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Using the theory of large deviations, we analyze the phase transition structure of
the Curie—Weiss—Potts spin model, which is a mean-field approximation to the
nearest-neighbor Potts model. It is equivalent to the Potts model on the complete
graph onn vertices. The analysis is carried out both for the canonical ensemble and
the microcanonical ensemble. Besides giving explicit formulas for the microcanoni-
cal entropy and for the equilibrium macrostates with respect to the two ensembles,
we analyze ensemble equivalence and nonequivalence at the level of equilibrium
macrostates, relating these to concavity and support properties of the microcanoni-
cal entropy. The Curie—-Weiss—Potts model is the first statistical mechanical model
for which such a detailed and rigorous analysis has been carried 0R00®&
American Institute of Physic§DOI: 10.1063/1.1904507

I. INTRODUCTION

The nearest-neighbor Potts model, introduced in Ref. 40, takes its place next to the Ising
model as one of the most versatile models in equilibrium statistical mecHAretion | C of
Ref. 49 presents a mean-field approximation to the Potts model, defined in terms of a mean
interaction averaged over all the sites in the model. We refer to this approximation as the Curie—
Weiss—Potts model. Both the nearest-neighbor Potts model and the Curie-Weiss—Potts model are
defined by sequences of probability distributionsafpin random variables that may occupy one
of q different states*, ... ,69, whereq=3. Forq=2 the Potts model reduces to the Ising model
while the Curie—Weiss—Potts model reduces to the much simpler mean-field approximation to the
Ising model known as the Curie-\Weiss motfel.

Two ways in which the Curie—Weiss—Potts model approximates the Potts model, and in fact
gives rigorous bounds on guantities in the Potts model, are discussed in Refs. 31 and 39. Proba-
bilistic limit theorems for the Curie—-Weiss—Potts model are proved in Ref. 19, including the law of
large numbers and its breakdown as well as various types of central limit theorems. The model is
also studied in Ref. 20, which focuses on a statistical estimation problem for two parameters
defining the model.

In order to carry out the analysis of the model in Refs. 19 and 20, detailed information about
the structure of the set of canonical equilibrium macrostates is required, including the fact that it
exhibits a discontinuous phase transition as the inverse tempegtoceeases through a critical
value B.. This information plays a central role in the present paper, in which we use the theory of
large deviations to study the equivalence and nonequivalence of the sets of equilibrium mac-
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rostates for the microcanonical and canonical ensembles. An important consequence of the dis-
continuous phase transition exhibited by the canonical ensemble in the Curie—~Weiss—Potts model
is the implication that the nearest-neighbor Potts modelbmlso undergoes a discontinuous
phase transition wheneveris sufficiently large(Ref. 4, Theorem 2)1

In Ref. 15 the problem of the equivalence of the microcanonical and canonical ensembles was
completely solved for a general class of statistical mechanical models including short-range and
long-range spin models and models of turbulence. This problem is fundamental in statistical
mechanics because it focuses on the appropriate probabilistic description of statistical mechanical
systems. While the theory developed in Ref. 15 is complete, our understanding is greatly enhanced
by the insights obtained from studying specific models. In this regard the Curie—Weiss—Potts
model is an excellent choice, lying at the boundary of the set of models for which a complete
analysis involving explicit formulas is available.

For the Curie—-Weiss—Potts model ensemble equivalence at the thermodynamic level is studied
numerically in Ref. 29, Secs. 3-5. This level of ensemble equivalence focuses on whether the
microcanonical entropy is concave on its domain; equivalently, whether the microcanonical en-
tropy and the canonical free energy, the basic thermodynamic functions in the two ensembles, can
each be expressed as the Legendre—Fenchel transform of the(R#ferl5, pp. 1036-1037
Nonconcave anomalies in the microcanonical entropy partially correspond to regions of negative
specific heat and thus thermodynamic instability.

The present paper significantly extends Ref. 29, Secs. 3-5 by analyzing rigorously ensemble
equivalence at the thermodynamic level and by relating it to ensemble equivalence at the level of
equilibrium macrostates via the results in Ref. 15. As prescribed by the theory of large deviations,
the set&" of microcanonical equilibrium macrostates and the &gtof canonical equilibrium
macrostates are defined (B.4) and (2.3). These macrostates are, respectively, the solutions of a
constrained minimization problem involving probability vectors 8f and a related, uncon-
strained minimization problem. The equilibrium macrostates for the two ensembles are probability
vectors describing equilibrium configurations of the model in each ensemble in the thermody-
namic limitn— . For eachi=1,2, ... g, theith component of an equilibrium macrostate gives
the asymptotic relative frequency of spins taking the spin-value

Defined via conditioning on the energy per particle, the microcanonical ensemble expresses
the conservation of physical quantities such as the energy. Among other reasons, the mathemati-
cally more tractable canonical ensemble was introduced by &itibsthe hope that in the
— oo |limit the two ensembles are equivalent; i.e., all asymptotic properties of the model obtained
via the microcanonical ensemble could be realized as asymptotic properties obtained via the
canonical ensemble. Although most textbooks in statistical mechanics, including Refs. 1, 22, 28,
35, 41, and 44, claim that the two ensembles always give the same predictions, in general this is
not the casé® There are many examples of statistical mechanical models for which nonequiva-
lence of ensembles holds over a wide range of model parameters and for which physically inter-
esting microcanonical equilibria are often omitted by the canonical ensemble. Besides the Curie—
Weiss—Potts model, these models include the mean-field Blume—Emery—Griffiths T1idtiie
Hamiltonian mean-field modéf;*® the mean-fieldX—Y model** models of turbulenc&?6:2133:42
models of plasma¥*® gravitational system& 2>3"*’and a model of the Lennard-Jones gds.
is hoped that our detailed analysis of ensemble nonequivalence in the Curie—Weiss—Potts model
will contribute to an understanding of this fascinating and fundamental phenomenon in a wide
range of other settings.

In the present paper, after summarizing the large deviation analysis of the Curie—~\Weiss—Potts
model in Sec. Il, we give explicit formulas for the elementsgfand the elements & in Secs.

Il and IV. This analysis shows thaf; exhibits a discontinuous phase transition at a critical
inverse temperatur@, and thate" exhibits a continuous phase transition at a critical energy

The implications of these different phase transitions concerning ensemble nonequivalence are
studied graphically in Sec. V and rigorously in Sec. VI, where we exhibit a range of values of the
energyu for which the microcanonical equilibrium macrostates are not realized canonically; i.e.,
&Yis disjoint from&, for all 8. As described in the main theorem in Ref. 15 and summarized here
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in Theorem 5.1, this range of values of the energy is precisely the set on which the microcanonical
entropy is not concave. The analysis of this bridge between ensemble nonequivalence at the
thermodynamic level and ensemble nonequivalence at the level of equilibrium macrostates is one
of the main contributions of Ref. 15 for general models and of the present paper for the Curie—
Weiss—Potts model. In a sequel to the present p%\per,will extend our analysis of the Curie—
Weiss—Potts model to the so-called Gaussian enséfiié’***&o show, among other results,

that for each value of the energy for which the microcanonical and canonical ensembles are
nonequivalent, we can find a Gaussian ensemble that is fully equivalent with the microcanonical
ensemble?

II. SETS OF EQUILIBRIUM MACROSTATES FOR THE TWO ENSEMBLES

Let =3 be a fixed integer and defink={6", ¢, ... 6%, where thed' are anyq distinct
vectors inRY. In the definition of the Curie—~Weiss—Potts model, the precise values of these vectors
is immaterial. For eaclhn e N the model is defined by spin random variables w,, ... ,», that
take values iM\.. The canonical and microcanonical ensembles for the model are defined in terms
of probability measures on the configuration spadés which consist of the microstates
=(wq,...,w,). We also introduce the-fold product measurd?, on A" with identical one-
dimensional marginals

Thus for allw e A", P (w)=1/g". Forne N and w € A" the Hamiltonian for they-state Curie—
Weiss—Potts model is defined by

n
1
Hn(w) = - on > o)),
jk=1

where d(wj, w) equals 1 ifw;=w, and equals 0 otherwise. The energy per particle is defined by
1
hn(w) = HHn(U-’)-

For inverse temperaturg e R and subset8 of A" the canonical ensemble is the probability
measureP, ; defined by

1
- > exd-nghy(w)].
Ewe/\“ exd-nghy(w)] wes

For energyu e R andr >0 the microcanonical ensemble is the conditioned probability measure
Pu" defined by

Pn,B{B} =

Pr'{B}=Py{Blh, e [u-r,u+rl}.

