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Abstract

In this review paper we illustrate the basic ideas of the theory of large deviations in the

context of a simple model of a discrete ideal gas studied by Ludwig Boltzmann. These

ideas include microscopic and macroscopic levels of description, Cramér’s Theorem on

the large deviation behavior of the sample mean of independent, identically distributed

(i.i.d.) random variables, and a theorem first proved by Boltzmann and then generalized

by Sanov describing the large deviation behavior of the empirical vectors of i.i.d. random

variables. The rate of decay in the Boltzmann-Sanov Theorem is described by the relative

entropy. Boltzmann used the relationship between the empirical vector and the relative

entropy to describe the equilibrium distribution of the discrete ideal gas. In the second half

of this paper we show how Boltzmann’s ideas guided us in carrying out the large deviation

analysis of a droplet model involving dependencies and having significant applications to

technologies using sprays and powders.
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1 Introduction

This review paper is an introduction to the theory of large deviations, which studies the expo-

nential decay of probabilities in random systems. The theory is perfectly suited for applications

to statistical mechanics, where it gives insight into physical phenomena such as equilibrium

distributions and phase transitions. We illustrate the theory in the context of a simple model of

a discrete ideal gas studied by Ludwig Boltzmann in 1877 [3]. This model has no interactions

and is defined in terms of independent, identically distributed (i.i.d.) random variables. We

then show how Boltzmann’s ideas can be used to study the asymptotic behavior of a much more

complicated droplet model that is defined in terms of dependent random variables. The droplet

model is the subject of our paper [16].

In his paper of 1877, revolutionary and far ahead of its time because it was based on what

was then the radical assumption that matter is composed of atoms [21], Boltzmann discov-

ered a statistical interpretation of entropy when he calculated the equilibrium distribution of

energy levels in the discrete ideal gas model. This distribution is now known as the Maxwell–

Boltzmann distribution [20, §4.2–4.3], [22, 23]. The discrete ideal gas is a simple model be-

cause, having no interactions, it is defined in terms of a sequence of i.i.d. random variables.

Despite the simplicity of the model, Boltzmann’s calculation — based on what was then the

radical use of probabilistic methods to derive equilibrium properties of matter — is the seed

that engendered not only statistical mechanics, but also the theory of large deviations, two lux-

urious gardens that have continued to cross-fertilize each other since the time of Boltzmann.

Depressed and demoralized by the harsh criticism of his radical innovations in physics,

Boltzmann paid the ultimate price by committing suicide in 1906. Ironically, during the previ-

ous year Einstein vindicated Boltzmann’s belief in the atomic composition of matter when he

proved the existence of atoms by using the Maxwell–Boltzmann distribution to explain Brown-

ian motion. Einstein’s work also provided the theoretical basis for the calculation of Avogadro’s

number three years later. Boltzmann died a broken man. However, future generations have been

the beneficiaries of his scintillating genius.

In this paper we will explain Boltzmann’s calculation of the Maxwell-Boltzmann distribu-

tion from the viewpoint of modern probability theory, emphasizing his derivation of a local

version of Sanov’s Theorem. This basic result is stated in Theorem 3.1. It gives a local large
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deviation estimate, in terms of the relative entropy, of the probability that a sequence of empir-

ical measures of i.i.d. random variables equals a sequence of possible asymptotic distributions.

The fact that this probability is expressed as a multinomial coefficient reveals the essentially

combinatorial nature of Boltzmann’s proof. Starting with Boltzmann’s work on the discrete

ideal gas, combinatorial methods have remained an important tool in both statistical mechan-

ics and in the theory of large deviations, offering insights into a wide variety of physical and

mathematical phenomena via techniques that are elegant, powerful, and often elementary. In

applications to statistical mechanics, this state of affairs is explained by the observation that

“many fundamental questions . . . are inherently combinatorial, . . . including the Ising model,

the Potts model, monomer-dimer systems, self-avoiding walks and percolation theory” [27].

For the two-dimensional Ising model and other exactly soluble models the classical references

[2] and [24] are recommended.

A similar situation holds in the theory of large deviations. For example, section 2.1 of [8]

discusses combinatorial techniques for finite alphabets and points out that because of the con-

creteness of these applications the large deviation principles are proved under much weaker

conditions than the corresponding results in the general theory, into which the finite-alphabet

results give considerable insight. The text [10] devotes several early sections to large devia-

tion results for i.i.d. random variables having a finite state space and proved by combinatorial

methods, including a sophisticated, level-3 result for the empirical pair measure.

Boltzmann’s work on the discrete ideal gas has given rise to what has become a standard

paradigm in the many fields of science that use the methods of statistical mechanics. As he

observed, the Maxwell-Boltzmann distribution, in particular, and the equilibrium distributions

of a wide variety of physical systems, in general, are each the global minimum point of an

entropy function over all distributions satisfying the constraint defining the system, which in the

case of an isolated system such as the discrete ideal gas is the energy. The Maxwell-Boltzmann

distribution has the form of a normalized exponential parametrized by a quantity conjugate to

the energy, which is the inverse temperature. It is described in Theorem 4.1. Our derivation

of the Maxwell-Boltzmann distribution is much more precise than the derivations found in the

physics literature, examples of which appear in [20, §4.3] and [26, §3.2].

These ideas have become the bedrock of classical statistical mechanics. Their beauty and

their power can be seen when they are applied to new systems, for which they can provide a

systematic procedure for deducing their equilibrium behavior. In our paper [16] we generalize

the procedure developed by Boltzmann for the discrete ideal gas to carry out the asymptotic

analysis of a droplet model involving dependencies. The question that motivated our research

is natural and is simply stated. Given b ∈ N and c > b, K particles are placed, each with equal

probability 1/N , onto the N sites of a lattice. Assuming that K/N = c and that each site is

occupied by a minimum of b particles, we determine the equilibrium distribution, as N → ∞,

of the number of particles per site. As we discuss in subsection 6c, this equilibrium distribution
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is a Poisson distribution ρb,αb(c) restricted to Nb = {n ∈ Z : n ≥ b}, where the parameter αb(c)
is chosen so that the mean of ρb,αb(c) equals c.

Our description of the equilibrium distribution is one of the main results in [16]. As we

describe in section 8, it is derived as a consequence of a large deviation principle (LDP) for

a sequence of random probability measures, called number-density measures, which are the

empirical measures of dependent random variables that count the droplet sizes in the model.

Our proof of the LDP is self-contained and starts from first principles, using techniques that

are familiar in statistical mechanics. The centerpiece of the proof is the local large deviation

estimate in Theorem 3.1 of [16], the proof of which uses combinatorics, Stirlings formula, and

Laplace asymptotics.

The droplet model has significant applications to technologies using sprays and powders.

Sprays are liquids broken up into minute droplets and blown, ejected into, or falling through

the air [7]; powders are dry, bulk solids composed of a large number of very fine particles that

may flow freely when shaken or tilted [6]. Sprays and powders are prevalent throughout our

society, in science, technology, industry, consumer products, and many other areas. An impor-

tant problem for which a rigorous theory seems to be lacking is to determine the equilibrium

size-distribution in sprays and powders [25, 29]. In the present paper we show, despite the dif-

ference in complexity between the discrete ideal gas and the droplet model, how Boltzmann’s

ideas provide a road map for the asymptotic analysis of the droplet model and explain how

this analysis yields the equilibrium behavior of the dependent random variables that count the

droplet sizes. The discovery of this equilibrium distribution fills a major gap in the literature on

sprays and powders.

We will also explain the following four deep connections between the asymptotic analysis

of the droplet model and that of Boltzmann’s discrete ideal gas. Other connections are pointed

out at the end of subsection 6b.

1. As Boltzmann did for the discrete ideal gas, we first prove a local large deviation estimate

for a sequence of random, number-density measures that are the empirical measures of

dependent random variables that count the droplet sizes in the model. This is done by a

combinatorial analysis involving a product of two multinomial coefficients, of which the

first is closely related to the multinomial coefficient that underlies Boltzmann’s derivation

of the Maxwell-Boltzmann distribution.

2. Boltzmann’s local large deviation estimate for the discrete ideal gas can be lifted to a

global result via a two-step procedure. Known as the Boltzmann-Sanov large deviation

principle (LDP), it is a basic theorem in the modern theory. In the same way, the local

large deviation estimate mentioned in item 1 for the droplet model can also be lifted to a

global LDP via an analogous two-step procedure.
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3. In analogy with Boltzmann’s characterization of the Maxwell-Boltzmann distribution, the

LDP for the droplet model mentioned in item 2 allows us to characterize its equilibrium

distribution as the global minimum point of a suitable relative entropy function. As we

already pointed out, this equilibrium distribution is a Poisson distribution describing the

droplet sizes.

4. Because they involve independent random variables, the Boltzmann-Sanov LDP and re-

lated LDPs cannot be applied as stated to deduce the asymptotic behavior of the number-

density measures in the droplet model, which involve dependent random variables. Never-

theless, the Boltzmann-Sanov LDP can be applied to give a formal derivation of the LDP

for these measures, which suggests a Poisson distribution as the equilibrium distribution

and which agrees asymptotically with the LDP mentioned in item 2 as the parameter c
defining the droplet model converges to ∞.

We comment on item 2 in this list. The first step in the two-step procedure for lifting the

local large deviation estimate to a global LDP is to use the local large deviation estimate and an

approximation argument to prove large deviation limits for open balls. The second step is to use

the large deviation limits for open balls to prove the large deviation upper bound for closed sets

and the large deviation lower bound for open sets. These two steps involve techniques that can

be applied to many problems in large deviations. An important example involving the second

step is the proof of Cramér’s Theorem in Polish spaces, which, as shown in [8, §6.1], is based

on an elegant subadditivity argument that gives large deviation limits for open, convex subsets.

In the case of the droplet model the two steps in this procedure are given a general formulation

in Theorems 4.2 and 4.3 in [15], a companion paper to [16] containing a number of routine

proofs omitted from [16] as well as additional background material. It is hoped that the reader

who is new to the theory of large deviations will benefit from the presentation of the procedure

in the much more elementary setting of the discrete ideal gas in section 3 of the present paper.

