorem 2.4sdd. Using the formulas forIb and
Iu, we see that

Eb = Hn P P:n minimizesRsnurd −
b

2
kn,nlJ s2.3d

and

Eu = hn P P:n minimizesRsnurd subject to −1
2kn,nl = uj . s2.4d

Each elementn in Eb and Eu describes an equilibrium configuration of the model in the corre-
sponding ensemble in the thermodynamic limit. Theith componentni gives the asymptotic rela-
tive frequency of spins taking the valueu i.

The setEu is defined for allu for which the constraint in the definition ofIu is satisfied for
somenPP. Otherwise,Eu is not defined. IfEu is defined, thenEu is nonempty; ifEu is not defined,
then we shall setEu=x.

The question of equivalence of ensembles at the level of equilibrium macrostates focuses on
the relationships betweenEu, defined in terms of the constrained minimization problem ins2.4d,
and Eb, defined in terms of the related, unconstrained minimization problem ins2.3d. We will
focus on this question in Secs. V and VI after we determine the structures ofEb andEu in the next
two sections.

III. FORM OF Eb AND ITS DISCONTINUOUS PHASE TRANSITION

In this section we derive the form of the setEb of canonical equilibrium macrostates for all
bPR. This form is given in Theorem 3.1, which shows that with respect to the canonical en-
semble the Curie–Weiss–Potts model undergoes a discontinuous phase transition at the critical
inverse temperature

bc =
2sq − 1d

q − 2
logsq − 1d. s3.1d

In order to describe the form ofEb, we introduce the functionc that mapsf0, 1g into P and is
defined by

cswd = S1 + sq − 1dw
q

,
1 − w

q
, . . . ,

1 − w

q
D; s3.2d

the lastq−1 components all equals1−wd /q. Recalling thatr is the uniform vector inP having
equal components 1/q, we see thatr=cs0d.

Theorem 3.1:For b.0 let wsbd be the largest solution of the equation

w =
1 − e−bw

1 + sq − 1de−bw . s3.3d

The following conclusions hold.
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sad The quantity wsbd is well defined and lies inf0, 1g. It is positive, strictly increasing, and
differentiable forbP sbc,`d and satisfies wsbcd=sq−2d / sq−1d and limb→` wsbd=1.

sbd For bùbc, define n1sbd=cswsbdd and let n isbd, i =2, . . . ,q, denote the points inRq

obtained by interchanging the first and ith components ofn1sbd. Then the setEb defined ins2.3d
has the form

Eb = 5hrj for b , bc,

hr,n1sbcd,n2sbcd, . . . ,nqsbcdj for b = bc,

hn1sbd,n2sbd, . . . ,nqsbdj for b . bc.
6 s3.4d

For bùbc, the vectors inEb are all distinct and eachn isbd is continuous. The vectorn1sbcd is
given by

n1sbcd = cswsbcdd = cSq − 2

q − 1
D = S1 −

1

q
,

1

qsq − 1d
, . . . ,

1

qsq − 1dD; s3.5d

the last q−1 components all equal1/qsq−1d.
The form ofEb for b.0 is proved in Appendix B from a new convex-duality theorem proved

in Appendix A and from the complicated calculation of the global minimum points of a related
function given in Theorem 2.1 in Ref. 19. The form ofEb for bø0 is also determined in Appendix
B. The other assertions in Theorem 3.1 are proved in Theorem 2.1 in Ref. 19.

For b.0 the form ofEb reflects a competition between disorder, as represented by the relative
entropyRsn urd, and order, as represented by the energy representation function −1

2kn ,nl. For small
b.0, Rsn urd predominates. SinceRsn urd attains its minimum of 0 at the unique vectorr, we
expect that for smallb, Eb should contain a single vector. On the other hand, for largeb.0,
−1

2kn ,nl predominates. This function attains its minimum atn1=s1,0, . . . ,0d and at the vectorsn i,
i =1, . . . ,q, obtained by interchanging the first andith components ofn1. Hence we expect that for
largeb, Eb should containq distinct vectorsn isbd having the property thatn isbd→n i asb→`.
The major surprise of the theorem is that forb=bc, Eb consists of theq+1 distinct vectorsr and
n isbcd for i =1,2, . . . ,q.

The discontinuous bifurcation in the composition ofEb from 1 vector forb,bc to q+1
vectors forb=bc to q vectors forb.bc corresponds to a discontinuous phase transition exhibited
by the canonical ensemble. In Fig. 2 in Sec. V this phase transition is shown together with the
continuous phase transition exhibited by the microcanonical ensemble. The latter phase transition
and the form of the set of microcanonical equilibrium macrostates are the focus of the next
section.

IV. FORM OF Eu AND ITS CONTINUOUS PHASE TRANSITION

We now turn to the form of the setEu for all uPf−1
2 ,−1/2qg, which is the set ofu for which

Eu is nonempty. In the specific caseq=3 part scd of Theorem 4.2 gives the form ofEu, the
calculation of which is much simpler than the calculation of the form ofEb. The proof is based on
the method of Lagrange multipliers, which also works for generalqù4 provided the next con-
jecture on the form of the elements inEu is valid. The validity of this conjecture has been
confirmed numerically for allqP h4,5, . . . ,104j and all uP s−1

2 ,−1/2qd of the form u=−1
2

+0.02k, wherek is a positive integer.
Conjecture 4.1: For any qù4 and all uP s−1

2 ,−1/2qd, there exist aÞbP s0,1d such that
modulo permutations, anynPEu has the formsa,b, . . . ,bd, the last q−1 components of which all
equal b.

Partssad and sbd of Theorem 4.2 are proved for generalqù3. Partscd shows that modulo
permutations, forq=3, nPEu has the formsasud ,bsud ,bsudd and determines the precise formulas
for asud andbsud. As specified in partsdd, for qù4 we can also determine the precise formula for
nPEu provided Conjecture 4.1 is valid.
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Theorem 4.2 shows that with respect to the microcanonical ensemble the Curie–Weiss–Potts
model undergoes a continuous phase transition asu decreases from the critical energy valueuc

=−1/2q. This contrast with the discontinuous phase transition exhibited by the canonical en-
semble is closely related to the nonequivalence of the microcanonical and canonical ensembles for
a range ofu. Ensemble equivalence and nonequivalence will be explored in the next section,
where we will see that it is reflected by support and concavity properties of the microcanonical
entropy. An explicit formula for the microcanonical entropy is given in Theorem 4.3.

Theorem 4.2:For uPR we defineEu by s2.4d. The following conclusions hold.
sad For any qù3, Eu is nonempty if and only if uPf−1

2 ,−1/2qg. This interval coincides with

the range of the energy representation function H˜ snd=−1
2kn ,nl on P.

sbd For any qù3, E−1/2q=hrj=hs1/q,1 /q, . . . ,1 /qdj and

E−1/2 = hs1,0, . . . ,0d,s0,1, . . . ,0d, . . . ,s0,0, . . . ,1dj.

scd Let q=3. For uP s−1
2 ,−1/2qd, Eu consists of the three distinct vectors

hm1sud ,m2sud ,m3sudj, wherem1sud=sasud ,bsud ,bsudd,

asud =
1 +Î2s− 6u − 1d

3
andbsud =

2 −Î2s− 6u − 1d
6

. s4.1d

The vectorsmisud, i =2,3, denote the points inR3 obtained by interchanging the first and the ith
components ofm1sud.

sdd Let qù4 and assume that Conjecture4.1 is valid. Then for uP s−1
2 ,−1/2qd, Eu consists of

the q distinct vectorshm1sud , . . . ,mqsudj, wherem1sud=sasud ,bsud , . . . ,bsudd,

asud =
1 +Îsq − 1ds− 2qu− 1d

q
andbsud =

q − 1 −Îsq − 1ds− 2qu− 1d
sq − 1dq

.