The key to our analysis of the Curie—Weiss—Potts model is to express both the canonical and the
microcanonical ensembles in terms of the empirical vector

Ly =Ln(w) = (Ly (@), Ln o), ... al—n,q(w)),

theith component of which is defined by
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1e .
Lni(w) = HE N w;, 0").
=1

This quantity equals the relative frequency with whighj € {1, ... n}, equalsh'. L, takes values
in the set of probability vectors

q
P=YveRhv=(v,v, ... Vg), eachy, = 0,2 =1
i=1

As we will see, each probability vector iR represents a possible equilibrium macrostate for the
model.

There is a one-to-one correspondence betveand the seP(A) of probability measures on
A, v e P corresponding to the probability meas®®, »,5,i. The elemenp e P corresponding to
the one-dimensional marginal of the prior measure®,, is the uniform vector having equal
components 1d.

We denote by(-,) the inner product oRY. Since

q n n n
> > Hw),é) kE Nwwé) = 2 dw),w),
=1

i=1 j=1 jk=1

it follows that the energy per particle can be rewritten as

1 < 1
hn(w) = = R—,k% Sy, @) = = S{Ln(@), Lo(@));
i.e.,
ho(0) = H(Ly(w)), whereH(») =-3(v,») for ve P. (2.1

We callH the energy representation function.

We appeal to the theory of large deviations to define the sets of microcanonical equilibrium
macrostates and canonical equilibrium macrostates. Sanov’s theorem states that with respect to the
product measureB,, the empirical vectors,, satisfy the large deviation principl&.DP) on P
with rate function given by the relative entropy-|p) (Ref. 14, Theorem VIII.2.L For v € P this
is defined by

q
R(v|p) = 2 v log(qu,).

i=1

We express this LDP by the formal notati®y{L, € dv}~exd-nR(v|p)]. The LDPs forL,, with
respect to the two ensemblBg ; andP," in the thermodynamic limih— o, r —0 can be proved
from the LDP for theP-distributions ofL, as in Theorems 2.4 and 3.2 in Ref. 15, in which minor
notational changes have to be made. We express these LDPs by the formal notation

Pngiln € dvp =exd—nlg(v)] andPy{L, e dv} = exd - nl‘(»)], (2.2

where forv e P

lg(v) = R(v|p) - §<V’ v) — const

and
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() = R(v|p) — const if - %(v,v)zu,
"= o0 otherwise.

The constants appearing in the definitiond pandI" have the properties that infy | 5(»)=0 and
inf,cp 1'(»)=0. Thuslz and1" mapP into [0,x).

As the formulas in(2.2) suggest, ifl 5(v) >0 or IY(v)>0, thenv has an exponentially small
probability of being observed in the corresponding ensemble in the thermodynamic limit. Hence it
makes sense to define the corresponding sets of equilibrium macrostates to be

Eg={v e Pilgv)=0} and&'={v e P:I%(v)=0}.

A rigorous justification for this is given in Ref. 15, Theorem @y Using the formulas fol; and
[, we see that

Ep= {v e P:v minimizesR(v|p) — §<V' V>} (2.3
and

Ei= {v e P:v minimizesR(v|p) subject to —%{v, V)= u}. (2.9

Each element in £; and & describes an equilibrium configuration of the model in the corre-
sponding ensemble in the thermodynamic limit. Tttecomponent; gives the asymptotic rela-
tive frequency of spins taking the valu.

The set& is defined for allu for which the constraint in the definition of is satisfied for
somev e P. Otherwise £ is not defined. €Y is defined, therg" is nonempty; if€" is not defined,
then we shall sef'=@.

The question of equivalence of ensembles at the level of equilibrium macrostates focuses on
the relationships betweeft, defined in terms of the constrained minimization probleni2i),
and &g, defined in terms of the related, unconstrained minimization probleg2.B). We will
focus on this question in Secs. V and VI after we determine the structugsasfd £ in the next
two sections.

Ill. FORM OF £; AND ITS DISCONTINUOUS PHASE TRANSITION

In this section we derive the form of the s&f of canonical equilibrium macrostates for all
B eR. This form is given in Theorem 3.1, which shows that with respect to the canonical en-
semble the Curie—-Weiss—Potts model undergoes a discontinuous phase transition at the critical
inverse temperature

29-1)
Bc= T4-2 log(q-1). (3.9
In order to describe the form dfg, we introduce the functions that mapg0, 1] into P and is

defined by

1+(g-Hw 1-w 1—w>; 3.2

z,b(W)=< q 9 g

the lastg—1 components all equall -w)/g. Recalling thatp is the uniform vector P having
equal components 1j/ we see thap=(0).
Theorem 3.1: For >0 let w(B) be the largest solution of the equation

1-ehw

w= WN (3.3)

The following conclusions haold
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(a) The quantity wg) is well defined and lies if0, 1]. It is positive, strictly increasing, and
differentiable forg e (B;,%) and satisfies ¥3,)=(q—2)/(q-1) andlim,_.. w(B8)=1.

(b) For B=p., define vX(B)=y(w(B)) and let v'(B), i=2,... g, denote the points iRY
obtained by interchanging the first and ith components*¢B). Then the set; defined in(2.3)
has the form

{P} for B < B,
gﬁ =11{p, Vl(ﬂc)v Vz(BC)’ (B} for =, (3.4
{Vl(B)! VZ(B)! e !Vq(ﬁ)} for B > BC'

For 8= B, the vectors inf; are all distinct and each/'(B) is continuous. The vectar(B,) is
given by

hii i)

1 - = q;2> -
v(Be) = P(W(Be)) l/f<q_1 9 q(g-1""""q@-1)

the last g-1 components all equdl/q(g-1).

The form of&, for B> 0 is proved in Appendix B from a new convex-duality theorem proved
in Appendix A and from the complicated calculation of the global minimum points of a related
function given in Theorem 2.1 in Ref. 19. The form&ffor <0 is also determined in Appendix
B. The other assertions in Theorem 3.1 are proved in Theorem 2.1 in Ref. 19.

For >0 the form of&, reflects a competition between disorder, as represented by the relative
entropyR(v| p), and order, as represented by the energy representation funétjgn}}. For small
B>0, R(v|p) predominates. SincB(v|p) attains its minimum of 0 at the unique vectar we
expect that for smaljg, £, should contain a single vector. On the other hand, for lg@ge0,

—%(v, v) predominates. This function attains its minimumvat (1,0, ...,0 and at the vectors',
i=1,... g, obtained by interchanging the first aitd components of*. Hence we expect that for
large B, £z should contairg distinct vectorsy'(B) having the property that'(8) — v' as 8— .
The major surprise of the theorem is that f&r 3., £4 consists of theg+1 distinct vectorg and
v(B) fori=1,2,...4.

The discontinuous bifurcation in the composition &f from 1 vector forg<pg; to q+1
vectors forB=; to q vectors forB> B. corresponds to a discontinuous phase transition exhibited
by the canonical ensemble. In Fig. 2 in Sec. V this phase transition is shown together with the
continuous phase transition exhibited by the microcanonical ensemble. The latter phase transition
and the form of the set of microcanonical equilibrium macrostates are the focus of the next
section.

IV. FORM OF &Y AND ITS CONTINUOUS PHASE TRANSITION

We now turn to the form of the sét for all ue [-3,-1/29], which is the set ot for which
&Y is nonempty. In the specific casg=3 part (c) of Theorem 4.2 gives the form of", the
calculation of which is much simpler than the calculation of the forni ©fThe proof is based on
the method of Lagrange multipliers, which also works for gengral provided the next con-
jecture on the form of the elements & is valid. The validity of this conjecture has been
confirmed numerically for allqe{4,5,...,16} and all ue(-3,-1/29) of the form u=-3
+0.0%, wherek is a positive integer.

Conjecture 4.1: For any g4 and all UE(—%,—1/2q), there exist & be (0,1) such that
modulo permutations, anye &Y has the form(a,b, ... ,b), the last -1 components of which all
equal b

Parts(a) and (b) of Theorem 4.2 are proved for genegt 3. Part(c) shows that modulo
permutations, fog=3, v € £&" has the form(a(u),b(u),b(u)) and determines the precise formulas
for a(u) andb(u). As specified in partd), for g=4 we can also determine the precise formula for
v e & provided Conjecture 4.1 is valid.
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Theorem 4.2 shows that with respect to the microcanonical ensemble the Curie-Weiss—Potts
model undergoes a continuous phase transition decreases from the critical energy valuye
=-1/2g. This contrast with the discontinuous phase transition exhibited by the canonical en-
semble is closely related to the nonequivalence of the microcanonical and canonical ensembles for
a range ofu. Ensemble equivalence and nonequivalence will be explored in the next section,
where we will see that it is reflected by support and concavity properties of the microcanonical
entropy. An explicit formula for the microcanonical entropy is given in Theorem 4.3.