In section 2 we introduce the discrete ideal gas, state Cramér’s Theorem 2.1 on the large

deviation behavior of the sample means of the i.i.d. random variables in terms of which the

discrete ideal gas is defined, and state the Boltzmann-Sanov Theorem 2.3 on the large devi-

ation behavior of the empirical measures of these i.i.d. random variables. In both cases the

large deviation behavior is described by an LDP. In section 3 we present a procedure for prov-

ing the Boltzmann-Sanov Theorem that is based on Boltzmann’s local large deviation estimate

in Theorem 3.1. The Boltzmann-Sanov Theorem is then applied in section 4 to derive the

Maxwell-Boltzmann equilibrium distribution of the discrete ideal gas. Section 5 introduces the

droplet model. In section 6 we describe the LDP for a sequence of random, number-density

measures arising in this model that are the analogs of the empirical measures in the discrete

ideal gas model. Section 6 ends by explaining how the LDP for the number-density measures
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yields the form of the equilibrium distribution for the model. In Section 7 we show how Boltz-

mann’s work on the discrete ideal gas suggests a formal procedure that motivates the LDP for

the number-density measures. The paper ends with section 8. Here we outline the procedure for

proving the LDP for the number-density measures. This procedure generalizes the procedure

described in section 3 for proving the Boltzmann-Sanov Theorem for the discrete ideal gas.

One of the main themes of this paper is the power of the Boltzmann-Sanov LDP, and the

power of the large deviation results that it has inspired, for studying the asymptotic behavior of

statistical mechanical systems, including the discrete ideal gas and the droplet model. There are

numerous other systems for which these ideas have been used. They include the following three

lattice spin models: the Curie-Weiss spin system, the Curie-Weiss-Potts model, and the mean-

field Blume-Capel model, which is also known as the mean-field BEG model. As explained in

the respective sections 6.6.1, 6.6.2, and 6.6.3 of [11], the large deviation analysis shows that

each of these three models has a different phase transition structure. Details of the analysis for

the three models are given in the respective references [10, §IV.4], [17, 5], and [14]. Section 9 of

[12] outlines how large deviation theory, and in particular a spatialized form of the Boltzmann-

Sanov LDP, can be applied to determine equilibrium structures in statistical models of two-

dimensional turbulence. Details of this analysis are given in [4].

We end this introduction by returning to the theme with which we started. Boltzmann’s

work is put in historical context by William Everdell, who traces the development of the modern

consciousness in 19th and 20th century thought [19]. Chapter 3 focuses on the mathematicians

of Germany in the 1870s — namely, Cantor, Dedekind, and Frege — who “would become the

first creative thinkers in any field to look at the world in a fully twentieth-century manner” (p.

31). Boltzmann is then presented as the person whose investigations in stochastics and statistics

made possible the work of the two other great founders of twentieth-century theoretical physics,

Planck and Einstein. “He was at the center of the change” (p. 48).

Acknowledgment. We are grateful to Jonathan Machta, who helped us with the physical back-

ground of this paper, and to Ofer Zeitouni, who suggested the reference [1], which is applied in

section 7 to prove Sanov’s Theorem for triangular arrays of independent random variabes. The

research of Shlomo Ta’asan is supported in part by a grant from the National Science Founda-

tion (NSF-DMS-1216433).

2 Discrete ideal Gas and Boltzmann-Sanov LDP

Our first topic is a probabilistic model for the discrete ideal gas. We will then consider micro-

scopic and macroscopic levels of description of the model, which are basic to the theory of large

deviations.
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2a Probabilistic model for discrete ideal gas

Let r ≥ 2 be an integer and consider r real numbers y1 < y2 < . . . < yr. The discrete ideal gas

consists of n particles, each of which has a random energy lying in the set Λ = {y1, y2, . . . , yr}.

In the absence of any information on the distribution of the random energies, we assume that

they are independent and uniformly distributed on Λ.

The standard probabilistic model corresponding to this physical description is defined in

terms of the configuration space Ωn = Λn. The quantities ω ∈ Ωn are called microstates, and

each has the form ω = (ω1, ω2, . . . , ωn), where ωi denotes the energy of the i’th particle. It

is convenient to introduce random variables representing these energy values. This is done by

defining Xi(ω) = ωi for i ∈ {1, 2, . . . , n} and ω ∈ Ωn. Let ρ denote the probability vector in

R
r defined by ρ = (ρ1, ρ2, . . . , ρr), where each ρj = 1/r. The same notation ρ is used to denote

the probability measure ρ =
∑r

j=1(1/r)δyj
on Λ. Since ρ assigns equal probability 1/r to each

y ∈ Λ, we call ρ the uniform distribution on Λ. We also consider the probability measure Pn

that assigns to each ω ∈ Ωn the probability Pn{ω} = 1/rn. Since

Pn{ω} =
1

rn
=

n
∏

i=1

1

r
=

n
∏

i=1

ρ{ωi},

we identify Pn with the n-fold product measure ρn having equal one-dimensional marginals ρ.

Pn is extended to a probability on the set of all subsets of Ωn by defining for any subset B

Pn{B} =
∑

ω∈B

Pn{ω} =
∑

ω∈B

1

rn
=

1

rn
· card(B), (2.1)

where card(B) denotes the cardinality of B.

All of the mathematical results stated in sections 2, 3, and 4 are valid for any probability

measure ρ =
∑r

j=1 ρjδyj
on Λ for which each ρj > 0. We focus on the uniform distribu-

tion ρ because this distribution is the appropriate choice in the absence of information on the

distribution of the energy values in the discrete ideal gas.

It follows from the definition of Pn that for any i ∈ {1, 2, . . . , n} and any y ∈ Λ

Pn{ω ∈ Ωn : Xi(ω) = y} = Pn{Xi = y} =
1

r

and that for any subsets B1, B2, . . . , Bn of Λ

Pn{Xi ∈ Bi for i = 1, 2, . . . , n} =
n
∏

i=1

Pn{Xi ∈ Bi}.
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We conclude that the random variables Xi are independent and uniformly distributed on Λ.

We now turn to the large deviation analysis of the discrete ideal gas, which we introduce

by focusing on the levels of description of this model. There is a microscopic level and a

sequence of macroscopic levels, of which we consider the first two. Statistical mechanics and

the theory of large deviations focus on the interplay among these levels of description. The first

macroscopic level is defined in terms of the sample mean, and the second is defined in terms

of the empirical vector. At the end of the discussion of the sample mean, we introduce the

microcanonical ensemble by conditioning the product measure Pn on a constraint that involves

the sample mean and models the conservation of energy. In section 4 we will use the empirical

vector to determine the Maxwell-Boltzmann distribution, which is the equilibrium distribtion

of the random energy values Xi of the discrete ideal gas with respect to the microcanonical

ensemble.

2b Microscopic level

The configuration space Ωn contains rn microstates. Each microstate ω gives a microscopic

description of the discrete ideal gas by specifying the energy values of all n particles. Although

the microscopic level of description is precise, it is much too detailed to give useful information.

2c Macroscopic level 1: sample mean

The most basic macroscopic level involves the sample mean. Given ω ∈ Λn, define

Sn(ω) =
n
∑

i=1

Xi(ω) =
n
∑

i=1

ωi.

The sample mean Sn/n, or the average random energy, takes values in the closed interval

[y1, yr]. This macroscopic variable summarizes, in terms of a single quantity, the rn degrees of

freedom in the microscopic description ω ∈ Ωn. We also define the average energy

ȳ =
1

r
·

r
∑

k=1

yk.

This quantity equals the mean of X1 with respect to Pn, which is expressed by the expectation

EPn{X1}.

We next give a formal overview of the asymptotic behavior of Sn/n, which will soon be

reformulated in a rigorous way. The weak law of large numbers states that

lim
n→∞

Pn{Sn/n ∼ ȳ} = 1.
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Cramér’s LDP, stated in Theorem 2.1, expresses the large deviation behavior of Sn/n. It shows

that there exists a function I mapping [y1, yr] into [0,∞) with the property that for any z ∈
(y1, yr)

Pn{Sn/n ∼ z} ≈ exp[−nI(z)] as n → ∞.

We now combine the law of large numbers with the large deviation estimate in the last

equation. If z = ȳ, then Pn{Sn/n ∼ ȳ} → 1, and if z 6= ȳ, then Pn{Sn/n ∼ z} → 0. Thus if

z = ȳ, then we expect that I(z) = 0. On the other hand, if z 6= ȳ, then we expect that I(z) > 0,

implying that

Pn{Sn/n ∼ z} ≈ exp[−nI(z)] → 0 exponentially fast as n → ∞. (2.2)

If z 6= ȳ, then we call the event {Sn/n ∼ z} a large deviation event. The function I is called a

rate function or an entropy function.

In order to understand the statistical mechanical implication of (2.2), we use (2.1) to write

Pn{Sn/n ∼ z} =
1

rn
· card{ω ∈ Λn : Sn(ω)/n ∼ z}.

It follows that

card{ω ∈ Λn : Sn(ω)/n ∼ z} ≈ rn exp[−nI(z)] = card(Ωn) · exp[−nI(z)].

This formula yields the following appealing interpretation of the rate function. I(z) records the

multiplicity of microstates ω consistent with the macrostate z through the macroscopic variable

Sn/n. This interpretation of the rate function is consistent with Boltzmann’s insight of 1877

concerning the role of entropy in statistical mechanics. His insight is the following.

Entropy is a bridge between a microscopic level, on which physical systems are

defined in terms of the interactions among the individual constituent particles, and

a macroscopic level, on which the laws describing the behavior of the system are

formulated.

We now give a rigorous formulation of the asymptotic behavior of Sn/n. Given z ∈ (y1, yr)
and any a > 0 define the closed interval

Fz,a =







[z − a, z] if y1 < z < ȳ
[z − a, z + a] if z = ȳ
[z, z + a] if ȳ < z < yr.