The last q−1 components ofm1sud all equal bsud, and the vectorsmisud, i =2, . . . ,q, denote the
points inRq obtained by interchanging the first and the ith components ofm1sud.

We return to partsbd of Theorem 4.2 in order to discuss the nature of the phase transition
exhibited by the microcanonical ensemble. The functionsasud and bsud given in s4.1d are both
continuous foruPf−1

2 ,−1/2qg and satisfy

lim
u→s− 1/2qd−

asud = lim
u→s− 1/2qd−

bsud =
1

q
= aS−

1

2q
D = bS−

1

2q
D .

Therefore, fori =1, . . . ,q, limu→s−1 /2qd−m
isud=r. It follows that the microcanonical ensemble ex-

hibits a continuous phase transition asu decreases fromuc=−1/2q, the unique equilibrium mac-
rostater for u=uc bifurcating continuously into theq distinct macrostatesmisud as u decreases
from its maximum value. This is rigorously true forq=3. Provided Conjecture 4.1 is true, it is also
true for qù4, as one easily checks using partsdd of Theorem 4.2.

Before proving Theorem 4.2, we introduce the microcanonical entropy

ssud = − infhRsnurd:n P P,− 1
2kn,nl = uj . s4.2d

As we will see in the next section, this function plays a crucial role in the analysis of ensemble
equivalence and nonequivalence for the Curie–Weiss–Potts model. The domain ofs is the set
doms=huPR :ssud.−`j; for u¹doms, we setssud=−`. SinceRsn urd,` for all nPP, doms

equals the range ofH̃snd=−1
2kn ,nl on P, which is the intervalf−1

2 ,−1/2qg fTheorem 4.2sadg.
Since 0øRsn urd for all nPP, ssudP f−` ,0g for all u. The continuity ofRsn urd on P and the

compactness of the constraint set ins4.2d guarantee that foruPdoms the infimum in the defini-
tion of ssud is attained for somenPP. SinceRsn urd.Rsr urd=0 for all nÞr, it follows that s
attains its maximum of 0 at the unique value −1/2q=−1

2kr ,rl.
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As we have just seen,ss−1/2qd=0. For uP s−1
2 ,−1/2qd, according to partsscd and sdd of

Theorem 4.2,Eu consists of the unique vectorm1sud modulo permutations. Since fori
=2,3, . . . ,q, Rsmisud urd=Rsm1sud urd, we conclude that

ssud = − Rsm1sudurd = − asudlogsqasudd − sq − 1dbsudlogsqbsudd.

Finally, for u=−1
2, modulo permutationsEu consists of the unique vectors1, 0,…,0d fsees4.7dg,

and soss−1
2

d=−Rss1,0, . . . ,0d urd=−logq. The resulting formulas forssud are recorded in the next
theorem, where we distinguish betweenq=3 andqù4.

Theorem 4.3:We define the microcanonical entropy ssud in s4.2d. The following conclusions
hold.

sad doms=f−1
2 ,−1/2qg; for any uPdoms, uÞ−1/2q, ssud,ss−1/2qd=0; and ss−1

2
d=

−log q.
sbd Let q=3. Then for uP s−1

2 ,−1/2qd= s−1
2 ,−1

6
d,

ssud = −
1 +Î2s− 6u − 1d

3
logs1 +Î2s− 6u − 1dd −

2 −Î2s− 6u − 1d
3

logS2 −Î2s− 6u − 1d
2

D .

s4.3d

scd Let qù4 and assume that Conjecture4.1 is valid. Then for uP s−1
2 ,−1/2qd,

ssud = −
1 +Îsq − 1ds− 2qu− 1d

q
logs1 +Îsq − 1ds− 2qu− 1dd

−
q − 1 −Îsq − 1ds− 2qu− 1d

q
logSq − 1 −Îsq − 1ds− 2qu− 1d

q − 1
D . s4.4d

We now turn to the proof of Theorem 4.2, which gives the form ofEu. We start by proving part
sad. The setEu of microcanonical equilibrium macrostates consists of allnPP that minimize the
relative entropyRsn urd subject to the constraint that

H̃snd = − 1
2kn,nl = u.

Let u=−1
2r 2. SinceP consists of all non-negative vectors inRq satisfying n1+¯ +nq=1, the

constraint set in the minimization problem definingEu is given by

Csud = Cs− 1
2r 2d =Hn P Rq:n1 ù 0, . . . ,nq ù 0,o

j=1

q

n j = 1,o
j=1

q

n j
2 = r 2J . s4.5d

Geometrically,Cs−1
2r 2d is the intersection of the non-negative orthant ofRq, the hyperplane

consisting ofnPRs that satisfyn1+¯ +nq=1, and the hypersphere inRq with center 0 and radius
r. Clearly, CsudÞx if and only if u lies in the range of the energy representation function

H̃snd=−1
2kn ,nl onP. Because 0øRsn urd,` for all nPCsud, the range ofH̃ onP also equals the

set ofu for which EuÞx.
The geometric description ofCsud makes it straightforward to determine those values ofu for

which this constraint set is nonempty. The smallest value ofr for which Cs−1
2r 2dÞx is obtained

when the hypersphere of radiusr is tangent to the hyperplane, the point of tangency beingr
=s1/q,1 /q, . . . ,1 /qd, the closest probability vector to the origin. The hypersphere and the hyper-
plane are tangent whenr =1/Îq, which coincides with the distance from the center of the hyper-
sphere to the hyperplane. It follows that the largest value ofu for which CsudÞx, and thusEu

Þx, is u=−1
2r 2=−1/2q. In this case

CS−
1

2q
D = hrj = HS1

q
,
1

q
, . . . ,

1

q
DJ = E−1/2q. s4.6d
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For all sufficiently larger, Cs−1
2r2d is empty because the hypersphere of radiusr has empty

intersection with the intersection of the hyperplane and the non-negative orthant ofRq. The largest
value for r for which this does not occur is found by subtracting the two equations defining the
hyperplane and the hypersphere. Since eachni P f0,1g, it follows that

0 ø o
i=1

q

nis1 − nid = 1 − r 2,

and this in turn implies thatr 2ø1. Thusr =1 is the largest value forr for which Cs−1
2r2dÞx. We

conclude that the smallest value ofu for whichCsudÞx, and thusEuÞx, is u=−1
2r2=−1

2. The set

E−1
2 consists of the points at which the hyperplane intersects each of the positive coordinate axes;

i.e.,

E−1/2 = hs1,0, . . . ,0d,s0,1, . . . ,0d, . . . ,s0,0, . . . ,1dj. s4.7d

This completes the proof of partsad of Theorem 4.2.
For uPf−1

2 ,−1/2qg, we now determine the formEu as specified in partssbd–sdd of Theorem
4.2. Partsbd considers anyqù3 and the valuesu=−1/2q andu=−1

2, part scd q=3 anduP s−1
2 ,

−1/2qd, and partsdd qù4 anduP s−1
2 ,−1/2qd. Part sbd has already been proved; foru=−1/2q

andu=−1
2, the setsEu are given ins4.6d and s4.7d.

We now considerqù3 anduP s−1
2 ,−1/2qd. For nPP define

Ksnd = o
j=1

q

n j andH̃snd = − 1
2kn,nl.

By definitionn=sn1, . . . ,nqdPEu if and only if n minimizesRsn urd=o j=1
q n j logsqn jd subject to the

constraintsKsnd=1, H̃snd=u, andn1ù0, . . . ,nqù0. ForuP s−1
2 ,−1/2qd we divide into two parts

the calculation of the form ofnPEu. First we use Lagrange multipliers to solve the constrained
minimization problem whenn1.0, . . . ,n1.0. Then we argue that the vectorsn found via
Lagrange multipliers solve the original constrained minimization problem whenn1ù0, . . . ,nq

ù0.
We introduce Lagrange multipliersg and l. Any critical point of Rsn urd subject to the

constraintsKsnd=1, H̃snd=u, andn1.0, n2.0, . . . ,nq.0 satisfies

¹Rsnurd = g ¹ Ksnd + l ¹ H̃snd,

Ksnd = 1,

H̃snd = u,

n j . 0 for j = 1,2, . . . ,q.