Theorem 4.2:For ue R we defineg! by (2.4). The following conclusions hald

(a) For any g=3, &Y is nonempty if and only if & [—%,—1/2q]. This interval coincides with
the range of the energy representation functioh»)#—%(v,v} onP.

(b) For any =3, &Y2={p}={(1/q,1/q, ...,1/9)} and

&t2={1,0,...,0,(0,1,...,0,...,(0,0,...,2}.

(c) Let g=3. For ud—%,—l/Zq), &Y consists of the three distinct vectors
{wH(W), #?(u), w(W)}, where (u)=(a(u), b(u), b(w)),

1++v2(-6u-1) 2-\2(-6u-1)
=———= andb(uy=—"---.

a(u) 3 6

(4.1
The vectorsu'(u), i=2,3, denote the points ik obtained by interchanging the first and the ith
components ofi}(u).

(d) Let g=4 and assume that Conjectufel is valid. Then for ue (—% , —1/2q), &Y consists of
the q distinct vectorgu(u), ... ,ud%u)}, where ut(u)=(a(u),b(u), ... ,b(u)),

_1nN@=DE2qumY - = 97TV @- DE2qun D)
q (9-1)q
The last ¢-1 components of.}(u) all equal Ku), and the vectorsi'(u), i=2, ... g, denote the
points inRY obtained by interchanging the first and the ith componentg6i).
We return to parib) of Theorem 4.2 in order to discuss the nature of the phase transition
exhibited by the microcanonical ensemble. The functial and b(u) given in (4.1) are both

continuous foru e [—%,—1/2q] and satisfy

. ) 1 1 1
im au)= I|m b(u):—:a(— —) :b<— —)
U— (- 1/29)" U— (- 1/29)" q 2q 2q

a(u)

Therefore, fori=1,... q, Iimu%_l,zq)-,u‘(u):p. It follows that the microcanonical ensemble ex-
hibits a continuous phase transitionwaslecreases from,=-1/2q, the unique equilibrium mac-
rostatep for u=u, bifurcating continuously into the distinct macrostateg'(u) asu decreases
from its maximum value. This is rigorously true fQ=3. Provided Conjecture 4.1 is true, it is also
true forq=4, as one easily checks using péif of Theorem 4.2.

Before proving Theorem 4.2, we introduce the microcanonical entropy

S(U)Z—inf{R(v|p):V e 'P,—%(v,v):u}. (4.2

As we will see in the next section, this function plays a crucial role in the analysis of ensemble
equivalence and nonequivalence for the Curie—-Weiss—Potts model. The donmmis die set
doms={u e R:s(u) >—x}; for u ¢ doms, we sets(u)=-=. SinceR(v|p) <= for all » e P, doms
equals the range dfi(v)=-%(»,v) on P, which is the interval-%,-1/29] [Theorem 4.23)].

Since 0<R(v|p) for all v e P, s(u) € [-, 0] for all u. The continuity ofR(v|p) on P and the
compactness of the constraint set(4n2) guarantee that fou € doms the infimum in the defini-
tion of s(u) is attained for some e P. SinceR(v|p)>R(p|p)=0 for all v# p, it follows thats
attains its maximum of O at the unique value —q#z—%(p,p>.
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As we have just seerg(-1/29)=0. Forue (—%,—1/2q), according to partgc) and (d) of
Theorem 4.2,&" consists of the unique vectop(u) modulo permutations. Since for
=2,3,... 4, R(u'(u)|p)=R(u*(u)|p), we conclude that

s(u) = = R(uH(w)|p) = - a(u)log(ga(u)) - (q - 1)b(u)log(gb(u)).

Finally, for u-—— modulo permutationg" consists of the unique vectdét, 0....,0) [see(4.7)],
and sos(—%): R((l 0,...,0|p)=-logq. The resulting formulas fos(u) are recorded in the next
theorem, where we distinguish betwegn3 andg=4.

Theorem 4.3:We define the microcanonical entropyusin (4.2). The following conclusions

hold.
(a) doms= —é,—1/2q]; for any uedoms, u#-1/2q, s(u)<s(-1/29)=0; and §_%)=
-logq.
(b) Let g=3. Then for ue (—- -1/29)= (—5,—6)
N7 A~ A~ —_—
1+V2(-6u-1 —— 2-\2(-6u-1) [(2-\2(-6u-1
S(U) :—w IOg(l+V2(— 6uU — 1)) _ \ ( u ) Iog< Y ( u ))
3 3 >
4.3
(c) Let g=4 and assume that Conjectu#el is valid. Then for LE( ~1/29),
1+\(q-1)(-2qu-1) ,
SW=- : q . log(1 +(q - 1)(- 2qu- 1))
_1_“,’ _1 _2 _1 _1_“/ _1 _2 _1
_9-1-\(g q)( qu )log(q \<qq_>1( qu ))_ s

We now turn to the proof of Theorem 4.2, which gives the forng'ofWe start by proving part
(@). The sett" of microcanonical equilibrium macrostates consists ofvall P that minimize the
relative entropyR(»|p) subject to the constraint that

H) =-(v,1)=u.

Let u:—%rz. Since P consists of all non-negative vectors Rfl satisfying v;+---+v,=1, the
constraint set in the minimization problem definifi§is given by

q q
C(u)=C(—%r ) {v e R%y, =0, ... ,Vq>0,2 vj=l,2 vj2=r2}. (4.5
=1 =1

Geometricaliy,C(—%rz) is the intersection of the non-negative orthantRSf, the hyperplane
consisting ofy € R” that satisfyv, +- - - +v4=1, and the hypersphere kf with center 0 and radius

r. Clearly, C(u)# @ if and only if u lies in the range of the energy representation function
H(v)———<v v) onP. Because & R(v|p) <= for all v e C(u), the range oH on P also equals the
set ofu for which &'+ &.

The geometric description @(u) makes it straightforward to determine those values fafr
which this constraint set is nonempty. The smallest valuefof which C(—%rz) # @ is obtained
when the hypersphere of radiusis tangent to the hyperplane, the point of tangency being
=(1/q,1/q,...,1/9), the closest probability vector to the origin. The hypersphere and the hyper-
plane are tangent Whem=1/vq, which coincides with the distance from the center of the hyper-
sphere to the hyperplane. It follows that the largest valua fidr which C(u) # @, and thuse!
#@, isu=-3r?=-1/2q. In this case

(Bofis e e
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For all sufficiently larger, C(-3r?) is empty because the hypersphere of raditigs empty
intersection with the intersection of the hyperplane and the non-negative ortHahtTdfe largest
value forr for which this does not occur is found by subtracting the two equations defining the
hyperplane and the hypersphere. Since eael0,1], it follows that

q
o< v(l-w)=1-r2
i=1

and this in turn implies that?>< 1. Thusr=1 is the largest value farfor which C(—-r )+ @. We

conclude that the smallest valuewfor which C(u) # @, and thusV # @, is u——irz——— The set
&2 2 consists of the points at which the hyperplane intersects each of the positive coordinate axes;
ie.,

5_1/2:{(1101 e 101(0711 1Q1 1(0101 !J)} (47)

This completes the proof of pafa) of Theorem 4.2.

Forue[-32 3 1/2q] we now determine the forf" as specmed in partd)—(d) of Theorem
4.2. Part(b) considers any =3 and the values=-1/2q and u——— part(c) q=3 andu e(
-1/20), and part(d) g=4 andu e (—- -1/2g). Part(b) has already been proved; far- 1/2q
and u——E, the sets£! are given in(4. 6) and(4.7).

We now consideg=3 andu e( 1/2q) For v € P define

o)

:E Y andFI(v) =- -(V V).

By definition v:(vl, ..., e&ifand onIy if v minimizesR(v|p)= 2] L,v; log(qw;) subject to the

constraintK(v)=1, H(V) u, and», =0, ...,v7,=0. Forue (—— 1/2q) we divide into two parts
the calculation of the form of e &Y. First we use Lagrange multipliers to solve the constrained
minimization problem wheny;>0,...,»;,>0. Then we argue that the vectorsfound via
Lagrange multipliers solve the original constrained minimization problem wherO, ... v,
=0.

We introduce Lagrange multipliery and N. Any critical point of R(v|p) subject to the
constraintK(v)=1, ﬂ(v):u, andv;>0, 1,>0,...,1,>0 satisfies

VR(1p) = yVK(») + N VH(®),
K(v)=1,
Hv) =u,

>0 forj=1,2,...0.

This system of equations is equivalent to

1+loglqy) =y-Ay; forj=1,2,...q, (4.8
q
ZVJ':].,
=1
14,
_E.EVJ:U’
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>0 forj=1,2,...q.