(2.3)
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In all three cases a > 0 is chosen so small that the respective interval is a subset of (y1, yr). If

z = ȳ, then Fz,a is a symmetric interval with center ȳ, and the weak law of large numbers states

that

lim
n→∞

Pn{Sn/n ∈ Fz,a} = 1.

If z 6= ȳ, then since ȳ does not lie in the close interval Fz,a, the weak law of large numbers

implies that

lim
n→∞

Pn{Sn/n ∈ Fz,a} = 0. (2.4)

In (2.8) we show that the probability Pn{Sn/n ∈ Fz,a} decays to 0 exponentially fast with an

exponential rate depending on z. This gives a rigorous formulation of the heuristic limit (2.2).

For t ∈ R define c(t) = log EPn{exp(tX1)}, which is the logarithm of the moment generat-

ing function of ρ, also known as the cumulant generating function of ρ. Since X1 is distributed

by ρ, we can write

c(t) = log

(

1

r

r
∑

k=1

exp(tyk)

)

. (2.5)

Cramér’s Theorem describes the large deviation behavior of Sn/n in terms of a rate function I
defined in (2.6) in terms of c. The statement of this theorem includes properties of I , the large

deviation upper bound in part (a), and the large deviation lower bound in part (b). Cramér’s

Theorem is proved in [10, §VII.2, §VII.5] and [8, §2.2]. A general version is proved in [8, §6.1].

Theorem 2.1 (Cramér). For x ∈ R we define

I(x) = sup
t∈R

{tx− c(t)}, (2.6)

which expresses I as the Legendre-Fenchel transform of c. I is finite and continuous on [y1, yr]
and satisfies

I(x) > I(ȳ) = 0 for all x ∈ [y1, yr] satisfying x 6= ȳ. (2.7)

Thus I attains its infimum of 0 over [y1, yr] at the unique point ȳ. In addition, I is a strictly

convex function on [y1, yr]; i.e., for any w 6= x ∈ [y1, yr] and any λ ∈ (0, 1), I(λw+(1−λ)x) <
λI(w) + (1 − λ)I(x).

We have the following large deviation bounds for Sn/n; for A any subset of [y1, yr], I(A)
denotes the quantity infx∈A I(x).

(a) For any closed subset F of [y1, yr]

lim sup
n→∞

1

n
log Pn{Sn/n ∈ F} ≤ −I(F ).
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(b) For any open subset G of [y1, yr]

lim sup
n→∞

1

n
log Pn{Sn/n ∈ G} ≥ −I(G).

Let z be a point in (y1, yr) satisfying z 6= ȳ. It is not difficult to deduce from Cramér’s

Theorem that for the closed interval Fz,a defined in (2.3) we obtain the large deviation limit

lim
n→∞

1

n
log Pn{Sn/n ∈ Fz,a} = −I(Fz,a).

Since z is the closest point in Fz,a to ȳ, which does not lie in Fz,a, and since I is a finite,

strictly convex function on [y1, yr], the property of I stated in (2.7) implies that I(Fz,a) =
infx∈Fz,a I(x) = I(z) > 0 = I(ȳ). Hence the last equation becomes

lim
n→∞

1

n
log Pn{Sn/n ∈ Fz,a} = −I(z) < 0. (2.8)

This equation shows that Pn{Sn/n ∈ Fz,a} → 0 with exponential rate exp[−nI(z)] as n → 0.

Since as a decreases to 0, the interval Fz,a decreases to {z}, it is a rigorous formulation of the

heuristic limit noted in (2.2).

The discrete ideal gas is a simple model because it is defined in terms of a finite sequence of

independent random variables Xi that are uniformly distributed on the finite set Λ consisting of

the energy values yj, j = 1, 2, . . . , r. Surprisingly, the model has significant physical content,

which can be seen by conditioning the product measure Pn on the energy constraint that Sn/n
lies in the closed interval Fz,a. This conditioned measure defines the microcanonical ensemble,

which for subsets B of Ωn has the form Pn(B|Sn/n ∈ Fz,a} for subsets B of Ωn. The constraint

Sn/n ∈ Fz,a is introduced to model conservation of energy in the discrete ideal gas.

In Theorem 4.2 we determine the Maxwell-Boltzmann distribution of the discrete ideal gas

with respect to the microcanonical ensemble in the limit n → ∞, which defines the thermo-

dynamic limit. As we point out before the statement of Theorem 4.1, values of z lying in

the low-energy interval (y1, ȳ) correspond to the physically relevant region of positive temper-

atures while values of z lying in the high-energy interval [ȳ, yr) correspond to the physically

nonrelevant region of negative temperatures or infinite temperature.

We now turn to macroscopic level 2 of description in terms of the empirical vector. The

large deviation behavior of the empirical vector is expressed in the Boltzmann-Sanov LDP

in Theorem 2.3, which will be applied in section 4 when we study the Maxwell-Boltzmann

distribution.

11



2d Macroscopic level 2: empirical vector

The most elementary macroscopic level of description is in terms of the sample mean

Sn(ω)/n =
1

n
·

n
∑

i=1

Xi(ω) =
1

n
·

n
∑

i=1

ωi.

This macroscopic variable summarizes the rn degrees of freedom in the microscopic description

ω ∈ Ωn in terms of a single quantity. A more refined macroscopic level of description is in terms

of the empirical vector. For ω ∈ Ωn and y ∈ Λ we define

Ln(y) = Ln(ω, y) =
1

n

n
∑

i=1

δXi(ω){y}.

Thus Ln(ω, y) counts the relative frequency with which y appears in the configuration ω; in

symbols, Ln(ω, y) = n−1 · card{i ∈ {1, . . . , n} : ωi = y}. We then define the empirical vector

Ln = Ln(ω) = (Ln(ω, y1), . . . , Ln(ω, yr)) (2.9)

=
1

n

n
∑

i=1

(

δXi(ω){y1}, . . . , δXi(ω){yr}
)

.

Ln equals the sample mean of the i.i.d. random vectors (δXi(ω){y1}, . . . , δXi(ω){yr}). It takes

values in the set of probability vectors

Pr =

{

θ = (θ1, θ2, . . . , θr) ∈ R
r : θj ≥ 0,

r
∑

j=1

θj = 1

}

.

We use the same notation to denote the empirical measure

Ln = Ln(ω) =
1

n

r
∑

j=1

Ln(ω, yj)δyj
,

which for ω ∈ Ωn is a probability measure on Λ. Similarly any probability vector θ ∈ Pr can

be identified with the quantity
∑r

j=1 θjδyj
, which is a probability measure on Λ.

The macroscopic variables Ln and Sn/n are closely related. In fact, the mean of the empiri-

cal measure Ln equals the sample mean Sn/n; in symbols, for each ω ∈ Ωn,
∑r

j=1 yjLn(yj, ω) =
Sn(ω)/n. This fact is proved right after (4.3) and is used in the proof of part (a) of Theorem

4.2.
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We now give a formal overview of the asymptotic behavior of Ln, which will soon be

reformulated in a rigorous way. The limiting behavior of Ln is straightforward to determine.

Since the Xi have the common distribution ρ = (ρ1, ρ2, . . . , ρr) with each ρj = 1/r, for each

yk ∈ Λ

EPn{Ln(yk)} = EPn

{

1

n

n
∑

i=1

δXi
{yk}

}

=
1

n

n
∑

i=1

Pn{Xi = yk} = ρk = 1/r.

Hence by the weak law of large numbers for the sample means of i.i.d. random vectors

lim
n→∞

Pn{Ln ∼ ρ} = 1.

The Boltzmann-Sanov LDP, stated in Theorem 2.3, expresses the large deviation behavior of

Ln. It shows that there exists a function R(·|ρ) mapping Pr into [0,∞) and having the property

that for any θ ∈ Pr

Pn{Ln ∼ θ} ≈ exp[−nR(θ|ρ)] as n → ∞.

We now combine the law of large numbers with the large deviation estimate in the last

equation. If z = ρ, then Pn{Ln ∼ ρ} → 1, and if θ 6= ρ, then Pn{Ln ∼ θ} → 0. Thus if θ = ρ,

then we expect that R(θ|ρ) = 0. On the other hand, if θ 6= ρ, then we expect that R(θ|ρ) > 0,

implying that

Pn{Ln ∼ θ} ≈ exp[−nR(θ|ρ)] → 0 exponentially fast as n → ∞. (2.10)

As in level 1, the last equation shows that R(θ|ρ) records the multiplicity of microstates ω
consistent with the macrostate θ through the macroscopic variable Ln.

So far this discussion of the asymptotic behavior of Ln parallels the discussion of the asymp-

totic behavior of the sample mean in level 1. In the presentation of level 1, the rate function I is

defined by the Legendre-Fenchel transform (2.6). Unfortunately, for general r the rate function

I cannot be expressed in explicit form. By contrast, the rate function R(·|ρ) for level 2 has the

explicit form of the relative entropy, which is of fundamental importance in probability theory,

information theory, and other areas of mathematics and science. The definition and basic prop-

erties of the relative entropy are given in the next theorem. The function x log x, well defined

for x > 0, is extended to x = 0 by continuity; thus for x = 0 we define x log x = 0.

Theorem 2.2. The relative entropy of θ ∈ Pr with respect to ρ is defined by

R(θ|ρ) =
r
∑

j=1

θj log
θj

ρj
=

r
∑

j=1

θj log(rθj) = log r +
r
∑

j=1

θj log θj.

13



This function has the following properties.

(a) R(·|ρ) is finite and continuous on Pr. In addition R(·|ρ) is strictly convex; i.e., for any

θ 6= µ ∈ Pr and any λ ∈ (0, 1), R(λθ + (1 − λ)µ|ρ) < λR(θ|ρ) + (1 − λ)R(µ|ρ).
(b) We have

R(θ|ρ) > R(ρ|ρ) = 0 for all θ ∈ Pr satisfying θ 6= ρ.

Thus R(θ|ρ) attains its infimum of 0 over Pr at the unique measure θ = ρ.

Proof. (a) The finiteness and continuity of R(·|ρ) on Pr follows from the explicit formula

defining R(·|ρ). The strict convexity of this function is a consequence of the strict convexity of

x log x for x ≥ 0.