This system of equations is equivalent to

1 + logsqn jd = g − ln j for j = 1,2, . . . ,q, s4.8d

o
j=1

q

n j = 1,

−
1

2o
j=1

q

n j
2 = u,
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n j . 0 for j = 1,2, . . . ,q.

By the strict concavity of the logarithm, the first equation can have at most two solutions. Hence
modulo permutations, there existsnP h0,1, . . . ,qj and distinct numbersa,bP s0,1d such that the
first n components of any critical pointn all equala and the lastq−n components ofn all equal
b. The second and third equations ins4.8d take the form

na+ sq − ndb = 1 andna2 + sq − ndb2 = − 2u. s4.9d

If n=0, then b=1/q, while if n=q, then a=1/q. Both cases correspond ton
=s1/q, . . . ,1 /qd=r andu=−1/2q, which does not lie in the open intervals−1

2 ,−1/2qd currently
under consideration.

We now focus onnP h1, . . . ,q−1j. In this case the two solutions ofs4.9d are

a1snd =
n − Însq − nds− 2qu− 1d

nq
, b1snd =

q − n + Însq − nds− 2qu− 1d
sq − ndq

s4.10d

and

a2snd =
n + Însq − nds− 2qu− 1d

nq
, b2snd =

q − n − Însq − nds− 2qu− 1d
sq − ndq

. s4.11d

SinceuP s−1
2 ,−1/2qd, these quantities are all well defined andajsndÞbjsnd for j =1,2. In addi-

tion,

a1sq − nd = b2snd andb1sq − nd = a2snd.

This means that the point having the firstn componentsa2snd and the lastq−n componentsb2snd
equals, modulo permutations, the point having the firstq−n componentsa1sq−nd and the lastn
componentsb1sq−nd.

Thus, without loss of generality, we can seek solutions of the systems4.8d having the firstn
componentsa2snd and the lastq−n componentsb2snd. While a2s1d andb2s1d are always positive
for all uP s−1

2 ,−1/2qd, b2snd might be negative for somenP h2, . . . ,q−1j and someuP s−1
2 ,

−1/2qd. In this case the positivity constraint in the last line ofs4.8d excludes such values ofn and
u.

We give full details whenq=3, the case considered in partscd of Theorem 4.2. Whenq=3, the
interval s−1

2 ,−1/2qd equalss−1
2 ,−1/6d and we havenP h1,2j. For n=1 andn=2 s4.11d takes the

form

a2s1d =
1 +Î2s− 6u − 1d

3
, b2s1d =

2 −Î2s− 6u − 1d
6

and

a2s2d =
2 +Î2s− 6u − 1d

6
, b2s2d =

1 −Î2s− 6u − 1d
3

.

For uP s−1
2 ,−1

4
d, b2s2d is negative and hence a solution ofs4.8d cannot have the form

sa2s2d ,a2s2d ,b2s2dd. We conclude that whenuP s−1
2 ,−1

4
d, n=sa2s1d ,b2s1d ,b2s1dd is, modulo per-

mutations, the unique solution ofs4.8d and thus the unique minimizer ofRsn urd subject to the
constraints in the last three lines ofs4.8d. For uPf−1

4 ,−1
6

d, a straightforward calculation shows
that

Rssa2s1d,b2s1d,b2s1ddurd , Rssa2s2d,a2s2d,b2s2ddurd.

It follows again thatn=sa2s1d ,b2s1d ,b2s1dd is, modulo permutations, the unique minimizer of
Rsn urd subject to the constraints in the last three lines ofs4.8d. This completes the proof that for
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q=3 and anyuP s−1
2 ,−1

6
d, n=sa2s1d ,b2s1d ,b2s1dd is, modulo permutations, the unique minimizer

of Rsm urd subject to the constraintsKsnd=1, H̃snd=u, andn1.0, n2.0, n3.0.
We now prove forq=3 that the minimizers found via Lagrange multipliers whenKsnd=1,

H̃snd=u, and n1.0, n2.0, n3.0 also minimizeRsn urd subject to the constraintsKsnd=1,

H̃snd=u, and n1ù0, n2ù0, n3ù0. If n=sn1,n2,n3d satisfies the latter constraints and has two

components equal to zero, then modulo permutationsn=s1,0,0d andH̃snd=u=−1
2, which does not

lie in the open intervals−1
2 ,−1

6
d currently under consideration. Thus we only have to consider the

case wheren has one component equal to zero; i.e,n=s0,a0,b0d with a0ùb0. In this case the
second and third equations ins4.8d have the solution

a0 =
1 +Î− 4u − 1

2
, b0 =

1 −Î− 4u − 1

2
.

We now claim that modulo permutations the unique minimizer ofRsn urd subject to the constraints

Ksnd=1, H̃snd=u, andn1ù0, n2ù0, n3ù0 has the formsa2s1d ,b2s1d ,b2s1dd found in the preced-
ing paragraph. The claim follows from the calculation

Rssa2s1d,b2s1d,b2s1ddurd , Rss0,a0,b0durd,

which is valid for all uP s−1
2 ,−1

6
d. This completes the proof of partscd of Theorem 4.2, which

gives the form ofnPEu for q=3 anduP s−1
2 ,−1

6
d.

We now turn to partsdd of Theorem 4.2, which gives the form ofEu for qù4 anduP s−1
2 ,

−1/2qd. If, as in the caseq=3, we knew that modulo permutations, the minimizers have the form
sa,b, . . . ,bd as specified in Conjecture 4.1, then as in the caseq=3 we would be able to derive
explicit formulas for these minimizers. If Conjecture 4.1 is true, then it is easily verified that
modulo permutations,Eu consists of the unique pointn=sa2s1d ,b2s1d , . . . ,b2s1dd, wherea2s1d and
b2s1d are defined ins4.11d for uP s−1

2 ,−1/2qd. This gives partsdd of Theorem 4.2. The proof of
the theorem is complete.

At the end of Sec. VI we will see that there exists an explicit value ofu0P s−1
2 ,−1/2qd such

that Conjecture 4.1 is valid for anyqù4 and alluP s−1
2 ,u0g. Hence for these values ofu the form

of nPEu given in partsdd of Theorem 4.2 and the formula forssud given in partscd of Theorem
4.3 are both rigorously true.

V. EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

As we saw in Sec. III, the setEb of canonical equilibrium macrostates undergoes a discon-
tinuous phase transition asb increases throughbc=f2sq−1d / sq−2dglogsq−1d, the unique mac-
rostater bifurcating discontinuously into theq distinct macrostatesnsidsbd. By contrast, as we saw
in Sec. IV, the setEu of microcanonical equilibrium macrostates undergoes a continuous phase
transition asu decreases fromuc=−1/2q, the unique macrostater bifurcating continuously into
the q distinct macrostatesmisud. The different continuity properties of these phase transitions
shows already that the canonical and microcanonical ensembles are nonequivalent. In this section
we study this nonequivalence in detail and relate the equivalence and nonequivalence of these two
sets of equilibrium macrostates to concavity and support properties of the microcanonical entropy
s defined ins4.2d. This is done with the help of Fig. 2, which is based on the form ofs in Fig. 1
and on the results on ensemble equivalence and nonequivalence in Theorem 5.1. In Figs. 3 and 4
at the end of the section we give, forq=3, a beautiful geometric representation ofEb andEu that
also shows the ensemble nonequivalence for a range ofu.