By the strict concavity of the logarithm, the first equation can have at most two solutions. Hence
modulo permutations, there exisie {0,1, ... g} and distinct numbera,b e (0,1) such that the

first n components of any critical point all equala and the lastj—n components o¥ all equal

b. The second and third equations(#8) take the form

na+(q-nb=1 andna®+(q-n)b?=-2u. (4.9

If n=0, then b=1/q, while if n=q, then a=1/q. Both cases correspond to
=(1/q,...,1/q)=p andu=-1/2q, which does not lie in the open interv‘&l%,—l/Zq) currently
under consideration.

We now focus ome{1,...,g-1}. In this case the two solutions ¢4.9) are

n-+n(q-n)(-2qu-1) -n+yn(g-n)(-2qu-1)
ay(n = N CE . : (4.10
nq (q-n)q
and
i I
n+yn(g-n)(-2qu-1) g-n-Vn(g-n)(-2qu-1)
ay(n) = . by(n)= . 4.1
(1) o (1) e (4.11)
Sinceu e (—%,—1/2q), these quantities are all well defined aa@n) # b;(n) for j=1,2. Inaddi-
tion,

a;(g—n)=by(n) andb;(g—-n)=ay(n).

This means that the point having the fistomponents,(n) and the lasti—n component®,(n)
equals, modulo permutations, the point having the firsh components,;(q—n) and the lasth
componentd; (g—n).

Thus, without loss of generality, we can seek solutions of the syteBnhhaving the firsin
components,(n) and the lasj—n componentd,(n). While a,(1) andb,(1) are always positive
for all ue (—%,—l/Zq), b,(n) might be negative for somee{2,... g-1} and somwe(—%,
-1/ 2q). In this case the positivity constraint in the last line(418) excludes such values afand
u.

We give full details whem=3, the case considered in pé&ct of Theorem 4.2. Wheq=3, the

interval (-3,-1/29) equals(-3,-1/6 and we haven e {1,2}. Forn=1 andn=2 (4.1)) takes the

form
1+v2(-6u-1) 2-+\2(-6u-1)
a(1) = — 3 by(1) = 8
and
S~ Gu—1) o= =1
2+\2(-6u-1) 1-v2(-6u-1)
ay(2) = 6 b,(2) = — 3

For ue(-3,-1), by(2) is negative and hence a solution 6£.8) cannot have the form

(ax(2),a5(2) ,by(2)). We conclude that when e (—%,—;11), v=(ay(1),b,(1),by(1)) is, modulo per-
mutations, the unique solution ¢#.8) and thus the unique minimizer &(v|p) subject to the
constraints in the last three lines @£.8). Forue [—%,—1), a straightforward calculation shows

that

R((ax(1),ba(1),by(1))[p) < R(82(2),a2(2),05(2))lp).

It follows again thatr=(a,(1),b,(1),b,(1)) is, modulo permutations, the unique minimizer of
R(v|p) subject to the constraints in the last three lineg408). This completes the proof that for
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q=3 and anyu e (-3,-1), »=(ay(1),by(1),b,(1)) is, modulo permutations, the unique minimizer
of R(u|p) subject to the constraint§(v)=1, H(»)=u, and v1>0, v,>0, v3>0.

We now prove forq=3 that the minimizers found via Lagrange multipliers whefy)=1,
ﬁ(v):u, and v,>0, »,>0, r3>0 also minimizeR(v|p) subject to the constraint&(v)=1,
H(»)=u, and 11=0, 1,=0, v3=0. If v=(v1,1v,,v,) satisfies the latter constraints and has two
components equal to zero, then modulo permutationd ,0,0 andﬁ(v)=u=—%, which does not
lie in the open intervaﬁ—%,—é) currently under consideration. Thus we only have to consider the

case wherev has one component equal to zero; ies(0,a9,by) with ag=b,. In this case the
second and third equations 4.8) have the solution

_1+y-4u-1 _1-y-4u-1
- 2 rooT 2 '
We now claim that modulo permutations the unique minimizeR@f| p) subject to the constraints

K(v)=1, ﬁ(v)zu, andv;=0, 1,=0, v3=0 has the forma,(1),b,(1),b,(1)) found in the preced-
ing paragraph. The claim follows from the calculation

R((ax(1),ba(1),by(1))[p) < R((0,80,b0)p),

which is valid for allue (-3,-%). This completes the proof of paft) of Theorem 4.2, which
gives the form ofv e & for q=3 andu e (-3,-2).

We now turn to par{d) of Theorem 4.2, which gives the form éf for g=4 andue (—%,
—1/2q). If, as in the casg=3, we knew that modulo permutations, the minimizers have the form
(a,b, ... b) as specified in Conjecture 4.1, then as in the @gs8 we would be able to derive
explicit formulas for these minimizers. If Conjecture 4.1 is true, then it is easily verified that
modulo permutationsg! consists of the unique poimt=(ay(1),b,(1), ... ,bs(1)), wherea,(1) and
b,(1) are defined in4.11) forue (—%,—1/2(:1). This gives par{d) of Theorem 4.2. The proof of
the theorem is complete.

At the end of Sec. VI we will see that there exists an explicit valua,af (—%,—1/2q) such
that Conjecture 4.1 is valid for ary=4 and allu e (—% , uo]. Hence for these values ofthe form
of ve &Y given in part(d) of Theorem 4.2 and the formula fefu) given in part(c) of Theorem
4.3 are both rigorously true.

V. EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

As we saw in Sec. lll, the sefl; of canonical equilibrium macrostates undergoes a discon-
tinuous phase transition g increases througiB.=[2(q—-1)/(q—2)]log(q—1), the uniqgue mac-
rostatep bifurcating discontinuously into the distinct macrostates’”’(8). By contrast, as we saw
in Sec. IV, the set" of microcanonical equilibrium macrostates undergoes a continuous phase
transition asu decreases from.=—-1/2q, the unique macrostae bifurcating continuously into
the g distinct macrostateg:/(u). The different continuity properties of these phase transitions
shows already that the canonical and microcanonical ensembles are nonequivalent. In this section
we study this nonequivalence in detail and relate the equivalence and nonequivalence of these two
sets of equilibrium macrostates to concavity and support properties of the microcanonical entropy
s defined in(4.2). This is done with the help of Fig. 2, which is based on the forrs iof Fig. 1
and on the results on ensemble equivalence and nonequivalence in Theorem 5.1. In Figs. 3 and 4
at the end of the section we give, fqr 3, a beautiful geometric representationdafand " that
also shows the ensemble nonequivalence for a range of

We start by stating in Theorem 5.1 results on ensemble equivalence and nonequivalence for
the Curie—Weiss—Potts model. Theorem 5.1 summarizes Theorems 4.4, 4.6, and 4.8 in Ref. 15,
which apply to a wide range of statistical mechanical models. The Curie—Weiss—Potts model is a
special case. In this special case, we will show that the valuasaofi 8 in part(a)(i) of the next
theorem are related by the thermodynamic fornsila)=8 [Theorem 6.%)]. For u € doms the
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s(u)

) 24
F P N F
u

|
9™

FIG. 1. Schematic graph a&{u), showing the seF=(—%,u0)U{—1/2q} of full ensemble equivalence, the singleton set
P={u} of partial equivalence, and the shit=(uy,—1/2q) of nonequivalence. Foue FUP=(-3,u] U{-1/2q}, s(u)
=s"(u); for ue N, s(u) <s™(u) and the graph o™ consists of the dotted line segment with sigheThe slope of at —;

is o,

possible relationships betwegl and &£, given in part(a) of Theorem 5.1, are that either the
ensembles are fully equivalent, partially equivalent, or nonequivalent. According tbpaftthe
theorem, canonical equilibrium macrostates are always realized microcanonically—i.e.£tie in
for someu—while according to parta)(iii ), microcanonical equilibrium macrostates are in gen-
eral not realized canonically—i.e., do not lie 83 for any . It follows that the microcanonical
ensemble is the richer of the two ensembles.

Theorem 5.1: We define s by4.2) and &5 and £ by (2.3) and (2.4). The following conclu-
sions hold

(a) For fixed ue doms one of the following three possibilities occurs

(i) Full equivalence: There exisgge R such thate“=Eg. This is the case if and only if s has
a strictly supporting line at u with slopg; i.e.,

s(v) < s(u) + B(v —u) for all v # u.

(i) Partial equivalence: There exisfse R such thate" C €5 but £+ ;. This is the case if and
only if s has a nonstrictly supporting line at u with slopei.e.,

S(v) < s(u) + B(v —u) for all v € R with equality for some # u.

(i) Nonequivalence: For alge R, £'NE=@. This is the case if and only if s has no sup-
porting line at y i.e., for anyB e R there exists) such that ) >s(u)+B(v—u).