(b) If θ = ρ, then by definition R(θ|ρ) = 0. To prove that R(·|ρ) attains its infimum over Pr

at the unique measure ρ, we use a global, convexity-based inequality rather than calculus. This

inequality is that for x ≥ 0, x log x ≥ x−1 with equality if and only if x = 1. The proof of this

statement follows from the fact that the graph of the strictly convex function x log x for x ≥ 0
has the tangent line y = x− 1 at x = 1. It follows that for any θ ∈ Pr

θj

ρj
log

θj

ρj
≥

θj

ρj
− 1

with equality if and only if θj = ρj = 1/r. Multiplying this inequality by ρj and summing over

j yields

R(θ|ρ) =
r
∑

j=1

θj log
θj

ρj
≥

r
∑

j=1

(θj − ρj) = 0.

In order to complete the proof of part (b), we must show that if R(θ|ρ) = 0, then θ = ρ.

Assume that R(θ|ρ) = 0. Then

0 =

r
∑

j=1

θj log
θj

ρj
=

r
∑

j=1

(

θj log
θj

ρj
− (θj − ρj)

)

=

r
∑

j=1

ρj

(

θj

ρj
log

θj

ρj
−

(

θj

ρj
− 1

))

.

We again use the fact that for x ≥ 0, x log x ≥ x−1 with equality if and only if x = 1. It follows

that for each j, θj = ρj and thus that θ = ρ. This completes the proof that R(θ|ρ) > R(ρ|ρ) = 0
for all θ ∈ Pr satisfying θ 6= ρ. The proof of the theorem is complete.

We next state the Boltzmann-Sanov Theorem, which is the LDP for Ln with rate function

R(·|ρ).
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Theorem 2.3 (Boltzmann-Sanov). We have the following large deviation bounds for the em-

pirical vector Ln; for A any subset of Pr, R(A|ρ) denotes the quantity infθ∈A R(θ|ρ).
(a) For any closed subset F of Pr

lim sup
n→∞

1

n
log Pn{Ln ∈ F} ≤ −R(F |ρ).

(b) For any open subset G of Pr

lim sup
n→∞

1

n
log Pn{Ln ∈ G} ≥ −R(G|ρ).

As we point out in (2.9), Ln equals the sample of the independent, identically distributed

(i.i.d.) random vectors (δXi
{y1}, . . . , δXi

{yr} for j = 1, 2, . . . , n. The easiest way to prove the

Boltzmann-Sanov LDP is to apply Cramér’s Theorem for i.i.d. random vectors and to evaluate

the Legendre-Fenchel transform defining the rate function, obtaining the relative entropy. This

is carried out in [10, §VIII.2].

We are using the term Boltzmann-Sanov LDP to refer to the LDP for empirical vectors

defined in terms of i.i.d. random variables and taking values in a finite set. A much more

general form of this LDP is known for empirical measures based on i.i.d. random vectors taking

values in infinite sets such as N, R
d for d ≥ 2, and general complete, separable metric spaces

[8, §6.2], [9, Thm. 2.2]. In this more general context the LDP is known as Sanov’s Theorem in

honor of I. N. Sanov, one of the pioneers of the theory of large deviations [28].

In the next section we will take a more circuitous route to proving the Boltzmann-Sanov

LDP by deriving it from a local large deviation estimate due to Boltzmann that studies the

asymptotic behavior of a certain multinomial coefficient. The virtue of this approach is that it

serves as a model for the proof of the LDP for the droplet model, for which standard formula-

tions of the Boltzmann-Sanov Theorem cannot be applied. The droplet model is introduced in

section 5, and the procedure for proving the LDP is outlined in section 8.

3 Proof of Theorem 2.3 from Boltzmann’s Local Estimate

We prove the Boltzmann-Sanov LDP in Theorem 2.3 in four steps. Let ‖·‖ denote the Euclidean

norm on R
r. If θ(n) is a sequence in Pr and θ ∈ Pr, then we write θ(n) → θ to denote the

convergence ‖θ − θ(n)‖ → 0 as n → ∞.

1. Local estimate. In Theorem 3.1 we prove Boltzmann’s local large deviation (LD) esti-

mate. This states that for θ(n) ∈ Pr lying in the range of Ln

1

n
log Pn{Ln = θ(n)} = −R(θ(n)|ρ) + εn(θ

(n)),
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where εn(θ
(n)) → 0 uniformly for θ(n) in the range of Ln as n → ∞.

2. Approximation result. In Theorem 3.2 we show that for any probability vector θ ∈ Pr

there exists a sequence θ(n) in the range of Ln such that θ(n) → θ and R(θ(n)|ρ) → R(θ|ρ).

3. Large deviation limit for open balls. In Theorem 3.3 we show how to use the approx-

imation result in step 2 to lift the local estimate in step 1 to the large deviation limit for

Ln lying in open balls.

4. Large deviation upper and lower bounds. We end the section by showing how to lift

the large deviation limit for Ln lying in open balls in step 3 to the large deviation upper

bound for Ln lying in closed subsets of Pr and the large deviation lower bound for Ln

lying in open sets of Pr. This will complete the proof of the Boltzmann-Sanov Theorem.

We introduce notation that will help us formulate these four steps. Let N0 denote the set of

nonnegative integers. We define An to be set of ν = (ν1, ν2, . . . , νr) ∈ N
r
0 satisfying

∑r
j=1 νj =

n, and we define Dn to be the range of Ln(ω) for ω ∈ Ωn. Dn is a subset of the set of

probability vectors Pr in R
r. By definition of the empirical vector, any probability vector θ(n) =

(θ
(n)
1 , θ

(n)
2 , . . . , θ

(n)
r ) lying in the range of Ln(ω) for ω ∈ Ωn has the form for j = 1, 2, . . . , r

θ
(n)
j =

νj

n
for some ν ∈ An.

We are now ready to state Boltzmann’s local large deviation estimate. The proof is based on

the asymptotic analysis of a certain multinomial coefficient.

Theorem 3.1 (Boltzmann’s local LD estimate). Let Dn denote the range of Ln. For θ(n) ∈ Dn

1

n
log Pn{Ln = θ(n)} = −R(θ(n)|ρ) + εn(θ

(n)),

where εn(θ(n)) → 0 uniformly for θ(n) ∈ Dn as n → ∞.

Proof. Let Mn = {i ∈ N : 1 ≤ i ≤ n}. Each component θ
(n)
j of θ(n) has the form θ

(n)
j = νj/n

for some ν ∈ An. Since each component ρj of ρ equals 1/r, we have by (2.1) and elementary

combinatorics

Pn{Ln = θ(n)} (3.1)

= Pn

{

ω ∈ Ωn : Ln(ω) =
1

n
(nθ

(n)
1 , nθ

(n)
2 , . . . , nθ(n)

r )

}

= Pn{ω ∈ Ωn : card{i ∈ Mn : ωi = yj} = νj for j = 1, 2, . . . , r}

= card{ω ∈ Ωn : card{i ∈ Mn : ωi = yj} = νj for j = 1, 2, . . . , r} ·
1

rn

=
n!

∏r
j=1 νj !

·
1

rn
.
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We now apply a weak form of Stirling’s approximation, which states that for all n ∈ N

satisfying n ≥ 2 and for all κ ∈ N0 satisfying 0 ≤ κ ≤ n

1 ≤ log(κ!)− (κ log κ − κ) ≤ 2 log n. (3.2)

The straightforward proof begins as follows: for κ ∈ N satisfying 2 ≤ κ ≤ n

κ log κ − κ + 1 =

∫ κ

1

log x dx ≤ log(κ!) =
κ
∑

j=2

log j

≤

∫ κ

2

log x dx + log κ

= κ log κ − κ + 2(1 − log 2) + log κ.

This implies that

1 ≤ log(κ!) − (κ log κ − κ) ≤ 2(1 − log 2) + log κ.

Since log 2 = 0.69 . . . > 2/3, we obtain (3.2) for 2 ≤ κ ≤ n. Because (3.2) is also valid for

κ = 0 and κ = 1, the proof of the weak form of Stirling’s approximation is complete. We

summarize (3.2) by writing

log(κ!) = κ log κ − κ + O(log n) ∀n ∈ N, n ≥ 2 and ∀κ ∈ {0, 1, . . . , n}. (3.3)

By (3.2) the term denoted by O(log n) satisfies 1 ≤ O(log n) ≤ 2 log n.

For any ν ∈ An and each j = 1, 2, . . . , r, since the components νj satisfy 0 ≤ νj ≤ n, we

have

log(νj !) = νj log νj − νj + O(log n) for all n ≥ 2.

Using the fact that
∑r

j=1 νj = n, we obtain

1

n
log

(

n!
∏r

j=1 νj!
·

1

rn

)

(3.4)

=
1

n
log(n!) −

1

n

r
∑

j=1

log(νj !)− log r

=
1

n
(n log n − n + O(log n)) −

1

n

r
∑

j=1

(νj log νj − νj + O(log n)) − log r

= −

r
∑

j=1

(νj/n) log(νj/n) − log r +
O(log n)

n
−

1

n

r
∑

j=1

O(log n)

= −
r
∑

j=1

θ
(n)
j log θ

(n)
j − log r + ζ(1)

n − ζ(2)
n (θ(n)),
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where ζ
(1)
n = [O(log n)]/n → 0 as n → ∞ and

ζ(2)
n (θ(n)) =

1

n

r
∑

j=1

O(log n).

By the inequality noted after (3.3)

0 ≤ max
θ(n)∈Dn

ζ(2)
n (θ(n)) ≤ max

θ(n)∈Dn

2

n

r
∑

j=1

log n ≤
2r log n

n
.

Since (r log n)/n → 0 as n → ∞, we conclude that ζ
(2)
n (θ(n)) → 0 uniformly for θ(n) ∈ Dn as

n → ∞.