We start by stating in Theorem 5.1 results on ensemble equivalence and nonequivalence for
the Curie–Weiss–Potts model. Theorem 5.1 summarizes Theorems 4.4, 4.6, and 4.8 in Ref. 15,
which apply to a wide range of statistical mechanical models. The Curie–Weiss–Potts model is a
special case. In this special case, we will show that the values ofu andb in part sadsid of the next
theorem are related by the thermodynamic formulas8sud=b fTheorem 6.2sbdg. For uPdoms the
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possible relationships betweenEu and Eb, given in partsad of Theorem 5.1, are that either the
ensembles are fully equivalent, partially equivalent, or nonequivalent. According to partsbd of the
theorem, canonical equilibrium macrostates are always realized microcanonically—i.e., lie inEu

for someu—while according to partsadsiii d, microcanonical equilibrium macrostates are in gen-
eral not realized canonically—i.e., do not lie inEb for any b. It follows that the microcanonical
ensemble is the richer of the two ensembles.

Theorem 5.1: We define s bys4.2d and Eb and Eu by s2.3d and s2.4d. The following conclu-
sions hold.

sad For fixed uPdoms one of the following three possibilities occurs.

sid Full equivalence: There existsbPR such thatEu=Eb. This is the case if and only if s has
a strictly supporting line at u with slopeb; i.e.,

ssvd , ssud + bsv − ud for all v Þ u.

sii d Partial equivalence: There existsbPR such thatEu,Eb butEuÞEb. This is the case if and
only if s has a nonstrictly supporting line at u with slopeb; i.e.,

ssvd ø ssud + bsv − ud for all v P R with equality for somev Þ u.

siii d Nonequivalence: For allbPR, EuùEb=x. This is the case if and only if s has no sup-
porting line at u; i.e., for anybPR there existsv such that ssvd.ssud+bsv−ud.

sbd Canonical is always realized microcanonically: FornPP we define H˜ snd=−1
2kn ,nl. Then

for any bPR,

Eb = ø
uPH̃sEbd

Eu.

We next relate ensemble equivalence and nonequivalence with concavity and support proper-
ties ofs in the Curie–Weiss–Potts model. Forq=3 an explicit formula fors is given in partsbd of
Theorem 4.3. If Conjecture 4.1 is true, then the formula fors given in partscd of Theorem 4.3 is
also valid forqù4. Figure 1 exhibits all the concavity and support features ofs. However, Fig. 1
is not the actual graph ofs but a schematic graph that accentuates the shape ofs together with the
intervals of strict concavity and nonconcavity ofs. For arbitraryqù3, as discussed in the second
paragraph after Theorem 6.2, the concavity and support features ofs exhibited in Fig. 1 follow
from Theorems 5.1 and 6.2.

Concavity properties ofs are defined in reference to the double-Legendre–Fenchel transform
s** , which can be characterized as the smallest concave, upper semicontinuous function that
satisfiess** sudùssud for all uPR sRef. 10, Proposition A.2d. For uPdoms we say thats is
concave atu if ssud=s** sud and thats is not concave atu if ssud,s** sud. Also, we say thats is

FIG. 1. Schematic graph ofssud, showing the setF= s−1
2 ,u0dø h−1/2qj of full ensemble equivalence, the singleton set

P=hu0j of partial equivalence, and the setN=su0,−1/2qd of nonequivalence. ForuPFø P= s−1
2 ,u0gø h−1/2qj, ssud

=s** sud; for uPN, ssud,s** sud and the graph ofs** consists of the dotted line segment with slopebc. The slope ofs at −1
2

is `.

063301-12 Costeniuc, Ellis, and Touchette J. Math. Phys. 46, 063301 ~2005!

Downloaded 13 May 2005 to 128.119.47.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



strictly concave atuPdoms if s has a strictly supporting line atu and thats is strictly concave on
a convex subsetA of doms if s is strictly concave at eachuPA. If s is strictly concave atu, then
a straightforward argument shows thats is concave atu, as one expectsfRef. 10, Lemma 4.1sadg.

According to Fig. 1 and Theorem 5.1, there existsu0P s−1
2 ,−1/2qd with the following prop-

erties:

sid s is strictly concave on the intervals−1
2 ,u0d and at the point −1/2q. Hence foruPF

= s−1
2 ,u0dø h−1/2qj the ensembles are fully equivalentfTheorem. 5.1sadsidg. In fact, for

uP int F= s−1
2 ,u0d, Eu=Eb with b given by the thermodynamic formulab=s8sud fTheorem

6.2sbdg.
sii d s is concave but not strictly concave atu0 and has a nonstrictly supporting line atu0 that

also touches the graph ofs over the right-hand endpoint −1/2q. Hence foru=u0 the
ensembles are partially equivalent in the sense that there existsbPR such thatEu,Eb but
EuÞEb fTheorem 5.1sadsii dg. In fact,b equals the critical inverse temperaturebc defined in
s3.1d.

siii d s is not concave on the intervalN=su0,−1/2qd and has no supporting line at anyuPN
fRef. 10, Theorem A.4scdg. Hence foruPN the ensembles are nonequivalent in the sense
that for all bPR, EuùEb=x fTheorem 5.1sadsiii dg.

As we have just seen,u0 can be characterized in terms of concavity and support properties of

s. The quantityu0 can also be characterized in terms of mapping properties ofH̃snd=−1
2kn ,nl.

Using this characterization, we give an explicit formula foru0 in s6.2d.
We point out two additional features of Fig. 1. First, althoughEuÞx for u equal to the

left-hand endpoint −12 of doms, we do not include this point in the setF of full ensemble
equivalence. Indeed,s is not strictly concave at −12 because there is no strictly supporting line at
−1

2; as one can see ins5.1d, the slope ofs at −1
2 is `. Nevertheless, by introducing the limiting set

E` = hs1,0, . . . ,0d,s0,1, . . . ,0d, . . . ,s0,0, . . . ,1dj = lim
b→`

Eb,

we can extend full ensemble equivalence tou=−1
2 sinceE−1/2=E`.

Second, foru in the intervalN of ensemble nonequivalence, the graph ofs** is affine; this is
depicted by the dotted line segment in Fig. 1. The slope of the affine portion of the graph ofs**

equals the critical inverse temperaturebc defined ins3.1d. This can be proved using concave-
duality relationships involvings** and the canonical free energy. The quantitybc also satisfies an
equal-area property, first observed by MaxwellsRef. 28, p. 45d and explained in the context of
another spin model in Ref. 18, p. 535.

The relationships stated in itemssid, sii d, andsiii d above give valuable insight into equivalence
and nonequivalence of ensembles in the Curie–Weiss–Potts model. These relationships are illus-
trated in Fig. 2. In this figure we exhibit the graph ofs8 and the setsEb andEu in order to compare
the phase transitions in the two ensembles and to understand the implications for ensemble equiva-
lence and nonequivalence. In order to accentuate properties ofs8, Eb, andEu that are related to
ensemble equivalence and nonequivalence, we focus onq=8. In presenting the graph ofs8 and the
form of Eu, we assume that forq=8 Conjecture 4.1 is valid. We then appeal to partscd of Theorem
4.3, which gives an explicit formula fors, and to partsdd of Theorem 4.2, which gives an explicit
formula for the elements ofEu. The derivatives8, graphed in the top left plot in Fig. 2, is given by

s8sud =Î q − 1

− 2qu− 1
Flogs1 +Îsq − 1ds− 2qu− 1dd − logS1 −Î− 2qu− 1

q − 1
DG . s5.1d

The canonical phase diagram, given in the top right plot in Fig. 2, summarizes the description
of Eb given in Theorem 3.1 and shows the discontinuous phase transition exhibited by this en-
semble atbc=f2sq−1d / sq−2dglogsq−1d= 7

3 log 7. The solid line in this plot forb,bc represents
the common value18 of each of the components ofr, which is the unique phase forb,bc. For
b.bc there are eight phases given byn1sbd together with the vectorsn isbd obtained by inter-
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changing the first andith components ofn 1sbd. Finally, for b=bc there are nine phases consisting
of r and the vectorsn isbcd for i =1,2, . . . ,8. Thesolid and dashed curves in the top right plot in
Fig. 2 show the first component and the last seven, equal components ofn1sbd for bP fbc,`d. The
first component is a strictly increasing function equal to7

8 for b=bc and increasing to 1 asb
→` while the last seven, equal components are strictly decreasing functions equal to1

56 for b
=bc and decreasing to 0 asb→`.