(b) Canonical is always realized microcanonically: Fer P we define~+ﬂv):—%<v, v). Then
for any B e R,

5[3 = EJ gu.
ue H((‘:B)

We next relate ensemble equivalence and nonequivalence with concavity and support proper-
ties ofs in the Curie—-Weiss—Potts model. Fepr 3 an explicit formula fois is given in part(b) of
Theorem 4.3. If Conjecture 4.1 is true, then the formulasfgiven in part(c) of Theorem 4.3 is
also valid forq=4. Figure 1 exhibits all the concavity and support features éfowever, Fig. 1
is not the actual graph afbut a schematic graph that accentuates the shap&ogkther with the
intervals of strict concavity and nonconcavity ©ffFor arbitraryq=3, as discussed in the second
paragraph after Theorem 6.2, the concavity and support featuregxdfibited in Fig. 1 follow
from Theorems 5.1 and 6.2.

Concavity properties of are defined in reference to the double-Legendre—Fenchel transform
s, which can be characterized as the smallest concave, upper semicontinuous function that
satisfiess™ (u)=s(u) for all ue R (Ref. 10, Proposition AR For ue doms we say thats is
concave at if s(u)=s"(u) and thats is not concave ati if s(u)<s" (u). Also, we say thas is
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strictly concave ati e domsiif s has a strictly supporting line atand thats is strictly concave on
a convex subseh of domsiif sis strictly concave at eaane A. If sis strictly concave ati, then
a straightforward argument shows tlsas concave atl, as one expeci{®kef. 10, Lemma 4(B)].

According to Fig. 1 and Theorem 5.1, there exig{s (—%,—1/2q) with the following prop-
erties:

() s is strictly concave on the interveii—%,uo) and at the point -1/@ Hence forueF
:(—%,uo)u{—1/2q} the ensembles are fully equivaleftheorem. 5.(a)(i)]. In fact, for
ueint F=(—% ,uo), £'=E5 with B given by the thermodynamic formufg=s’(u) [Theorem
6.2(b)].

(i)  sis concave but not strictly concave @ and has a nonstrictly supporting line @& that
also touches the graph af over the right-hand endpoint —1¢2 Hence foru=ug the
ensembles are partially equivalent in the sense that there @xists such thatt" C &4 but
&Y+ £ [Theorem 5.4a)(ii)]. In fact, B equals the critical inverse temperatgdefined in
(3.9.

(i) sis not concave on the intervl=(uy,—1/2q) and has no supporting line at amy= N
[Ref. 10, Theorem A&)]. Hence foru e N the ensembles are nonequivalent in the sense
that for all Be R, £'NEz=D [Theorem 5.a)(iii)].

As we have just seerl, can be characterized in terms of concavity and support properties of

s. The quantityu, can also be characterized in terms of mapping propertidg(o}:—%<v,v>.
Using this characterization, we give an explicit formula fgrin (6.2).

We point out two additional features of Fig. 1. First, althougih* @ for u equal to the
left-hand endpoint % of doms, we do not include this point in the sé&t of full ensemble
equivalence. Indeed, is not strictly concave at%—because there is no strictly supporting line at
—%; as one can see i®.1), the slope of at —% is . Nevertheless, by introducing the limiting set

¢.={1,0,...,0,(0,1,...,0,...,(0,0, ... ,])}:[I;im Ep,
we can extend full ensemble equivalenceute-; since*2=¢...

Second, fow in the intervalN of ensemble nonequivalence, the graplsofis affine; this is
depicted by the dotted line segment in Fig. 1. The slope of the affine portion of the graph of
equals the critical inverse temperatysg defined in(3.1). This can be proved using concave-
duality relationships involving™ and the canonical free energy. The quangtyalso satisfies an
equal-area property, first observed by Maxw@&kef. 28, p. 4% and explained in the context of
another spin model in Ref. 18, p. 535.

The relationships stated in iteri3, (ii), and(iii ) above give valuable insight into equivalence
and nonequivalence of ensembles in the Curie—Weiss—Potts model. These relationships are illus-
trated in Fig. 2. In this figure we exhibit the graphsdfand the set§; and£&” in order to compare
the phase transitions in the two ensembles and to understand the implications for ensemble equiva-
lence and nonequivalence. In order to accentuate propertig’s 8f, and&" that are related to
ensemble equivalence and nonequivalence, we focas=8n In presenting the graph ef and the
form of &Y, we assume that fag=8 Conjecture 4.1 is valid. We then appeal to gaytof Theorem
4.3, which gives an explicit formula fa, and to par(d) of Theorem 4.2, which gives an explicit
formula for the elements &". The derivatives’, graphed in the top left plot in Fig. 2, is given by

S'(u)= \/ﬁ{mg(l +V(q=-1)(- 2qu-1)) - Iog(l - \/%)}. (5.1)

The canonical phase diagram, given in the top right plot in Fig. 2, summarizes the description
of &5 given in Theorem 3.1 and shows the discontinuous phase transition exhibited by this en-
semble atBC:[Z(q—1)/(q—2)]log(q—1):§ log 7. The solid line in this plot fop< B, represents
the common valué of each of the components pf which is the unique phase f@< B.. For
B> f3, there are eight phases given b¥(3) together with the vectors'(g8) obtained by inter-
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FIG. 2. Forq=8 the top right plot shows, the top left plot the graph of (u) for ue doms:[u(,uc]z[—%,—llm], and

the bottom left plo€". The discontinuous phase transitionaatin the top right plot and the continuous phase transition at
U, in the bottom left plot imply that the ensembles are nonequivalent fou alN=(uy,u;). On this intervals is not
concave and” is affine with slopes,. The shaded area in the bottom left plot corresponds to the region of nonequivalence
of ensembles delineated loye N.

changing the first anith components of*(g). Finally, for 8=, there are nine phases consisting
of p and the vectors'(8,) fori=1,2,...,8. Thesolid and dashed curves in the top right plot in
Fig. 2 show the first component and the last seven, equal componertgdfor 8 [B;,*). The
first component is a strictly increasing function equal tdor B=p. and increasing to 1 a8

— oo while the last seven, equal components are strictly decreasing functions ecgl%aﬂomﬁ
=, and decreasing to 0 g&— .

The microcanonical phase diagram, given in the bottom left plot in Fig. 2, summarizes the
description of€" given in Theorem 4.2 and shows the continuous phase transition exhibited by this
ensemble asl decreases from the maximum valug=- 1/2q——— The single phase for
u———6 is represented by the point lying over this valuewfFor ue [—-,——) there are eight
phases given by.!(u) together with the vectorg/(u) obtained by mterchanglng the first aitth
components of}(u). The solid and dashed curves in the bottom left plot in Fig 2 show the first
componenta(u) and the last seven, equal componeln(le) of ut(u) for uel-2 5 16) The first
component is a strictly increasing function ofi equal to for u-—— and increasing to 1 as
_>(—%) whlle the last seven, equal components are strlctly decreasmg functionsenfual to8
for u=—: and decreasing to 0 as—(-3)*

The different nature of the two phase transitions—discontinuous in the canonical ensemble
versus continuous in the microcanonical ensemble—implies that the two ensembles are not fully
equivalent for all values ofi. By necessity, the s&t; of canonical equilibrium macrostates must
omit a set of microcanonical equilibrium macrostates. Further details concerning ensemble equiva-
lence and nonequivalence can be seen by examining the graghgien in the top left plot of
Fig. 2. This graph, which is the bridge between the canonical and microcanonical phase diagrams,
shows thas' is strictly decreasing on the interval it (-1, ug), which is the interior of the séf
of full ensemble equivalence. The critical val@g equals the slope of the affine portion of the
graph ofs™ over the intervaN=(u,,-1/2q) of ensemble nonequivalence. This affine portion is
represented in the top left plot of Fig. 2 by the horizontal dashed ling.at

Figure 2 exhibits the full equivalence of ensembles that holds foint F=(-3, u) [Theorem
6.2(@)]. For u in this interval the solid and dashed curves representing the componentéupf
e &Y can be put in one-to-one correspondence with the solid and dashed curves representing the
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A B

FIG. 3. Graphical representation of the &gtof canonical equilibrium macrostates fgr 3 showing the maximal circle of
intersection corresponding to=u,; the vectorp; the unit-coordinate vectord, B, and C; and the macrostates
=vY(Bo), Bc=1*(B;), andC,=13(B,). The line segments A, BB, andCC represent the elements &f for 8> 3..

same two components of(B) e £ for B (B;,%). As we remarked earlier, the valueswnd

B are related by the thermodynamic formugu)=8 [Theorem 6.%b)]. Full equivalence of
ensembles also holds far—-1/2q € F, the right-hand endpoint of the interval on whigrs finite.