Since
∑r

j=1 θ
(n)
j = 1, we can write (3.4) in the form

1

n
log

(

n!
∏r

j=1 νj!
·

1

rn

)

= −
r
∑

j=1

θ
(n)
j log(rθ

(n)
j ) + εn(θ

(n))

= −R(θ(n)|ρ) + εn(θ(n)),

where εn(θ
(n)) = ζ

(1)
n − ζ

(2)
n (θ(n)) → 0 uniformly for θ(n) ∈ Dn as n → ∞. Substituting this

equation into (3.1) completes the proof of the theorem.

Theorem 3.1 is a local large deviation estimate. Using Theorems 3.2 and 3.3, we will convert

this local estimate into the global estimate given in the Boltzmann-Sanov LDP in Theorem 2.3.

Before proceeding with this proof, we give a formal argument showing how one can obtain

a global estimate for Pn{Ln ∈ Γ}, where Γ is a Borel subset of Pr. If we summarize the

conclusion of Theorem 3.1 by the formal notation introduced in (2.10), then we can write

Pn{Ln ∈ Γ} =
∑

θ∈Γ∩Dn

Pn{Ln ∼ θ} ≈
∑

θ∈Γ∩Dn

exp[−nR(θ|ρ)].

The range of Ln(ω) for ω ∈ Ωn is the set Dn of probability vectors having the form ν/n, where

ν ∈ R
r has nonnegative integer coordinates summing to n; hence the cardinality of Dn does

not exceed (n + 1)r . Since for any θ ∈ Γ we have R(θ|ρ) ≥ R(Γ|ρ),

exp[−nR(Γ|ρ)] ≤
∑

θ∈Γ∩Dn

exp[−nR(θ|ρ)] ≤ (n + 1)r exp[−nR(Γ|ρ)],

one expects that to exponential order the following holds:

Pn{Ln ∈ Γ} ≈ exp[−nR(Γ|ρ)] as n → ∞. (3.5)
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This is a heuristic formulation of Theorem 2.3, which has separate bounds for open subsets and

closed subsets of Pr.

The next step in the proof of the Boltzmann-Sanov LDP in Theorem 2.3 is to prove the

following approximation result, which will allow us to lift the local estimate in Theorem 3.1 to

the large deviation limit for balls in Theorem 3.3.

Theorem 3.2. Let θ be any probability measure in Pr and let Dn denote the range of Ln(ω) for

ω ∈ Ωn. Then there exists a sequence θ(n) ∈ Dn for which the following properties hold.

(a) θ(n) → θ as n → ∞.

(b) R(θ(n)|ρ) → R(θ|ρ) as n → ∞.

Proof. It suffices to determine a sequence θ(n) ∈ Dn that satisfies part (a). If θ(n) ∈ Dn satisfies

part (a), then part (b) follows by the continuity of R(·|ρ) on Pr. For x ∈ R we denote by bxc the

largest integer less than or equal to x. Given θ = (θ1, θ2, . . . , θr) ∈ Pr we determine a sequence

ν(n) ∈ An such that the probability vectors θ(n) ∈ Pr with coordinates θ
(n)
j = ν

(n)
j /n satisfy

θ(n) → θ as n → ∞. For j = 2, 3, . . . , r the definition of these components is ν
(n)
j = bnθjc.

We then define

ν
(n)
1 = n −

r
∑

j=2

ν
(n)
j = n −

r
∑

j=2

bnθjc.

For j = 2, 3, . . . , r each ν
(n)
j is a nonnegative integer, and since nθj−1 ≤ ν

(n)
j ≤ nθj , it follows

that

lim
n→∞

θ
(n)
j = lim

n→∞

ν
(n)
j

n
= lim

n→∞

bnθjc

n
= θj.

In addition, since

ν
(n)
1 = n −

r
∑

j=2

ν
(n)
j ≥ n − n

r
∑

j=2

θj = n

(

1 −
r
∑

j=2

θj

)

= nθ1 ≥ 0,

we see that ν
(n)
1 is also a nonnegative integer and that

lim
n→∞

θ
(n)
1 = lim

n→∞

ν
(n)
1

n
= 1 − lim

n→∞

r
∑

j=2

ν
(n)
j

n
= 1 −

r
∑

j=2

θj = θ1.

We conclude that ν(n) ∈ An, θ(n) ∈ Dn, and θ(n) → θ as n → ∞. This completes the proof of

the theorem.
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We now use the approximation result in Theorem 3.2 to lift the local large deviation estimate

in Theorem 3.1 to the following large deviation limit for Ln lying in open balls. For θ ∈ Pr and

ε > 0 we define the open ball with center θ and radius ε by

B(θ, ε) = {µ ∈ Pr : ‖θ − µ‖ < ε}.

Theorem 3.3. Let θ be a probability vector in Pr and take ε > 0. Then for any open ball

B(θ, ε) we have the large deviation limit

lim
n→∞

1

n
log Pn{Ln ∈ B(θ, ε)} = −R(B(θ, ε)|ρ) = − inf

ν∈B(θ,ε)
R(ν|ρ).

Proof. To ease the notation we write B for the open ball B(θ, ε). By the local large deviation

estimate in Theorem 3.1

Pn{Ln ∈ B} =
∑

θ(n)∈B∩Dn

Pn{Ln = θ(n)} =
∑

θ(n)∈B∩Dn

exp[−n(R(θ(n)|ρ) − εn(θ
(n)))].

For the last sum in this equation we have the bounds

max
θ(n)∈B∩Dn

exp[−n(R(θ(n)|ρ) − εn(θ(n)))]

≤
∑

θ(n)∈B∩Dn

exp[−n(R(θ(n)|ρ) − εn(θ
(n)))]

≤ card(Dn) · max
θ(n)∈B∩Dn

exp[−n(R(θ(n)|ρ) − εn(θ
(n)))].

In addition, for the term maxθ(n)∈B∩Dn
exp[−n(R(θ(n)|ρ) − εn(θ(n)))] we have the bounds

exp

[

−n

(

R(B ∩ Dn|ρ) + max
θ(n)∈B∩Dn

εn(θ
(n))

)]

= exp

[

−n

(

min
θ(n)∈B∩Dn

R(θ(n)|ρ) + max
θ(n)∈B∩Dn

εn(θ
(n))

)]

≤ max
θ(n)∈B∩Dn

exp[−n(R(θ(n)|ρ) − εn(θ
(n)))]

≤ exp

[

−n

(

min
θ(n)∈B∩Dn

R(θ(n)|ρ) − max
θ(n)∈B∩Dn

εn(θ
(n))

)]

= exp

[

−n

(

R(B ∩ Dn|ρ) − max
θ(n)∈B∩Dn

εn(θ(n))

)]

.
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It follows that

−R(B ∩ Dn|ρ) − max
θ(n)∈B∩Dn

εn(θ(n))

≤
1

n
log Pn{Ln ∈ B}

≤ −R(B ∩ Dn|ρ) + max
θ(n)∈B∩Dn

εn(θ(n)) +
log(card(Dn))

n
.

The last term in the last display converges to 0 as n → ∞ because the cardinality of Dn

does not exceed (n + 1)r. Since εn(θ
(n)) → 0 uniformly for θ(n) ∈ Dn, the proof is done once

we show that

lim
n→∞

R(B ∩ Dn|ρ) = R(B|ρ). (3.6)

Since B ∩ Dn ⊂ B, we have R(B|ρ) ≤ R(B ∩ Dn|ρ), which implies that

R(B|ρ) ≤ lim inf
n→∞

R(B ∩ Dn|ρ).

The limit in (3.6) is proved if we can show that

lim sup
n→∞

R(B ∩ Dn|ρ) ≤ R(B|ρ). (3.7)

For any δ > 0 there exists θ? ∈ B such that R(θ?|ρ) ≤ R(B|ρ) + δ. Theorem 3.2 guarantees

the existence of a sequence θ(n) ∈ Dn such that θ(n) → θ? and R(θ(n)|ρ) → R(θ?|ρ). Since for

all sufficiently large n we have θ(n) ∈ B∩Dn, it follows that R(B∩Dn|ρ) ≤ R(θ(n)|ρ). Hence

lim sup
n→∞

R(B ∩ Dn|ρ) ≤ lim
n→∞

R(θ(n)|ρ) = R(θ?) ≤ R(B|ρ) + δ.

Taking δ → 0 gives (3.7) and thus proves the limit (3.6). This completes the proof of the

theorem.

We are now ready to prove the Boltzmann-Sanov LDP in Theorem 2.3, for which the main

tool is the large deviation limit for open balls in Theorem 3.3. The proof of the large deviation

lower bound for open sets is straightforward. The more challenging proof of the large deviation

upper bound for closed sets is based on a covering argument involving open balls.

Proof of Boltzmann-Sanov LDP in Theorem 2.3. We first prove the large deviation lower

bound in part (b) of Theorem 2.3. Let G be any open subset of Pr. For any point θ ∈ G there

exists ε > 0 such that the open ball B(θ, ε) is a subset of G. Theorem 3.3 implies that

lim inf
n→∞

1

n
log Pn(Ln ∈ G) ≥ lim

n→∞

1

n
log Pn(Ln ∈ B(θ, ε))

= −R(B(θ, ε)|ρ) ≥ −R(θ|ρ).
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Since θ is an arbitrary point in G, it follows that

lim inf
n→∞

1

n
log Pn(Ln ∈ G) ≥ − inf

θ∈G
R(θ|ρ) = −R(G|ρ).

This completes the proof of the large deviation lower bound for any open subset G of Pr.

We now prove the large deviation upper bound in part (a) of Theorem 2.3. Let F be any

closed subset of Pr. Since Pr is a compact subset of R
r, F is also compact. We start the proof

of the large deviation upper bound by showing that for each θ ∈ F

lim inf
ε→0+

R(B(θ, ε)|ρ) ≥ R(F |ρ). (3.8)

Let εn be any positive sequence converging to 0, and take any δ > 0. For any n ∈ N there exists

θ(n) ∈ B(θ, εn) such that R(B(θ, εn)|ρ) + δ ≥ R(θ(n)|ρ). Since θ(n) → θ, the continuity of

R(·|ρ) on Pr and the fact that θ ∈ F imply that

lim inf
n→∞

R(B(θ, εn)|ρ) + δ ≥ lim
n→∞

R(θ(n)|ρ) = R(θ|ρ) ≥ R(F |ρ).