The microcanonical phase diagram, given in the bottom left plot in Fig. 2, summarizes the
description ofEu given in Theorem 4.2 and shows the continuous phase transition exhibited by this
ensemble asu decreases from the maximum valueuc=−1/2q=− 1

16. The single phaser for
u=− 1

16 is represented by the point lying over this value ofu. For uPf−1
2 ,− 1

16
d there are eight

phases given bym1sud together with the vectorsmisud obtained by interchanging the first andith
components ofm1sud. The solid and dashed curves in the bottom left plot in Fig. 2 show the first
componentasud and the last seven, equal componentsbsud of m1sud for uPf−1

2 ,− 1
16

d. The first
component is a strictly increasing function of −u equal to1

8 for u=− 1
16 and increasing to 1 asu

→ s−1
2

d+, while the last seven, equal components are strictly decreasing functions of −u equal to1
8

for u=− 1
16 and decreasing to 0 asu→ s−1

2
d+.

The different nature of the two phase transitions—discontinuous in the canonical ensemble
versus continuous in the microcanonical ensemble—implies that the two ensembles are not fully
equivalent for all values ofu. By necessity, the setEb of canonical equilibrium macrostates must
omit a set of microcanonical equilibrium macrostates. Further details concerning ensemble equiva-
lence and nonequivalence can be seen by examining the graph ofs8, given in the top left plot of
Fig. 2. This graph, which is the bridge between the canonical and microcanonical phase diagrams,
shows thats8 is strictly decreasing on the interval intF= s−1

2 ,u0d, which is the interior of the setF
of full ensemble equivalence. The critical valuebc equals the slope of the affine portion of the
graph ofs** over the intervalN=su0,−1/2qd of ensemble nonequivalence. This affine portion is
represented in the top left plot of Fig. 2 by the horizontal dashed line atbc.

Figure 2 exhibits the full equivalence of ensembles that holds foruP int F= s−1
2 ,u0d fTheorem

6.2sadg. For u in this interval the solid and dashed curves representing the components ofm1sud
PEu can be put in one-to-one correspondence with the solid and dashed curves representing the

FIG. 2. Forq=8 the top right plot showsEb, the top left plot the graph ofs8sud for uPdoms=fu, ,ucg=f−1
2 ,−1/2qg, and

the bottom left plotEu. The discontinuous phase transition atbc in the top right plot and the continuous phase transition at
uc in the bottom left plot imply that the ensembles are nonequivalent for alluPN=su0,ucd. On this intervals is not
concave ands** is affine with slopebc. The shaded area in the bottom left plot corresponds to the region of nonequivalence
of ensembles delineated byuPN.
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same two components ofn1sbdPEb for bP sbc,`d. As we remarked earlier, the values ofu and
b are related by the thermodynamic formulas8sud=b fTheorem 6.2sbdg. Full equivalence of
ensembles also holds foru=−1/2qPF, the right-hand endpoint of the interval on whichs is finite.
The solid vertical line in the top right plot forb,bc, which represents the unique canonical phase
r, is collapsed in the bottom left plot to the single energy valueu=−1/2q, which corresponds to
the unique microcanonical phaser. This collapse shows that the canonical notion of temperature
is somewhat ill-defined atu=−1/2q since there are infinitely many values ofb associated with
this energy value. This feature of the Curie–Weiss–Potts model is not present, for example, in the
mean-field Blume–Emery–Griffiths spin model, which also exhibits nonequivalence of
ensembles.18

By comparing the top right and bottom left plots, we see that the elements ofEu cease to be
related to those ofEb for uPN=su0,−1/2qd, which is the interval on whichs is not concave. For
any energy valueu in this interval nonPEb exists that can be put in correspondence with an
equivalent equilibrium empirical vector contained inEu. Thus, although the equilibrium mac-
rostates corresponding touPN are characterized by a well-defined value of the energy, it is
impossible to assign an inverse temperatureb to those macrostates from the viewpoint of the
canonical ensemble. In other words, the canonical ensemble is blind to all energy valuesu con-
tained in the intervalN of nonconcavity ofs. This is closely related to the presence of the
discontinuous phase transition seen in the canonical ensemble.

The quantityu0 defined ins6.2d plays a central role in the analysis of phase transitions and
ensemble equivalence in the Curie–Weiss–Potts model. First, as we saw in our discussion of Fig.
1, u0 separates the intervals−1

2 ,u0d of strict concavity ofs and of full ensemble equivalence from
the intervalsu0,−1/2qd of nonconcavity ofs and of ensemble nonequivalence. Second, partsad of

Lemma 6.1 shows thatu0 equals the limiting mean energyH̃sn1sbcdd in the canonical equilibrium
macrostaten1sbd asb→ sbcd+. In Figs. 3 and 4 we present forq=3 a third, geometric interpreta-
tion of u0 that is also related to ensemble nonequivalence.

Before explaining this third, geometric interpretation ofu0, we recall that according to partsad
of Theorem 4.2 specialized toq=3, Eu is nonempty, or equivalently the constraint set ins4.5d is

nonempty, if and only ifuPf−1
2 ,−1/2qg=f−1

2 ,−1
6
g. Geometrically, the energy constraintH̃snd

=−1
2kn ,nl=u corresponds to the sphere inR3 with center 0 and radiusÎ−2u. This sphere intersects

the setP of probability vectors if and only ifuPf−1
2 ,−1

6
g. For u=−1

6, the sphere is tangent toP
at the unique pointr while for u=−1

2, the hypersphere intersectsP at theq unit-coordinate vectors.
The intersection of the sphere andP undergoes a phase transition atu0 in the following sense. For
uPfu0,−1

6
d the sphere intersectsP in a circle while foruPf−1

2 ,u0d, the sphere intersectsP in a
proper subset of a circle; the complement of this subset lies outside the nonnegative octant ofR3.
For u=u0=−1

4, the circle of intersection is maximal and is tangent to the boundary ofP.
The setEb of canonical equilibrium macrostates forq=3 is represented in Fig. 3. In this figure

FIG. 3. Graphical representation of the setEb of canonical equilibrium macrostates forq=3 showing the maximal circle of
intersection corresponding tou=u0; the vectorr; the unit-coordinate vectorsA, B, and C; and the macrostatesAc

=n1sbcd, Bc=n2sbcd, andCc=n3sbcd. The line segmentsAcA, BcB, andCcC represent the elements ofEb for b.bc.
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the maximal circle of intersection corresponding tou=u0=−1
4 is shown together with the vectorr

at its center; the pointsA, B, and C representing the respective unit-coordinate vectorss1,0,0d,
s0,1,0d, and s0,0,1d; and the pointsAc, Bc, andCc representing the respective equilibrium mac-
rostatesn1sbcd, n2sbcd, andn3sbcd. These three macrostates lie on the maximal circle of intersec-

tion sinceH̃sn1sbcdd=u0 fLemma 6.1sbdg. Forb.bc all nPEb have two equal components, and as
b→` these vectors converge to the unit-coordinate vectorsA, B, andC. Hence forb.bc the

equilibrium macrostatesn1sbd, n2sbd, andn3sbd are represented by the open line segmentsAcA,

BcB, andCcC.
The setEu of microcanonical equilibrium macrostates forq=3 is represented in Fig. 4. In this

figure the maximal circle of intersection corresponding tou=u0=−1
4 is shown together with the

vector r at its center; the pointsA, B, and C representing the unit-coordinate vectors; and the
points A0, B0, and C0 representing the respective equilibrium macrostatesm1su0d, m2su0d, and
m3su0d. For uP s−1

2 ,−1
6

d all nPEu have two equal components, and asu→ s−1
2

d+ they converge to
the unit coordinate vectorsA, B, andC. Hence foruP s−1

2 ,−1
6

d the equilibrium macrostatesm1sud,
m2sud, andm3sud are represented by the open line segmentsrA, rB, andrC. As we saw in the
preceding section, for eachuP s−1

2 ,−1
6

d the macrostatesm1sud, m2sud, andm3sud lie on the inter-

section of the sphere of radiusÎ−2u with P. In particular, A0=m1su0d, B0=m2su0d, and C0

=m3su0d lie on the maximal circle of intersection.
The distinguishing feature of Fig. 4 is the three open dashed-line segmentsrA0, rB0, andrC0

representing the elements ofEu that are not realized canonically; namely,m1sud, m2sud, andm3sud
for uP su0,−1

6
d. The three half open solid-line segmentsA0A, B0B, andC0C represent the elements

of Eu that are realized canonically; namely,m1sud, m2sud, andm3sud for uP s−1
2 ,u0g. For each such

u the value ofb for which Eu=Eb is determined by the equationH̃sn1sbdd=u fTheorem 6.2sadg.
Thus in Fig. 3 the corresponding elements ofEb lie on the intersection of the sphere of radius
Î−2u andP.

