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1. Introduction. Let E be the set of even probability measures which
satisfy [ exp(kx?)o(dx) < oo for all k > 0 sufficiently small. Given an integer
N 2 1, real numbers & > 0 and Jl.j 20,1 <i<j<N, and measures p; €L,
1 <i<N, we define [11, p. 273] real-valued random variables X, 1 <i<N,
with the joint distribution

'rh(dxl, e ,de)

(1)

_ eXP(Zy ciciani* ¥ T T X0 @x)) - Py (@xy)
Z(h) '

Z(h), the partition function, is given by the formula
(@) Z(h) = f : .fexp(ZJi].xixi + thl)pl(dxl) Cpy(dxy).
N
R

The J,; are assumed to be so small that the integral in (2) converges for all & > 0.
The inequalities we discuss are to hold for all # > 0 and all J;; 2 0 subject only
to this restriction. The choice of p; as the Bernoulli measure b(dx) =
%(8(x — 1) + 6(x + 1)) gives the classical Ising model.

We define the average magnetization per site, m(h), by the formula

1 d 1 &
3 m(h) “Nah In Z(h) =V Z E{Xi}
=1

and consider inequalities on m(h) and its derivatives. While the inequalities
m(h) 2 0, dm(h)/dh > 0 hold for any p; €E [7, pp. 76—77], the concavity of
m(h), i.e.

@) d’>m(h)/dh® < 0,

requires that further restrictions be placed on the p,. Essentially, (4) is known
to hold only in the Ising case and.in models which can be built out of Ising
models in a suitable way [4], [6]. Measures for which (4) fails are known [6].
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The usual approach to (4) is first to prove the stronger (GHS) inequalities

(5]

a3
5 S — < <iik< >
%) ahiahjahkan(hl,...,hN) 0, al 1 <ij, k A/’hz>0’
where

Zlys s o 2 nlig) = f Nf exp(ZJi].xixi + Zhixj)pl(dxl) = 8 gty ).
R

Instead, we shall prove (4) directly for many new measures using a technique
which reduces consideration to the case N = 1. Afterwards, we shall return to

(5).

We state two implications of these inequalities. The first shows that the
requirement that the p; in (1) have Gaussian falloff is only an apparent restric-
tion.

THEOREM 1. Let p be an even probability measure satisfying [exp(kx)p(dx)
< oo forall k 2 0. Assume that (4) holds for N =1 (set p, = p). Then p is
inE.

The next theorem (known for fourth degree polynomial ¥ [3], [10]) on
the spectrum of certain differential operators is a striking consequence of (5).

THEOREM 2. Let V(x) be an entire function with the expansion
_ % 2k : 23
6) V(x)= Elakx , a,=0fork>2, a real (a1 >0ifalla, 0).

Let £, E,, E,, be the three smallest eigenvalues of the differential operator
~¥%d?*[dx? + V(x) on L*(R';dx). Then E; —E, > E, — E,.

By Theorems 4 and 5 below, we shall see that (5) is satisfied for the
measures

@) p{dx) = ¢ exp(— V(x))dx, c a normalization constant,
if Vis as in (6). This is the main ingredient needed to prove Theorem 2 [10].

2. The class G_. Below, we define a subset G_ of measures in E for which
we have the following result. '

THEOREM 3. If py, ..., py € G_, then (4) holds.

For the proof, we use a closure property of G _ in order to reduce to the
case N = 1. We call this property the closure of G_ under ferromagnetic unions.

(C) LetY,,..., Yy be real-valued random variables with joint distribu-
tion 7 (see (1)). Let F be the class of all distributions of sums 2 <ientiYi