Sending δ → 0 yields (3.8) because εn is an arbitrary positive sequence converging to 0.

We now prove the large deviation upper bound in part (a) of Theorem 2.3. Take any η > 0.

By (3.8) for each θ ∈ F there exists εθ > 0 such that

R(B(θ, εθ)|ρ) ≥ R(F |ρ) − η.

The open balls {B(θ, εθ), θ ∈ F} cover F . Since F is compact, there exist M < ∞ and finitely

many points θ(i) ∈ F, i = 1, 2, . . . , M , such that F ⊂
⋃M

i=1 B(θ(i), εi), where εi = εθi
. It

follows that

min
i=1,2,...,M

R(B(θ(i), εi)|ρ) ≥ R(F |ρ) − η.

We now apply to B = B(θ(i), εi) the large deviation limit for Ln lying in open balls proved in

Theorem 3.3, obtaining

lim sup
n→∞

1

n
log Pn{Ln ∈ F} (3.9)

≤ lim sup
n→∞

1

n
log Pn

(

Ln ∈
M
⋃

i=1

B(θ(i), εi)

)

≤ lim sup
n→∞

1

n
log

(

M
∑

i=1

Pn(Ln ∈ B(θ(i), εi))

)

= max
i=1,2,...,M

(

lim sup
n→∞

1

n
log Pn(Ln ∈ B(θ(i), εi))

)

= − min
i=1,2,...,M

R(B(θ(i), εi)ρ) ≤ −R(F |ρ) + η.
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The next-to-last step is a consequence of the easily verified fact [8, Lem. 1.2.15] that for any

positive sequence of real numbers an,i, i = 1, 2, . . . , M

lim sup
n→∞

1

n
log

(

M
∑

i=1

an,i

)

= max
i=1,2,...,M

(

lim sup
n→∞

1

n
log an,i

)

.

Sending η → 0 in the last line of (3.9), we obtain

lim sup
n→∞

1

n
log Pn{Ln ∈ F} ≤ −R(F |ρ).

This completes the proof of the large deviation upper bound for any closed subset F of Pr. The

proof of the theorem is done.

In the next section we apply the Boltzmann-Sanov LDP in Theorem 2.3 to determine the

Maxwell-Boltzmann equilibrium distribution of the energy values in the discrete ideal gas.

4 Derivation of Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution is the equilibrium distribution of energy values in the dis-

crete ideal gas with respect to the microcanonical ensemble, which is defined by Pn(B|Sn/n ∈
Fz,a} for subsets B of Ωn. We recall that the energy levels of the n particles in the discrete ideal

gas are represented by a sequence of independent random variables Xi, i = 1, 2, . . . , n, each

having the uniform distribution ρ =
∑r

j=1(1/r)δyj
; the quantities yj represent the r possible en-

ergy values. In the definition of the microcanonical ensemble we impose the energy constraint

that the average random energy Sn/n lies in the interval Fz,a defined in (2.3). The quantity z
satisfies y1 < z < ȳ, z = ȳ, or ȳ < z < yr, and a > 0 is chosen so small that Fz,a is a subset of

(y1, yr). By (2.8), when y1 < z < ȳ or ȳ < z < yr the probability of the event {Sn/n ∈ Fz,a}
converges to 0 exponentially fast as n → ∞.

In subsections 4a and 4b we present two derivations of the Maxwell-Boltzmann distribu-

tion. The first is a heuristic formulation due to Boltzmann and is based on the local large

deviation estimate in Theorem 3.1. The second derivation is a rigorous formulation based on

the Boltzmann-Sanov LDP in Theorem 2.3. In both derivations we use the notation 〈θ〉 for

θ ∈ Pr to denote the mean of the probability measure θ =
∑r

j=1 θjδyj
; in symbols

〈θ〉 =
r
∑

j=1

yjθj.
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4a Boltzmann’s formulation of Maxwell-Boltzmann distribution

In modern terminology, Boltzmann’s idea for characterizing the Maxwell-Boltzmann distribu-

tion can be expressed as follows: the equilibrium distribution ρ∗ of the discrete ideal gas is

the distribution maximizing the probability Pn{Ln = θ|Sn/n ∈ Fz,a} over θ ∈ Pr. A non-

probabilistic discussion of Boltzmann’s formulation is given in [20, §4.2–4.3].

Boltzmann’s idea is not rigorous because in general a fixed distribution θ ∈ Pr is not in

the range of Ln for a fixed n. Even if θ were in the range of Ln, the formulation would be

imprecise because it seems to depend on the value of n while in fact the equilibrium distribu-

tion is an asymptotic phenomenon defined in the thermodynamic limit n → ∞. Our goal is

to use the local large deviation estimate in Theorem 3.1 to re-express Boltzmann’s idea in a

rigorous way. As we will see, this rigorous formulation of the Maxwell-Boltzmann distribution

is closely related to the rigorous formulation based on the Boltzmann-Sanov LDP and presented

in subsection 4b.

Let Dn denote the range of Ln(ω) for ω ∈ Ωn. The local large deviation estimate in Theorem

3.1 states that for any θ(n) ∈ Dn

1

n
log Pn{Ln = θ(n)} = −R(θ(n)|ρ) + εn(θ

(n)), (4.1)

where εn(θ
(n)) → 0 uniformly for θ(n) ∈ Dn. If the error term εn(θ

(n)) in (4.1) is dropped

and we write θ in place of θ(n), then the local large deviation estimate in Theorem 3.1 can be

expressed as

Pn{Ln = θ} ≈ exp[−nR(θ|ρ)].

This suggests that if A is a subset of Pr, then

max
θ∈A

Pn{Ln = θ} ≈ max
θ∈A

exp[−nR(θ|ρ)] = exp

[

−nmin
θ∈A

R(θ|ρ)

]

. (4.2)

In turn this suggests that Pn{Ln = θ} is a maximum over θ ∈ A if and only if R(θ|ρ) is a

minimum over θ ∈ A.

How shall choose A so that maximizing Pn{Ln = θ|Sn/n ∈ Fz,a} over θ ∈ Pr can be

expressed in terms of minimizing R(θ|ρ) over θ ∈ A? An insight leading to an answer is that

for ω ∈ Ωn the sample mean Sn(ω)/n equals the mean of the empirical measure Ln(ω); in

symbols

Sn(ω)/n = 〈Ln(ω)〉. (4.3)
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Here is a quick proof. By definition of Ln(ω, yj)

Sn(ω)/n =
1

n

n
∑

i=1

Xi(ω)

=

r
∑

j=1

yj ·
1

n
card{i ∈ {1, 2, . . . , n} : Xi(ω) = yj}

=
r
∑

j=1

yjLn(ω, yj) = 〈Ln(ω)〉.

The third equality follows from the definition of Ln(ω, yj). Using (4.3), we can write

Pn{Ln = θ|Sn/n ∈ Fz,a} = Pn{Ln = θ|〈Ln〉 ∈ Fz,a}

= Pn{Ln = θ, 〈Ln〉 ∈ Fz,a}/Pn{〈Ln〉 ∈ Fz,a}

= Pn{Ln = θ, 〈θ〉 ∈ Fz,a}/Pn{〈Ln〉 ∈ Fz,a}

=

{

Pn{Ln = θ}/Pn{〈Ln〉 ∈ Fz,a} if 〈θ〉 ∈ Fz,a

0 if 〈θ〉 6∈ Fz,a.

We can now answer the question raised at the beginning of the preceding paragraph. When

combined with (4.2), the last calculation suggests that if we choose A = {θ ∈ Pr : 〈θ〉 ∈
Fz,a}, then maximizing Pn{Ln = θ|Sn/n ∈ Fz,a} over θ ∈ Pr can be expressed in terms of

minimizing R(θ|ρ) over A; more precisely,

max
θ∈Pr

Pn{Ln = θ|Sn/n ∈ Fz,a}

=
1

Pn{〈Ln〉 ∈ Fz,a}
· max{Pn{Ln = θ} : θ ∈ Pr, 〈θ〉 ∈ Fz,a}

≈
1

Pn{〈Ln〉 ∈ Fz,a}
· exp[−n · min{R(θ|ρ) : θ ∈ Pr, 〈θ〉 ∈ Fz,a}]

This relationship between the maximum of Pn{Ln = θ|Sn/n ∈ Fz,a} over θ ∈ Pr and

the minimum of R(θ|ρ) over θ ∈ Pr satisfying 〈θ〉 ∈ Fz,a allows us to express Boltzmann’s

formulation of the Maxwell-Boltzmann distribution in the following form.

Boltzmann’s formulation of Maxwell-Boltzmann distribution. The Maxwell-Boltzmann

distribution ρ∗ for the discrete ideal gas is the measure at which the relative entropy R(θ|ρ)
attains its minimum over θ ∈ Pr satisfying 〈θ〉 ∈ Fz,a; in symbols

R(ρ∗|ρ) = min{R(θ|ρ) : θ ∈ Pr, 〈θ〉 ∈ Fz,a}.
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To show that the Maxwell-Boltzmann distribution is well defined, one must show that there

exists a unique probability measure ρ∗ ∈ Pr satisfying the constrained minimization problem

in the last display. That this is the case is part of the content of the following theorem. It gives

the form of the Maxwell-Boltzmann distribution, which we denote by ρ(β). This distribution

is parametrized by β = β(z) ∈ R, which is conjugate to the quantity z parametrizing the

microcanonical ensemble. The parameter β is identified with the inverse temperature 1/T .

According to part (c) of the theorem, β(z) > 0 or T > 0 corresponds to z ∈ (y1, ȳ), β = 0
or T = ∞ corresponds to z = ȳ, and β(z) < 0 corresponds to z ∈ (ȳ, yr). It follows that

values of z lying in the low energy interval (y1, ȳ) correspond to the physically relevant region

of positive temperatures while values of z lying in the high energy interval [ȳ, yr) correspond to

the physically irrelevant region of negative temperatures or infinite temperature.