This completes our discussion of equivalence and nonequivalence of ensembles. In the next
section we will prove a number of statements concerning ensemble equivalence and nonequiva-
lence that have been determined graphically.

VI. PROOFS OF EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

Using the general results of Ref. 15, we stated in the preceding section the equivalence and
nonequivalence relationships that exist betweenEu andEb and verified these relationships using
the plots of these sets forq=8 given in Fig. 2. Our purpose in the present section is to prove these
relationships using mapping properties of the mean energy functionusbd defined forbÞbc by

FIG. 4. Graphical representation of the setEu of microcanonical equilibrium macrostates forq=3 showing the maximal
circle of intersection corresponding tou=u0; the vectorr; the unit-coordinate vectorsA, B, andC; and the macrostates
A0=m1su0d, B0=m2su0d, andC0=m3su0d. The solid-line segmentsA0A, B0B, andC0C represent the elements ofEu that are
realized canonically. The dashed-line segmentsrA0, rB0, and rC0 represent the elements ofEu that are not realized
canonically.

063301-16 Costeniuc, Ellis, and Touchette J. Math. Phys. 46, 063301 ~2005!

Downloaded 13 May 2005 to 128.119.47.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



usbd = 5H̃srd = −
1

2q
for b , bc,

H̃sn1sbdd = − 1
2kn1sbd,n1sbdl for b . bc.

6 s6.1d

Heren1sbd is the unique canonical equilibrium macrostate modulo permutations forb.bc fTheo-
rem 3.1g. According to the next lemma, forb.bc, usbd is continuous and strictly decreasing and
usbd,−1/2q, which equals the mean energy forb,bc. It follows that asb increases throughbc,

usbd is discontinuous, jumping down from −1/2q to H̃sn1sbdd. This discontinuity inusbd mirrors
in a natural way the discontinuity inEb asb increases throughbc.

We use the same notationu0 for the quantity defined ins6.2d as for the quantityu0 appearing
in Fig. 1 in Sec. V because these two quantities coincide. Indeed, withu0 defined ins6.2d, we
prove in Theorem 6.2 that the largest open interval on which full equivalence of ensembles holds
is int F= s−1

2 ,u0d. This coincides with the interior of the intervalF shown in Fig. 1. As that figure
exhibits, intF is the largest open interval on whichs is strictly concave; by Theorem 5.1, that open
interval coincides with the largest open interval on which full equivalence of ensembles holds.

Lemma 6.1: ForbP fbc,`d we definen1sbd as in part sbd of Theorem 3.1 and we define

u0 =
− q2 + 3q − 3

2qsq − 1d
. s6.2d

The following conclusions hold.

sad −1
2 ,u0,−1/2q and limb→sbcd+ usbd=H̃sn1sbcdd=u0.

sbd The function mapping

b P sbc,`d ° usbd = H̃sn1sbdd = − 1
2kn1sbd,n1sbdl

is a strictly decreasing, differentiable bijection onto the intervals−1
2 ,u0d.

Proof: sad The inequalities involvingu0 follow immediately from the inequalityqù3. The

relationshipH̃sn1sbcdd=u0 is easily determined using the explicit form ofn1sbcd given in s3.5d.
That limb→sbcd+ usbd=H̃sn1sbcdd follows from the definition ofusbd and the continuity ofn1sbd
for bùbc.

sbd For wPR define

fswd = −
1

2
S f1 + sq − 1dwg2

q2 + sq − 1d f1 − wg2

q2 D .

For bP sbc,`d we use the formula forn1sbd given in partsbd of Theorem 3.1 to writeusbd
=−fswsbdd. The quantitywsbd is positive and strictly increasing, and for allw.0,

f8swd =
sq − 1dw

q
. 0.

As the composition of two strictly increasing functions, forbP sbc,`d, −usbd is strictly increasing
and thususbd is strictly decreasing. In addition, since limb→` wsbd=1 fTheorem 3.1sadg, we have
limb→` usbd=−1

2, and by partsad of this lemma

lim
b→sbcd+

usbd = H̃snsbcdd = u0.

It follows that the function mappingbP sbc,`d°usbd is a strictly decreasing, differentiable
bijection onto the intervals−1

2 ,u0d. This completes the proof of partsbd. j

Mapping properties ofusbd play an important role in the next theorem, in which we prove that
the setsF, P, and N defined in s6.3d correspond to full equivalence, partial equivalence, and
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nonequivalence of ensembles. ForuPF we consider three subcases in order to indicate the value
of b for whichEu=Eb; for uP int F= s−1

2 ,u0d, b andu are related byb=s8sud andu=usbd. Partscd
shows an interesting degeneracy in the equivalence-of-ensemble picture, the setEu for u
=−1/2q corresponding to allEb for b,bc. This is related to the fact that for all such values ofb,
Eb=hrj and thus the mean energyusbd equals −1/2q.

Theorem 6.2:We define ssud in s4.2d, usbd in s6.1d, Eb in s2.3d, andEu in s2.4d. We also define
bc in s3.1d and u0 in s6.2d. The sets

F = s− 1
2,u0d ø H−

1

2q
J, P = hu0j, andN = Su0,−

1

2q
D s6.3d

have the following properties.
sad Full equivalence onint F: For uP int F= s−1

2 ,u0d, there exists a uniquebP sbc,`d such

that Eu=Eb; b satisfies usbd=H̃sn1sbdd=u.
sbd For uP int F= s−1

2 ,u0d, s is differentiable. The values u andb for whichEu=Eb in part sad
are also related by the thermodynamic formula s8sud=b.

scd Full equivalence at−1/2q: For u=−s1/2qdPF, E−1/2q=Eb for any b,bc.
sdd Partial equivalence on P: For uP P=hu0j, Eu0,Ebc

but Eu0ÞEbc
. In fact, Ebc

=Eu0øE−1/2q.
sed Nonequivalence on N: For any uPN=su0,−1/2qd, EuùEb=x for all bPR.
In reference to the properties ofs given in partsbd, one can show that the function mapping

uP s−1
2 ,u0d°s8sud is a strictly decreasing, differentiable bijection onto the intervalsbc,`d and

that this bijection is the inverse of the bijection mappingbP sbc,`d°usbd.
Before we prove the theorem, it is instructive to compare its assertions with those in Theorem

5.1, which formulates ensemble equivalence and nonequivalence in terms of support properties of
s. These support properties can be seen in the schematic plot of the the graph ofs in Fig. 1. We
start with partsad of Theorem 6.2, which states that for anyuP int F= s−1

2 ,u0d there exists a unique
bP sbc,`d such thatEu=Eb. As promised in partsadsid of Theorem 5.1, thisb is the slope of a
strictly supporting line to the graph ofs at u, and sos is strictly concave on intF. The situation
that holds whenu=−1/2q fTheorem 6.2scdg is also consistent with partsadsid of Theorem 5.1. For
this value ofu, which is the isolated point of the setF of full equivalence, there exist infinitely
many strictly supporting lines to the graph ofs, the possible slopes of which are allb
P s−` ,bcd. On the other hand, whenu=u0, which is the only value lying in the setP of partial
equivalence, we haveEu0,Ebc

but Eu0ÞEbc
fTheorem 6.2sddg. In combination with partsadsii d of

Theorem 5.1, it follows that there exists a nonstrictly supporting line atu0 with slopebc and that
s is concave atu0 but not strictly concave. Finally, foruPN=su0,−1/2qd, we haveEuùEb=x for
all bPR fTheorem 6.2sedg. In accordance with partsadsiii d of Theorem 5.1,s has no supporting
line at anyuPN, and by Theorem A.4 in Ref. 10s is not concave at anyuPN.