The solid vertical line in the top right plot fg8 < 8., which represents the unique canonical phase

p, is collapsed in the bottom left plot to the single energy valee-1/2q, which corresponds to

the unigue microcanonical phapeThis collapse shows that the canonical notion of temperature

is somewhat ill-defined at=-1/2q since there are infinitely many values gfassociated with

this energy value. This feature of the Curie—Weiss—Potts model is not present, for example, in the
mean-field Blume—Emery—Griffiths spin model, which also exhibits nonequivalence of
ensembled®

By comparing the top right and bottom left plots, we see that the elemert$afase to be
related to those of ; for ue N=(up, -1/2q), which is the interval on whick is not concave. For
any energy valuas in this interval nov e &g exists that can be put in correspondence with an
equivalent equilibrium empirical vector contained §H. Thus, although the equilibrium mac-
rostates corresponding we N are characterized by a well-defined value of the energy, it is
impossible to assign an inverse temperat@réo those macrostates from the viewpoint of the
canonical ensemble. In other words, the canonical ensemble is blind to all energy wvaloes
tained in the intervalN of nonconcavity ofs. This is closely related to the presence of the
discontinuous phase transition seen in the canonical ensemble.

The quantityu, defined in(6.2) plays a central role in the analysis of phase transitions and
ensemble equivalence in the Curie—Weiss—Potts model. First, as we saw in our discussion of Fig.
1, yp separates the intervé&%,uo) of strict concavity ofs and of full ensemble equivalence from
the interval(ug, —1/2q) of nonconcavity o and of ensemble nonequivalence. Second, (@af

Lemma 6.1 shows that, equals the limiting mean enerd¥(+*(8,)) in the canonical equilibrium
macrostate’(8) asB— (B,)". In Figs. 3 and 4 we present fo=3 a third, geometric interpreta-
tion of ug that is also related to ensemble nonequivalence.

Before explaining this third, geometric interpretatiorugf we recall that according to paid)

of Theorem 4.2 specialized wp=3, £&“ is nonempty, or equivalently the constraint se{4rb) is

nonempty, if and only iMe[—%,—1/2q]=[—%,—%3]. Geometrically, the energy constraiI:l'(v)

=—%(v, v)=u corresponds to the sphereRd with center 0 and radiusTZU. This sphere intersects
the setP of probability vectors if and only itie [—%,—é]. For u:—é, the sphere is tangent ®
at the unique poinp while for u:—%, the hypersphere intersed®sat theq unit-coordinate vectors.
The intersection of the sphere afdundergoes a phase transitiorugtin the following sense. For
Ue [uo,—é) the sphere intersecf in a circle while foru e [—%,uo), the sphere intersecf8 in a
proper subset of a circle; the complement of this subset lies outside the nonnegative oBtant of
For u:uo:—;ll, the circle of intersection is maximal and is tangent to the boundaf. of

The set€; of canonical equilibrium macrostates fgr 3 is represented in Fig. 3. In this figure
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B

FIG. 4. Graphical representation of the g&tof microcanonical equilibrium macrostates fpr 3 showing the maximal
circle of intersection corresponding to=u,; the vectorp; the unit-coordinate vectord, B, andC; and the macrostates
Ao=u*(Ug), By=u*(Ug), andCy=pu3(ug). The solid-line segment&,A, ByB, andC,C represent the elements 8f that are
realized canonically. The dashed-line segmeig, pB,, and pCy represent the elements éf that are not realized
canonically.

the maximal circle of intersection corresponding,n;euoz—;11 is shown together with the vectpr

at its center; the pointd, B, and C representing the respective unit-coordinate vect@r8,0,
(0,1,0, and(0,0,D; and the pointsA;, B., and C, representing the respective equilibrium mac-
rostates'(8,), 2(B.), andv*(B,). These three macrostates lie on the maximal circle of intersec-
tion sinceH (11(3,)) =u [Lemma 6.1b)]. For 3> B all v € £ have two equal components, and as
B— o these vectors converge to the unit-coordinate vectorB, and C. Hence for3> . the
equilibrium macrostates(B), v*(B8), and v*(B) are represented by the open line segm@ﬁs

B.B, andC.C.

The set&" of microcanonical equilibrium macrostates fipr 3 is represented in Fig. 4. In this
figure the maximal circle of intersection correspondingﬂ;euo:—;11 is shown together with the
vector p at its center; the pointé, B, and C representing the unit-coordinate vectors; and the
points Ay, By, and CO representing the respective equilibrium macrostat&siy), u?(Ug), and

©3(Ug). Forue (-1,-3) all ve & have two equal components andwes (-3)* they converge to
the unit coordlnate vector% B, andC. Hence foru e (-3 50~ )the equrllbrlum macrostatgs(u),

#(u), and u3(u) are represented by the open line segmemSpB andpC. As we saw in the
preceding section, for eaahe (—5,—5) the macrostateg’(u), ©%(u), and u3(u) lie on the inter-
section of the sphere of radiug-2u with P. In particular, Ag=u*(Ug), Bo=u?(Ug), and C,
=u3(up) lie on the maximal circle of intersection. o L

The distinguishing feature of Fig. 4 is the three open dashed-line segpfenisB,, andpCg
representlng the elements &f that are not realized canonically; nameiy(u), x#(u), and u(u)
forue (uo, ) The three half open solid-line segmemﬁA BoB, andC,C represent the elements
of &' that are realized canonically; namely(u), x2(u), andu3(u) for u e( ,Uo). For each such
u the value ofg for which £'=£ is determined by the equatidt(v'(B)) = u [Theorem 6.29)].

Thus in Fig. 3 the corresponding elements&aflie on the intersection of the sphere of radius
V-2u and P.

This completes our discussion of equivalence and nonequivalence of ensembles. In the next
section we will prove a humber of statements concerning ensemble equivalence and nonequiva-
lence that have been determined graphically.

VI. PROOFS OF EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

Using the general results of Ref. 15, we stated in the preceding section the equivalence and
nonequivalence relationships that exist betwé€emnd £; and verified these relationships using
the plots of these sets fg=8 given in Fig. 2. Our purpose in the present section is to prove these
relationships using mapping properties of the mean energy funatindefined forg+ 3. by

Downloaded 13 May 2005 to 128.119.47.120. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



063301-17  Curie-Weiss—Potts model J. Math. Phys. 46, 063301 (2005)

~ 1
A(p)=-— for B< B,
wp=| T PTESP 6.2

H((B) == 3 (B), v (B)) Tor B> B

Herev!(p) is the unique canonical equilibrium macrostate modulo permutationg o8, [ Theo-
rem 3.1). According to the next lemma, fg8> 8., u(B) is continuous and strictly decreasing and
u(B) <-1/2q, which equals the mean energy {6« B.. It follows that asg increases througf,
u(B) is discontinuous, jumping down from -1¢2o0 ﬁ(,,l(ﬁ))_ This discontinuity inu(8) mirrors
in a natural way the discontinuity ifi; as § increases througfs..

We use the same notatiag for the quantity defined i86.2) as for the quantityl, appearing
in Fig. 1 in Sec. V because these two quantities coincide. Indeed,uyittefined in(6.2), we
prove in Theorem 6.2 that the largest open interval on which full equivalence of ensembles holds
is intF=(—%,uO). This coincides with the interior of the intervelshown in Fig. 1. As that figure
exhibits, intF is the largest open interval on whishs strictly concave; by Theorem 5.1, that open
interval coincides with the largest open interval on which full equivalence of ensembles holds.

Lemma 6.1: ForB e [B;,*) we definev’(B) as in part(b) of Theorem 3.1 and we define
2
-g°+39-3
Up=——"— (6.2
°" 29~ 1)

The following conclusions hold.

(@ —3<up<-1/2q andlimg_ g u(B)=H(¥4(Bo)= .
(b) The function mapping

B € (B) = u(B) = H(A(B) = - 3(H(B), v(B))
is a strictly decreasing, differentiable bijection onto the inter(ra%,uo).

Proof: (a) The inequalities involvingly follow immediately from the inequalitgy=3. The
relationshipH(v4(3.)) = U, is easily determined using the explicit form of(8,) given in (3.5).
That limg_ g )+ u(B)=H(»%(B.)) follows from the definition ofu(8) and the continuity of'(3)

for B=B..
(b) Forw e R define

= 2

1- 2
2 q2 +(q_1)[ W] )

2
q

For B e (B.,*) we use the formula for'(B) given in part(b) of Theorem 3.1 to writeu(3)
=-f(w(B)). The quantityw(gB) is positive and strictly increasing, and for ai> 0,

f’(w):%v >0.