Theorem 4.1. Let z ∈ (y1, yr) be given, and define the closed interval Fz,a in (2.3). The

following conclusions hold.

(a) There exists a unique ρ(β) ∈ Pr satisfying

R(ρ(β)|ρ) = min{R(θ|ρ) : θ ∈ Pr, 〈θ〉 ∈ Fz,a}. (4.4)

(b) The components of ρ(β) have the form for j = 1, 2, . . . , r

ρ
(β)
j =

1
∑r

k=1 exp[−βyk]ρk
· exp[−βyj]ρj, (4.5)

where ρj = 1/r for each j. The quantity β = β(z) is the unique value of β for which

〈ρ(β)〉 =
r
∑

j=1

yjρ
(β)
j = z.

(c) β(z) > 0 corresponds to z ∈ (y1, ȳ), β(z) = 0 corresponds to z = ȳ, and β < 0
corresponds to z ∈ (ȳ, yr).

The proof of this theorem shows the close connection between the Maxwell-Boltzmann

distribution and Cramér’s LDP in Theorem 2.1. We recall that the rate function in Cramér’s

LDP is defined for x ∈ R by

I(x) = sup
t∈R

{tx− c(t)}.

In this formula c(t) is the cumulant generating function of ρ defined in (2.5). The connection

with the Maxwell-Boltzmann distribution arises if we calculate the derivative of c(t), obtaining

c ′(t) =
1

∑r
k=1 exp[tyk]ρk

·
∑

j=1

yj exp[tyj]ρj,
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where ρj = 1/r for each j. For t ∈ R let ρ(t) denote the probability measure on Λ having the

same components as ρ(β) in (4.5) with −β replaced by t. It follows that

c ′(t) =
r
∑

j=1

yjρ
(t)
j = 〈ρ(t)〉.

In Lemma 6.4.2 in [11] it is proved that c(t) has the following properties:

1. c ′′(t) > 0 for all t; i.e., c is strictly convex on R, and c ′(t) is strictly increasing for t ∈ R.

2. c ′(0) =
∑r

k=1 ykρk = ȳ.

3. c ′(t) → y1 as t → −∞ and c ′(t) → yr as t → ∞.

4. The range of c ′(t) for t ∈ R is the open interval (y1, yr), which is the interior of the

smallest interval containing the support {y1, y2, . . . , yr} of ρ.

It follows from these properties that c ′(t) is a strictly increasing function of t ∈ R and thus

defines a bijection of R onto (y1, yr). In particular, given z ∈ (y1, yr) there exists a unique

value of t = t(z) for which c ′(t) = 〈ρ(t)〉 = z. Defining β = β(z) = −t(z), we obtain part (b)

of Theorem 4.1. Part (c) is a consequence of these mapping properties of c ′ and the fact that

c ′(0) = ȳ.

The proof of part (a) of Theorem 4.1 is an object of great beauty, using only properties of

the relative entropy.

Proof of part (a) of Theorem 4.1. Given z ∈ (y1, yr) define

Γ(z, a) = {θ ∈ Pr : 〈θ〉 =
r
∑

j=1

yjθj ∈ Fz,a}

The proof is more elegant if we work with the measure ρ(t) having the same components as ρ(β)

in (4.5) with −β replaced by t. For each j ∈ {1, . . . , r}

ρ
(t)
j

ρj
=

1
∑r

k=1 exp[tyk] ρk
· exp[tyj] =

1

exp[c(t)]
· exp[tyj].

Our goal is to prove that R(θ|ρ) attains its infimum over Γ(z, a) at the unique measure ρ(t),

where t = t(z) is the unique value of t for which 〈ρ(t)〉 = z.
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We first consider the case when z = ȳ. Then t(z) = −β(ȳ) = 0, Fz,a = [z − a, z + a], and

the infimum in (4.4) is attained at the unique measure θ = ρ [Thm. 2.2(b)], which coincides

with ρ(t) with t(z) = 0. This completes the proof when z = ȳ.

We now consider the case when z ∈ (y1, ȳ). The proof for z ∈ (ȳ, yr) is carried out

similarly. For any θ ∈ Γ(z, a)

R(θ|ρ) =

r
∑

j=1

θj log
θj

ρj
=

r
∑

j=1

θj log
θj

ρ
(t)
j

+

r
∑

j=1

θj log
ρ

(t)
j

ρj

= R(θ|ρ(t)) + t
r
∑

j=1

yjθj − c(t) = R(θ|ρ(t)) + t〈θ〉 − c(t).

Since R(ρ(t)|ρ(t)) = 0 and 〈ρ(t)〉 = z, it follows that

R(ρ(t)|ρ) = R(ρ(t)|ρ(t)) + t〈ρ(t)〉 − c(t) = tz − c(t). (4.6)

Now consider any θ ∈ Γ(z, a) satisfying θ 6= ρ(t). Since z ∈ (y1, ȳ), we have t < 0, 〈θ〉 ≤ z,

and R(θ|ρ(t)) ≥ 0 with equality if and only if θ = ρ(t) [Thm. 2.2(b)]. Hence

R(θ|ρ) = R(θ|ρ(t)) + t〈θ〉 − c(t)

> t〈θ〉 − c(t) ≥ tz − c(t) = R(ρ(t)|ρ).

We conclude that for any θ ∈ Γ(z, a), R(θ|ρ) ≥ R(ρ(t)|ρ) with equality if and only if θ = ρ(t).

Thus R(θ|ρ) attains its infimum over Γ(z, a) at the unique measure ρ(t), equivalently at the

unique measure ρ(β) with β = −t. This completes the proof of part (a) of Theorem 4.1.

The proof of part (a) of Theorem 4.1 reveals another unexpected connection between the

Maxwell-Boltzmann distribution and Cramér’s Theorem. For z ∈ (y1, yr) we show in the proof

of part (a) of Theorem 4.1 that R(θ|ρ) attains its infimum for θ ∈ Pr satisfying 〈θ〉 ∈ Fz,a at

the unique measure ρ(t), where t = t(z) is the unique value of t for which c ′(t) = 〈ρ(t)〉 = z.

The measure ρ(t) has the same components as ρ(β) in (4.5) with −β replaced by t. Combining

this result with (4.6), we obtain

min{R(θ|ρ) : θ ∈ Pr, 〈θ〉 ∈ Fz,a} = R(ρ(t(z))|ρ) = t(z)z − c(t(z)).

From Theorem 2.1 we recall that the rate function in Cramér’s Theorem is defined by I(z) =
supt∈R

{tz− c(t)}. Since c is a strictly convex function on R, the supremum in this definition is

obtained at the unique value t = t(z) satisfying c ′(t) = z. It follows from the last display that

min{R(θ|ρ) : θ ∈ Pr, 〈θ〉 ∈ Fz,a} = t(z)z − c(t(z)) = I(z).
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This result relating the level-2 rate function R(·|ρ) and the level-1 rate function I is known a

contraction principle. It is usually stated for a = 0, taking the form

min{R(θ|ρ) : θ ∈ Pr, 〈θ〉 = z} = I(z).

A general formulation of the contraction principle is stated in [9, Thm. 1.3.2].

This completes our discussion of Boltzmann’s formulation of the Maxwell-Boltzmann dis-

tribution. Our next topic is the rigorous formulation of this distribution, which is based on the

Boltzmann-Sanov LDP in Theorem 2.3.

4b Rigorous formulation of Maxwell-Boltzmann distribution

The rigorous formulation of the Maxwell-Boltzmann distribution ρ(β) is proved in part (a) of

the next theorem. There we show that ρ(β) is the equilibrium distribution of the random energy

values Xi of the discrete ideal gas in the following sense: in the limit n → ∞, ρ(β) is the limiting

marginal distribution of Xi with respect to the microcanonical ensemble Pn{·|Sn/n ∈ Fz,a}.

Since the random variables Xi are identically distributed, it suffices to prove this statement

for i = 1. In part (b) we state the surprising result that for any r ∈ N satisfying r ≥ 2 the

finite product measure on Λr with equal one dimensional marginals ρ(β) is the limiting marginal

distribution of X1, X2, . . . , Xr with respect to the microcanonical ensemble as n → ∞. This

finite product measure is called the canonical ensemble.

To see why part (b) of the next theorem is a surprise, we recall that the random variables

X1, X2, . . . , Xr, though independent with respect to the product measure Pn, are dependent with

respect to the microcanonical ensemble because of the conditioning on Sn/n ∈ Fz,a. Part (b)

shows that as n → ∞, these random variables recover their independence, a property known as

propagation of chaos. The result in part (b) shows that in the thermodynamic limit n → ∞ the

microcanonical ensemble and the canonical ensemble are equivalent. This is a simple example

of the important topic of equivalence of ensembles in statistical mechanical models [11, §6.7],

[13].

Theorem 4.2. Let z ∈ (y1, yr) be given, and define the closed interval Fz,a in (2.3). Let ρ(β) =
ρ(β(z)) denote the corresponding Maxwell-Boltzmann distribution having coordinates given in

(4.5). Also let P
(β)
r = P

β(z)
r denote the finite product measure on Λr with equal one-dimensional

marginals ρ(β). The following conclusions hold.

(a) For any j = 1, 2, . . . , r

lim
n→∞

Pn{X1 = yj|Sn/n ∈ Fz,a} = ρ
(β)
j .
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(b) For any r ∈ N satisfying r ≥ 2 and any yji
∈ Λ for i = 1, 2, . . . , r

lim
n→∞

Pn{Xi = yji
, i = 1, 2, . . . , r|Sn/n ∈ Fz,a}

=
r
∏

i=1

ρ
(β)
ji

= P (β)
r {Xi = yji

, i = 1, 2, . . . , r}.

A complete proof of part (a) is given in Theorem 6.4.1 in [11]. We motivate part (a) of

Theorem 4.2 by a heuristic argument. Let us assume that we can prove that for any ε > 0

lim
n→∞

Pn{Ln ∈ B(ρ(β), ε)|Ln ∈ Γ(z, a)} = 1, (4.7)

where B(ρ(β), ε) denotes the ball with center ρ(β) and radius ε and

Γ(z, a) = {θ ∈ Pr : 〈θ〉 ∈ Fz,a}.