Proof of Theorem 6.2:sad For b.bc part sbd of Theorem 3.1 and partsbd of Theorem 5.1
imply that

Eb = hn1sbd, . . . ,n qsbdj = ø
uPH̃sEbd

Eu.

The symmetry ofH̃ with respect to permutations implies thatH̃sEbd=hH̃sn1sbddj. Thus for any
b.bc

Eb = EH̃sn1sbdd. s6.4d

Since for anyuP int F= s−1
2 ,u0d there exists a uniquebP sbc,`d satisfyingusbd=H̃sn1sbdd=u

fLemma 6.1sbdg, it follows thatEu=Eb.
sbd The differentiability ofs on intF is proved in partsbd of Theorem 6.3, which depends only

on partsad of the present theorem. By partsad of the present theorem and partsad of Theorem 5.1,
s has a strictly supporting line at eachuP int F. It follows thats is strictly concave on intF and
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thus concave on intF fRef. 10, Lemma 4.1sadg; i.e., ssud=s** sud for all uP int F. The differentia-
bility of s on intF fTheorem 6.3sbdg combined with partsad of Theorem A.3 in Ref. 10 implies that
s8sud=b.

scd By s4.6d and partsbd of Theorem 3.1,

E−1/2q = hrj = Eb for any b , bc. s6.5d

sdd By part sbd of Theorem 3.1, symmetry, and partsad of Lemma 6.1,

H̃sEbc
d = hH̃srd,H̃sn1sbcddj = H−

1

2q
,u0J .

Hence bys6.4d and s6.5d,

Ebc
= ø

uPH̃sEbc
d
Eu = E−1/2q ø Eu0 = hrj ø Eu0.

However,r¹Eu0 sincer does not satisfy the constraintH̃srd=u0. It follows thatEu0,Ebc
but that

Eu0ÞEbc
.

sed If uPN, then u¹ s−1
2 ,u0d, and so by partsbd of Lemma 6.1uÞ H̃sn1sbdd for any b

P sbc,`d. Since bys6.4d Eb=EH̃sn1sbdd for all b.bc, it follows that for all b.bc,

Eu ù EH̃sn1sbdd = x

and thus thatEuùEb=x. For anyb,bc s6.5d states thatEb=E−1/2q=hrj. SinceuPN, we have
uÞ−1/2q and thusE−1/2qùEu=x. It follows that EuùEb=x for any b,bc. Finally, for b=bc

part sbd of Theorem 3.1 states thatEbc
=hr ,n1sbcd , . . . ,n qsbcdj. However, since H̃srd

=−s1/2qd¹N and H̃sn isbcdd=u0¹N, none of the vectors inEbc
satisfies the constraintH̃snd=u.

ThusEuùEbc
=x. We have provedEuùEb=x for all bPR. The proof of the theorem is com-

plete. j

We end this section by showing that for arbitraryqù4 andu in the equivalence setsFø P
= s−1

2 ,u0gø h−1/2qj the formulas forEu andssud given in partsdd of Theorem 4.2 and partscd of
Theorem 4.3 are rigorously true. Our strategy is to use the equivalence of the microcanonical and
canonical ensembles foruPFø P and the fact that the form ofEb is known exactly for allb.
Thus, we translate the form ofnPEb, as given in partsbd of Theorem 3.1, into the form ofn
PEu for uPFø P. For bP fbc,`d, the lastq−1 components ofn1sbdPEb are given by

n j
1sbd =

1 − wsbd
q

, s6.6d

and these components are not equal to the first component. Since for eachuPFø P there exists
bP fbc,`g such that eitherEu=Eb or Eu,Eb, it follows that modulo permutations allnPEu have
their lastq−1 components equal to each other. That is, modulo permutations there exist numbers
a andb in f0, 1g such thatn=sa,b, . . . ,bd. The possible values ofa andb are easily determined by
considering the constraints satisfied bynPEu. These constraints are

a + sq − 1db = 1 anda2 + sq − 1db2 = − 2u.

The two solutions of these equations are

a1 =
1 −Îsq − 1ds− 2qu− 1d

q
, b1 =

q − 1 +Îsq − 1ds− 2qu− 1d
sq − 1dq

and
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a2 =
1 +Îsq − 1ds− 2qu− 1d

q
, b2 =

q − 1 −Îsq − 1ds− 2qu− 1d
sq − 1dq

.

Of the two valuesb1 andb2, only b2 has the form given ins6.6d with

wsbd =
Îsq − 1ds− 2qu− 1d

q − 1
P f0,1g.

We conclude that modulo permutations eachnPEu has the formsa2,b2, . . . ,b2d, in which the last
q−1 components all equalb2. This coincides with the formula form1sud given in partsdd of
Theorem 4.2, which in turn gives the explicit formula forssud in part scd of Theorem 4.3. This
information is summarized in partsad of the next theorem. The differentiability ofs on intF,
which is stated in partsbd, is an immediate consequence of the explicit formula forssud.

Theorem 6.3:We define u0 in s6.2d. The following conclusions hold.
sad For arbitrary qù4 and u in the equivalence sets Fø P= s−1

2 ,u0gø h−1/2qj the formulas
for Eu and ssud given in partsdd of Theorem4.2 and partscd of Theorem4.3 are rigorously true.

sbd For arbitrary qù4, s is differentiable on the intervalint F= s−1
2 ,u0d and s8sud is given by

s5.1d.
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APPENDIX A: TWO RELATED MAXIMIZATION PROBLEMS

Theorem A.1 is a new result on the maximum points of certain functions related by convex
duality. It is formulated for a finite, differentiable, convex functionF on Rs and its Legendre–
Fenchel transform,

F*szd = sup
xPRs

hkx,zl − Fsxdj.

The domain ofF* is the set domF* =hzPRs :F*szd,`j. With only minor changes in notation the
theorem is also valid for a finite, Gateaux-differentiable, convex function on a Hilbert space.

Theorem A.1 will be applied in Appendix B to prove that forb.0, Eb has the form given in
part sbd of Theorem 3.1. Another application of Theorem A.1 is given in Proposition 3.4 in Ref.
17. It is used there to determine the form of the set of canonical equilibrium macrostates for
another important spin system known as the mean-field Blume–Emery–Griffiths model.

Theorem A.1: Let s be a positive integer and F a finite, differentiable, convex function
mappingRs into R. Assume thatsupzPRshFszd− 1

2izi2j,` and that Fszd− 1
2izi2 attains its supre-

mum. The following conclusions hold:

sad supzPRshFszd− 1
2izi2j=supzPdom F*h 1

2izi2−F*szdj.
sbd 1

2izi2−F*szd attains its supremum ondomF* ,
scd the global maximum points of Fszd− 1

2izi2 coincide with the global maximum points of
1
2izi2−F*szd.

Proof: We define the subdifferential ofF* at z0PRs by

]F*sz0d = hy P Rs:F*szd ù F*sz0d + ky,z− z0l for all zP Rsj.