As the composition of two strictly increasing functions, Be (8;,%), —u(B) is strictly increasing
and thusu(p) is strictly decreasing. In addition, since lim., w(g8)=1 [Theorem 3.(a)], we have
lim ... u(8)=-3, and by parta) of this lemma

lim u(B) =H((B)) = Up.
B—(B)*
It follows that the function mapping e (B.,)—u(B) is a strictly decreasing, differentiable
bijection onto the interval-3,uy). This completes the proof of pal). [
Mapping properties afi(8) play an important role in the next theorem, in which we prove that
the setsF, P, and N defined in(6.3) correspond to full equivalence, partial equivalence, and
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nonequivalence of ensembles. kot F we consider three subcases in order to indicate the value
of B for which £'=€; for ue int F=(-3,ug), B andu are related by3=s'(u) andu=u(g). Part(c)
shows an interesting degeneracy in the equivalence-of-ensemble picture, tl# @t u
=-1/2q corresponding to alf; for 5< .. This is related to the fact that for all such valuesgof
Eg={p} and thus the mean energyg) equals -1/2.

Theorem 6.2:We define @) in (4.2), u(B) in (6.1), Egin (2.3), and &Y in (2.4). We also define
B:in (3.1) and y, in (6.2). The sets

1 1
F=(-%,UO)U{-2—q}, P ={ug}, andN:(uo,—Z) 6.3
have the following properties

(@) Full equivalence onntF: For ueint F=(—%,u0), there exists a uniqu@ e (B.,%) such
that £'=E; B satisfies uB)=H(XB))=u.

(b) For u e intF=(-3,uy), s is differentiable. The values u agdfor which &'=& in part (a)
are also related by the thermodynamic formuléus= 3.

(c) Full equivalence at-1/2q: For u=-(1/2q) e F, EY2=£, for any < ..

(d) Partial equivalence on P For ueP={up}, EPCE but £0#Ep. In fact, &4
=gy &l

(e) Nonequivalence on :NFor any ue N=(ug,~1/2q), &N &= for all B R.

In reference to the properties sfgiven in part(b), one can show that the function mapping
Ue (—%,uo)ﬁs’(u) is a strictly decreasing, differentiable bijection onto the intery&l,c0) and
that this bijection is the inverse of the bijection mappjgig (B:,%)— u(B).

Before we prove the theorem, it is instructive to compare its assertions with those in Theorem
5.1, which formulates ensemble equivalence and nonequivalence in terms of support properties of
s. These support properties can be seen in the schematic plot of the the gmphRf. 1. We
start with part@ of Theorem 6.2, which states that for amy int F:(—% ,uo) there exists a unique
B (Bc,) such thatt"=Eg. As promised in parta)(i) of Theorem 5.1, thi is the slope of a
strictly supporting line to the graph afat u, and sos is strictly concave on infE. The situation
that holds whem=-1/2q [Theorem 6.&)] is also consistent with pa¢&)(i) of Theorem 5.1. For
this value ofu, which is the isolated point of the sBtof full equivalence, there exist infinitely
many strictly supporting lines to the graph ef the possible slopes of which are afi
e (==, B,). On the other hand, whem=u,, which is the only value lying in the s& of partial
equivalence, we havé”OCEBC but EUO;éEBC [Theorem 6.&d)]. In combination with parta)(ii) of
Theorem 5.1, it follows that there exists a nonstrictly supporting ling, atith slope. and that
sis concave atl, but not strictly concave. Finally, fare N=(up,—1/2q), we haveg'N 5= for
all Be R [Theorem 6.2)]. In accordance with pakg)(iii) of Theorem 5.1s has no supporting
line at anyu e N, and by Theorem A.4 in Ref. 18is not concave at any e N.

Proof of Theorem 6.2(a) For B3> 3; part (b) of Theorem 3.1 and pafb) of Theorem 5.1
imply that

Ep= 1B .. B = U &
UEH(EB)

The symmetry ofH with respect to permutations implies thatgﬁ):{ﬁ(vl(ﬂ))}. Thus for any
B> B

£5=EN0HB), (6.4)

Since for anyu e int F:(—%,uo) there exists a uniqug e (B,,») satisfyingu(8)=H(+*(8))=u
[Lemma 6.1b)], it follows that£'=Eg.

(b) The differentiability ofs on intF is proved in partb) of Theorem 6.3, which depends only
on part(a) of the present theorem. By pd#) of the present theorem and péaj of Theorem 5.1,
s has a strictly supporting line at eacte int F. It follows thats is strictly concave on inf and
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thus concave on i [Ref. 10, Lemma 4®)]; i.e., s(u)=s" (u) for all u e int F. The differentia-
bility of son intF [Theorem 6.%)] combined with parfa) of Theorem A.3 in Ref. 10 implies that
s'(u)=8.

(c) By (4.6) and part(b) of Theorem 3.1,

EVa={p}=£, foranyB<p.. (6.5)
(d) By part(b) of Theorem 3.1, symmetry, and p&& of Lemma 6.1,

- ~ o~ 1
H(E,) = {H(p), HOA(Bo)} = {— z—q,uo}.
Hence by(6.4) and(6.5),

Ep,= U gi=glAygo={p}u .
UEH(EBC)

However,p & £% sincep does not satisfy the constraiﬁ(p):uo. It follows that&' C é‘ﬁc but that
E0F#Ep.

(e) If ueN, thenue;(—%,NuO), and so by parib) of Lemma 6.1u¢ﬁ(v1(ﬁ)) for any B
€ (B;,*). Since by(6.4) EBZEH(Vl(ﬁ)) for all B> 8., it follows that for all 3> .,

gun ehoMe) = g

and thus that"N&z=@. For anyB< B (6.5 states thatz=& X={p}. Sinceue N, we have
u#-1/2q and thuse"¥8N '=@. It follows that &N =@ for any B< .. Finally, for f=;

part (b) of Theorem 3.1 states thafﬁc:{p,vl(ﬁc),...,vq(,Bc)}. However, since H(p)

=-(1/2q9) ¢« N and ﬁ(v‘(,Bc)):uo & N, none of the vectors iﬁ’ﬁc satisfies the constrairh~1(v):u.
Thusé’“ﬂé‘ﬂc:Q. We have proved"NE=@ for all Be R. The proof of the theorem is com-
plete. [ |

We end this section by showing that for arbitrary 4 andu in the equivalence selBU P
:(—%,uo]u{—1/2q} the formulas forg" ands(u) given in part(d) of Theorem 4.2 and paft) of
Theorem 4.3 are rigorously true. Our strategy is to use the equivalence of the microcanonical and
canonical ensembles fare FUP and the fact that the form of ; is known exactly for allg.
Thus, we translate the form ofe &4, as given in par{b) of Theorem 3.1, into the form of
e & for ue FUP. For Be[.,*), the lastg—1 components of'(B) e &g are given by

vi(B) = 1-wip) (6.6)
q
and these components are not equal to the first component. Since fon e&€ly P there exists
B € [Bc,»] such that eithe€'=Eg or E'C &, it follows that modulo permutations alle £ have
their lastq—1 components equal to each other. That is, modulo permutations there exist numbers
aandbin [0, 1] such thatv=(a,b, ... ,b). The possible values afandb are easily determined by
considering the constraints satisfied by £". These constraints are

a+(q-1b=1 anda®+(q- 1)b?>=-2u.

The two solutions of these equations are

_1-\(g-1)(-2qu- 1) _q-1+\V(q-1)(-2qu-1)
= ’ bl_
q (a-1q

and
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_1+\(g-D(-2qu-1)  _g-1-\(g-1)(-2qu-1)
a.2— ) b2_ :
q (a-1)q

Of the two valuesh,; andb,, only b, has the form given ir{6.6) with

V(q-1)(-2qu-1
q-1

w(B) = ) e [0,1].
We conclude that modulo permutations each&" has the forma,,b,, ... ,b,), in which the last
g-1 components all equdl,. This coincides with the formula for*(u) given in part(d) of
Theorem 4.2, which in turn gives the explicit formula f&u) in part (c) of Theorem 4.3. This
information is summarized in paftg) of the next theorem. The differentiability af on intF,
which is stated in partb), is an immediate consequence of the explicit formulasfon.
Theorem 6.3: We define glin (6.2). The following conclusions hold.
(a) For arbitrary g=4 and u in the equivalence setsu:P:(—%,uo] U{-1/2q} the formulas
for &* and gu) given in part(d) of Theorem4.2 and part(c) of Theoremd.3 are rigorously true
(b) For arbitrary q=4, s is differentiable on the intervant F=(-3,uo) and (u) is given by
(5.7).
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APPENDIX A: TWO RELATED MAXIMIZATION PROBLEMS

Theorem A.1 is a new result on the maximum points of certain functions related by convex
duality. It is formulated for a finite, differentiable, convex functibnon R” and its Legendre—
Fenchel transform,

F'(2) = sup{{x,2) — F(x)}.
xeR”

The domain ofF" is the set donfF" ={z e R?:F"(z) <oc}. With only minor changes in notation the
theorem is also valid for a finite, Gateaux-differentiable, convex function on a Hilbert space.