We also define the domain of]F* to be the set ofz0PRs for which ]F*sz0dÞx. The proof of the
theorem uses three properties of Legendre–Fenchel transformsssee Ref. 43 for backgroundd.
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s1d F* is a convex, lower semicontinuous function mappingRs into Rø h`j, and for all z
PRs, F** szd=sF*d*szd equalsFszd fRef. 14, Theorem VI.5.3sad,sedg.

s2d If for some z0PRs and zPRs we havez= ¹Fsz0d, then Fsz0d+F*szd=kz0,zl fRef. 14,
Theorems VI.3.5sdd and VI.5.3scdg, and so zPdomF* . In particular, if z=z0, then z0
PdomF* andFsz0d+F*sz0d=iz0i2.

s3d For z0PdomF* and yP]F*sz0d we have Fsyd+F*sz0d=ky,z0l fRef. 14, Theorem
VI.5.3scd,sddg. In particular, ify=z0, thenFsz0d+F*sz0d=iz0i2.

We first prove partsad, which is a special case of Theorem C.1 in Ref. 13. LetM
=supzPRshFszd−izi2/2j. Since for anyzPdomF* andx in Rs,

F*szd + M ù kx,zl − Fsxd + M ù kx,zl − ixi2/2,

we have

F*szd + M ù sup
xPRs

hkx,zl − ixi2/2j = izi2/2.

It follows that M ù izi2/2−F*szd and thus thatM ùsupzPdom F*hizi2/2−F*szdj. To prove the re-
verse inequality, letN=supzPdom F*hizi2/2−F*szdj. Then for anyzPRs andxPdomF*

izi2/2 + N ù kx,zl − ixi2/2 + N ù kx,zl − F*sxd.

SinceF*sxd=` for x¹domF* , it follows from property 1 that

izi2/2 + N ù sup
xPdom F*

hkx,zl − F*sxdj = Fszd

and thus thatNùsupzPRshFszd−izi2/2j.
In order to prove partssbd and scd of Theorem A.1, letz0 be any point inRs at whichFszd

− 1
2izi2 attains its supremum. Thenz0= ¹Fsz0d, and so by the last line of propertys2d, z0

PdomF* andFsz0d+F*sz0d=iz0i2. Partsad now implies that

sup
zPRs

hFszd − 1
2izi2j = Fsz0d − 1

2iz0i2 = 1
2iz0i2 − F*sz0d = sup

zPdom F*
h 1

2izi2 − F*szdj .

We conclude that12izi2−F*szd attains its supremum on domF* at z0. Not only have we proved part
sbd, but also we have proved half of partscd; namely, any global maximizer ofFszd− 1

2izi2 is a
global maximizer of12izi2−F*szd.

Now let z0 be any point at which1
2izi2−F*szd attains its supremum. Then for anyzPRs

1
2kz0,z0l − F*sz0d ù

1
2kz,zl − F*szd.

It follows that for anyzPRs,

F*szd ù F*sz0d + 1
2skz,zl − kz0,z0ld ù F*sz0d + kz0,z− z0l

and thus thatz0P]F*sz0d. By the last line of propertys3d this implies thatFsz0d+F*sz0d=iz0i2. In
conjunction with partsad this in turn implies that

sup
zPdom F*

h 1
2izi2 − F*szdj = 1

2iz0i2 − F*sz0d = Fsz0d − 1
2iz0i2 = sup

zPRs
hFszd − 1

2izi2j .

We conclude thatFszd− 1
2izi2 attains its supremum atz0. This completes the proof of the theo-

rem. j

APPENDIX B: FORM OF Eb

We first derive the form ofEb for b.0 as given in partsbd of Theorem 3.1. We then prove
that Eb=hrj for all bø0.
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Eb is defined as the set ofnPP that minimize Rsn urd−sb /2dkn ,nl. Since b.0, this is
equivalent to

Eb = Hn P P:n maximizes
1

2
kn,nl −

1

b
RsnurdJ . sB1d

This maximization problem has the form of the right-hand side of partsad of Theorem A.1; viz.,

sup
nPP

H1

2
kn,nl −

1

b
RsnurdJ = sup

nPdom F*
H1

2
ini2 − F*sndJ

with F*snd=s1/bdRsn urd.
In order to determine the functionF having this Legendre–Fenchel transform, forzPRq we

define the finite, differentiable, convex function

Gszd = logSo
i=1

q

ezi
1

q
D sB2d

and setGbszd=s1/bdGsbzd. Since fornPRq sRef. 14, Theorem VIII.2.2d,

G*snd = HRsnurd for n P P,

` otherwise,
J

it follows that for nPRq,

sGbd*snd = sup
zPRq

Hkz,nl −
1

b
GsbzdJ =

1

b
G*snd = 5 1

b
Rsnurd for n P P,

` otherwise.
6

ThusFszd=s1/bdGsbzd. By part sad of Theorem A.1,

sup
zPRq

H 1

b
Gsbzd −

1

2
izi2J = sup

nPP
H1

2
kn,nl −

1

b
RsnurdJ ,

and by part sbd of the theorem the global maximum points ofGsbzd− 1
2izi2 and 1

2kn ,nl
−s1/bdRsn urd coincide.

EquationsB1d now implies that

Eb = HzP Rq:z maximizes
1

b
Gsbzd −

1

2
izi2J = HzP Rq:z minimizes

b

2
izi2 − GsbzdJ .

We summarize this discussion in the following corollary. Partsbd of the corollary is proved in part
sbd of Theorem 2.1 in Ref. 19.

Corollary B.1: We define the finite, convex, continuous functionG in sB2d. The following
conclusions hold.

sad Eb coincides with the set of global minimum points of

Gbszd =
b

2
izi2 − log o

i=1

q

ebzi =
b

2
izi2 − Gsbzd − log q.

sbd For 0,b,bc, b=bc, andb.bc the set of global minimum points of Gb has the form given
by the right-hand side ofs3.4d fTheorem3.1sbdg.
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Corollary B.1 completes the proof of Theorem 3.1. Kiessling’s proof of this corollary based on
Lagrange multipliers is given in Appendix B of Ref. 20. Continuous analogues of the corollary are
mentioned in Refs. 32, 33, and 38, but are not proved there.

We now show that for allbø0, Eb=hrj. This is obvious forb=0 sincen=r is the unique
vector inP that minimizesRsn urd. Our goal is to prove that forb,0, n=r is also the unique
vector in P that minimizesRsn urd−sb /2dkn ,nl. Let n̄ be a point inP at which Rsn urd−sb /2d
3kn ,nl attains its infimum. For anyi =1,2, . . . ,q,

]SRsnurd −
b

2
kn,nlD

]ni
= log ni + 1 −bni ,

which is negative for all sufficiently smallni .0. It follows that n̄ does not lie on the relative
boundary ofP; i.e., n̄ j .0 for all i =1,2, . . . ,q. We complete the proof by showing that for any
1ø j ,køq, n̄ j = n̄k. Sincer is the only point inP satisfying these equalities, we will be done.

Given aP s0,1d, we consider the reduced two-variable problem of minimizingRsn urd
−sb /2dkn ,nl overn j .0 andnk.0 under the constraintn j +nk=a; all the other componentsni are
fixed and equaln̄i. Settingnk=a−n j, we define

Fsn jd = Rsnurd −
b

2
kn,nl.

Differentiating with respect ton j shows that any global minimizern j must satisfy

F8sn jd = log n j − logsa − n jd − bs2n j − ad = 0.

Since

F9sn jd =
1

n j
+

1

a − n j
− 2b . 0,

F8sn jd is strictly increasing from negative values for alln j near 0 to positive values for alln j near
a. It follows that the only root ofF8sn jd=0 is n j =a/2 and thus thatnk=a/2=n j. Being a global
minimizer ofRsn urd−sb /2dkn ,nl overP, n̄ is also a global minimizer of the reduced two-variable
problem. SinceaP s0,1d is arbitrary, it follows that for any distinct pair of indicesn̄ j = n̄k. This
completes the proof.
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