Theorem A.1 will be applied in Appendix B to prove that {60, &4 has the form given in
part (b) of Theorem 3.1. Another application of Theorem A.1 is given in Proposition 3.4 in Ref.
17. 1t is used there to determine the form of the set of canonical equilibrium macrostates for
another important spin system known as the mean-field Blume—Emery-Griffiths model.

Theorem A.1l: Let o be a positive integer and F a finite, differentiable, convex function
mappingR? into R. Assume thai;ugeR(r{F(z)—%HzH2}<oo and that H2)-3||Z? attains its supre-
mum. The following conclusions hold:

@  suprdF@-3]|4[2=supcaome{3]|4-F @}

(b) 3Z>-F () attains its supremum odomF",

(¢) the global maximum points of (B-3||Z? coincide with the global maximum points of
1 2 *
JlAP-F .

Proof: We define the subdifferential ¢f" at z, e R” by

IF (zo) ={y € R":F"(2) = F (o) + {y,2— 7o) for all z e R7}.

We also define the domain éF” to be the set ok, € R” for which dF"(z,) # @. The proof of the
theorem uses three properties of Legendre—Fenchel transfeeaRef. 43 for background
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(1) F" is a convex, lower semicontinuous function mappiig into R U{}, and for all z
e R, F"(20=(F")"(2) equalsF(z) [Ref. 14, Theorem VI.5@),(e)].

(2) If for some z;e R? and ze R” we havez=VF(zy), then F(z)+F (2)=(zy,2) [Ref. 14,
Theorems VI.3.&) and VI.5.3c)], and sozedomF". In particular, if z=z, then z,
e domF" and F(zo) +F"(z) =|zo|*

(3) For zyedomF" and yedF (z) we have F(y)+F (z)=(y,z) [Ref. 14, Theorem
VI1.5.3(c),(d)]. In particular, ify=2z,, thenF(zy)+F"(z) =||z|%.

We first prove part(a), which is a special case of Theorem C.1 in Ref. 13. Mt
=sup.roAF(2)-||2>/2}. Since for anyze domF" andx in R°,
F'(2+M=(x,2-F(x)+M = (x,2) - |[x|%2,

we have

F'(20 + M = sup{(x,2) - [X|/2} = ||z|%/2.

xeR7
It follows that M=||Z|?/2-F"(2) and thus thaM = sup,4ome{lZ|?/2-F"(2)}. To prove the re-
verse inequality, leN=sup.4ome-{l2|?/2-F"(2)}. Then for anyze R” andx e domF"
442 +N=(x,2) = ||x|2 +N = (x,2) - F"(x).

SinceF"(x)= for x ¢ domF", it follows from property 1 that

|IZ%2+N="sup {(x2)-F(x)}=F(@2)

xedomF"

and thus thalN=sup,. z{F(2) -2/ 2}.

In order to prove part$b) and (c) of Theorem A.1, letzy be any point inR” at which F(z)
—%|z||2 attains its supremum. Them=VF(z), and so by the last line of propert{2), z,
e domF" and F(zy) +F"(z9) =||z|[% Part(a) now implies that

sup{F(2) - 312} = F(z0) = 3lzd* = 3llzol* - F'(z0) = sup {32~ F (2}

zeR? zedomF

We conclude tha§||z||2—F*(z) attains its supremum on doR1 atz,. Not only have we proved part
(b), but also we have proved half of pad); namely, any global maximizer ch(z)—%||zI|2 is a
global maximizer of;||Z?>~F’(2).
Now let z, be any point at Whicli||zl|2—F*(z) attains its supremum. Then for amy R
32020 ~F'(20) = 322 - F (2).

It follows that for anyze R?,

F@=F(2) +3(22 ~(20.20) = F (20) + (2.2~ 2)
and thus thak, € 9F"(zy). By the last line of property3) this implies thatF(zy) +F" (zy) =|z|*. In
conjunction with paria) this in turn implies that

sup {3l - F' (@} = 3llzolP - F"(20) = F(20) - 3[2ll* = sup{F(2) - 5|2*}.

zedomF zeR7

We conclude thaF(z)-3|Z|? attains its supremum a,. This completes the proof of the theo-
rem. |

APPENDIX B: FORM OF &g

We first derive the form of; for >0 as given in partb) of Theorem 3.1. We then prove
that £5={p} for all B<0.
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&g is defined as the set of e P that minimize R(v|p)—(B/2){(v,v). Since B>0, this is
equivalent to

.1 1
Eg= {V e Pv maX|m|zesE<v, V) — ER(V|p)}. (B1)

This maximization problem has the form of the right-hand side of @rbf Theorem A.1; viz.,

.1 - Loe_g

with F*(v)=(1/8)R(v|p).
In order to determine the functiof having this Legendre—Fenchel transform, far R9 we
define the finite, differentiable, convex function

a1
[(2)= Iog(E &—) (B2)
=1 9

and setl’5(2)=(1/B)I'(B2). Since forv e RY (Ref. 14, Theorem VIII.2.2

. R(v|p) forve P,
T =
@ {oo otherwise,

it follows that for v € RY,

1
x 1 1. R f c P,
(FB) (v = 5Up{<2, vy — EF(BZ)} = EF (v)=4 B (V|P) or v

q .
zekk % otherwise.

ThusF(2)=(1/B8)I'(Bz). By part(a) of Theorem A.1,

1 1 1 1
supy =I'(B2) = =|2P = supy =(v,v) - =R ,
p{ PR ||} s g{zw 07 <v|p>}
and by part(b) of the theorem the global maximum points dS’f(,[S'z)—%||z||2 and %(v,v)

-(1/B)R(v|p) coincide.
Equation(B1) now implies that

Eg= {z e R%z maximizes%l“(ﬁz) - %Hzﬂz} = {z e R%z minimizes§||z||2— F(,Bz)}.

We summarize this discussion in the following corollary. Rbytof the corollary is proved in part
(b) of Theorem 2.1 in Ref. 19.

Corollary B.1: We define the finite, convex, continuous functiom (B2). The following
conclusions hold

(@ &g coincides with the set of global minimum points of
B o g B
Gy(2)= 5|2~ log S €% = Z |2~ T(52) - log .
i=1

(b) For 0<B< g, B=PB. and B> f3. the set of global minimum points of;@Gas the form given
by the right-hand side of3.4) [Theorem3.1(b)].
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Corollary B.1 completes the proof of Theorem 3.1. Kiessling’s proof of this corollary based on
Lagrange multipliers is given in Appendix B of Ref. 20. Continuous analogues of the corollary are
mentioned in Refs. 32, 33, and 38, but are not proved there.

We now show that for alB<0, £5={p}. This is obvious for3=0 sincev=p is the unique
vector inP that minimizesR(v|p). Our goal is to prove that foB<0, v=p is also the unique
vector inP that minimizesR(v|p)-(8/2){(v,v). Let v be a point inP at which R(v|p)—(8/2)
X{v,v) attains its infimum. For any=1,2, ... g,

a(R<v|p) -2, v>)

J Vi

:Iogvi+l—Bvi,

which is negative for all sufficiently smalk>0. It follows thatv does not lie on the relative
boundary ofP; i.e., »;>0 for alli=1,2, ... g. We complete the proof by showing that for any
1<j<ks=q, ;= Sincep is the only point inP satisfying these equalities, we will be done.

Given ae (0,1), we consider the reduced two-variable problem of minimizRg|p)
—(B12){v,v) overv;>0 andy,> 0 under the constraini + v=a; all the other componentsg are
fixed and equab;. Settingy,=a- vj, we define

F(y) = R(v|p) - §<V’ V).

Differentiating with respect te; shows that any global minimizer, must satisfy
F'(v) =log v; —log(a-v) - B(2v;-a) = 0.

Since

1
F'(v)=—+ -2B>0,
v a-y
F'(v)) is strictly increasing from negative values for ajinear 0 to positive values for alj near
a. It follows that the only root oF’(»;)=0 is »j=a/2 and thus that,=a/2=v;. Being a global
minimizer of R(v|p)—(B/2){v,v) overP, vis also a global minimizer of the reduced two-variable
problem. Sincea e (0,1) is arbitrary, it follows that for any distinct pair of indiceg=w,. This

completes the proof.
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