We first motivate that the limit in (4.7) yields the limit in part (a) of Theorem 4.2. As noted

in (4.3), for any ω ∈ Ωn the sample mean Sn(ω)/n equals the mean of the empirical measure

Ln(ω); in symbols, Sn(ω)/n = 〈Ln(ω)〉. Hence the limit in (4.7) is equivalent to the limit

lim
n→∞

Pn{Ln ∈ B(ρ(β), ε)|Sn/n ∈ Fz,a} = 1.

Take any j = 1, 2, . . . , r. Given this limit, it is reasonable to expect that for all large n we have

with probability close to 1

ρ
(β)
j = EPn{ρ

(β)
j |Sn/n ∈ Fz,a} ≈ EPn{Ln(yj) |Sn/n ∈ Fz,a}

=
1

n

n
∑

i=1

EPn{δXi
(yj) |Sn/n ∈ Fz,a}

=
1

n

n
∑

i=1

Pn{Xi = yj |Sn/n ∈ Fz,a}

= Pn{X1 = yj |Sn/n ∈ Fz,a}.

The last line follows from the fact that the random variables Xi all have the same distribution.

This completes the motivation of part (a) of Theorem 4.2 from the limit (4.7).

In order to motivate the limit (4.7), we use the formal global asymptotic result (3.5) for

Borel subsets Γ of Pr. If we apply this to the conditional probability on the left side of (4.7),

then we obtain

Pn{Ln ∈ B(ρ(β), ε)|Ln ∈ Γ(z, a)}

= Pn{Ln ∈ B(ρ(β), ε) ∩ Γ(z, a)} ·
1

Pn{Ln ∈ Γ(z, a)}

≈ exp[−n(R((B(ρ(β), ε)|ρ) ∩ Γ(z, a)) −R(Γ(z, a)|ρ) )].

30



Thus one should obtain the conditioned limit (4.7) if

R(B(ρ(β), ε) ∩ Γ(z, a)|ρ) = R(Γ(z, a)|ρ).

The last equation is in fact valid since ρ(β) is the unique measure at which R(θ|ρ) attains its

minimum over all θ ∈ Pr satisfying 〈θ〉 ∈ Fz,a; equivalently, over all θ ∈ Pr satisfying

θ ∈ Γ(z, a). The latter property is proved in part (a) of Theorem 4.1. This completes the

motivation of part (a) of Theorem 4.2.

The limit in part (a) of Theorem 4.2 is proved in Theorem 6.4.1 in [11] as a consequence of

the limit (4.7), which in turn is proved by applying two results in the present paper: part (a) of

Theorem 4.1 and the Boltzmann-Sanov LDP in Theorem 2.3. Together these results show that

when conditioned on Ln ∈ Γ(z, a), the conditional probability that Ln lies in the complement

[B(ρ(β), ε)]c of the open ball B(ρ(β), ε) converges to 0; in symbols

lim
n→∞

Pn{Ln ∈ [B(ρ(β), ε)]c|Ln ∈ Γ(z, a)} = 0. (4.8)

The limit (4.7) now follows. Because of the limit (4.7) it is reasonable to call ρ(β) the equilib-

rium distribution of the empirical vectors Ln with respect to the microcanonical ensemble.

The proof of part (b) of Theorem 4.2 follows the same pattern of proof as the proof of part

(a) of Theorem 4.2 except that the empirical vector Ln is replaced by a more general random

quantity, and the Boltzmann-Sanov Theorem for Ln is replaced by the LDP for this more general

random quantity. Because part (b) of Theorem 4.2 is not used elsewhere in this paper, the proof

is omitted.

We have now completed the discussion of the discrete ideal gas. In the next section we

introduce the much more complicated droplet model, the analysis of which was inspired by the

analysis of the discrete ideal gas.

5 Description of Droplet Model

In this section we introduce the droplet model and summarize the results obtained in [16] on the

asymptotic behavior of the model. This includes the derivation of the equilibrium distribution of

dependent random variables that count the droplet sizes. This equilibrium distribution coincides

with the equilibrium distribution of random probability measures, called number-density mea-

sure, which are the empirical measures of the dependent droplet-size random variables. As we

explain, this equilibrium distribution is derived by first proving an LDP for the number-density

measures, which is an analogue of the Boltzmann-Sanov LDP used in the preceding section to

derive the Maxwell-Boltzmann equilibrium distribution for the discrete ideal gas.

31



The definition of the droplet model depends on a nonnegative integer b and a parameter

c ∈ (b,∞). K distinguishable particles are placed, each with equal probability 1/N , onto the N
sites of the lattice ΛN = {1, 2, . . . , N}. The large deviation limit — or in statistical mechanical

terminology, the thermodynamic limit — is defined by taking K → ∞ and N → ∞ with K/N
equal to c. The ratio K/N equals the average number of particles per site or the average size of

a droplet. The question that motivated our research is natural and is simply stated. Given that

each site is occupied by a minimum of b particles, what is the equilibrium distribution of the

number of particles per site in the thermodynamic limit? As we explain in subsection 6c, this

equilibrium distribution is a Poisson distribution ρb,αb(c) restricted to Nb = {n ∈ Z : n ≥ b},

where the parameter αb(c) is chosen so that the mean of ρb,αb(c) equals c.

In order to determine the form of the equilibrium distribution, we introduce a standard

probabilistic model. The configuration space is the set ΩN = ΛK
N consisting of all ω =

(ω1, ω2, . . . , ωK), where ωi denotes the site in ΛN occupied by the i’th particle. The cardinality

of ΩN equals NK . Because of the description of the droplet model to this point, it is consistent

to introduce the uniform probability measure PN that assigns equal probability 1/NK to each

of the NK configurations ω ∈ ΩN . For subsets A of ΩN , PN,b,m(A) = card(A)/NK , where

card denotes cardinality.

We next define the following two random variables, which are functions of the configuration

ω ∈ ΩN : for ` ∈ ΛN , K`(ω) denotes the number of particles occupying the site ` in the

configuration ω; for j ∈ N ∪ {0}, Nj(ω) denotes the number of sites ` ∈ ΛN for which

K`(ω) = j. In (6.2) we summarize the LDP for a sequence of random probability measures

defined in terms of these random variables.

We now specify how the probabilistic model incorporates the nonnegative integer b, first

considering the case where b is a positive integer. The case where b = 0 is discussed later.

Given a positive integer b, we focus on the subset of ΩN consisting of all configurations ω for

which every site of ΛN is occupied by at least b particles. Because of this requirement Nj(ω) is

indexed by j ∈ Nb = {n ∈ Z : n ≥ b}. It is useful to think of each particle as having one unit of

mass and of the set of particles at each site ` as defining a droplet. With this interpretation, for

each configuration ω, K`(ω) denotes the mass or size of the droplet at site `. The j’th droplet

class has Nj(ω) droplets and mass jNj(ω). Because the number of sites in ΛN equals N and

the sum of the masses of all the droplet classes equals K, the following conservation laws hold

for such configurations:
∑

j∈Nb

Nj(ω) = N and
∑

j∈Nb

jNj(ω) = K. (5.1)

Because of these additive constraints, the random variables Nj are dependent.

In order to carry out the asymptotic analysis of the droplet model, we introduce a quantity

m = m(N) that converges to ∞ sufficiently slowly with respect to N ; specifically, we require
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that m(N)2/N → 0 as N → ∞. In terms of b and m we define the subset ΩN,b,m of ΩN con-

sisting of all configurations ω for which every site of ΛN is occupied by at least b particles and

at most m(N) of the quantities Nj(ω) are positive. This second constraint, which restricts the

number of positive components Nj(ω), is a useful technical device that allows us to control the

errors in several estimates. In appendix D of [15] we present evidence supporting the conjecture

that this restriction can be eliminated.

When b = 0, the constraint that every site of ΛN is occupied by at least b particles disappears

because we allow sites to be occupied by 0 particles and thus remain empty. Therefore, when

b = 0, Nj(ω) is indexed by j ∈ N0 = N ∪ {0}. However, in the definition of ΩN,0,m we retain

the constraint that at most m(N) of the quantities Nj(ω) are positive. Because the choice b = 0
allows sites to be empty, we lose the interpretation of the set of particles at each site as being a

droplet. However, for ΩN,0,n the two conservation laws (5.1) continue to hold.

For the remainder of this paper, we work with any fixed, nonnegative integer b. The probabil-

ity measure PN,b,m defining the droplet model is obtained by restricting the uniform measure PN

to the set of configurations ΩN,b,m. Thus PN,b,m equals the conditional probability PN (·|ΩN,b,m).
For subsets A of ΩN,b,m, PN,b,m(A) takes the form

PN,b,m(A) = PN (A |ΩN,b,m) =
1

PN (ΩN,b,m)
· PN (A) (5.2)

=
1

card(ΩN,b,m)
· card(A).

The second line of this formula follows from the fact that PN assigns equal probability 1/NK

to every ω ∈ ΩN,b,m. PN,b,m defines the microcanonical ensemble, which incorporates the

conservation laws for number and mass expressed in (5.1).

Having defined the droplet model, we introduce the random probability measures whose

large deviations we will study. For ω ∈ ΩN,b,m these measures are the number-density mea-

sures ΘN,b that assign to j ∈ Nb the probability Nj(ω)/N . Thus for any subset A of Nb

ΘN,b(ω, A) =
∑

j∈Nb

ΘN,b;j(ω)δj(A) =
∑

j∈A

ΘN,b;j(ω), where ΘN,b;j(ω) =
Nj(ω)

N
.

Because of the two conservation laws in (5.1) and because K/N = c, for ω ∈ ΩN,b,m

∑

j∈Nb

ΘN,b;j(ω) = 1 and
∑

j∈Nb

jΘN,b;j(ω) =
1

N

∑

j∈Nb

jNj(ω) =
K

N
= c. (5.3)

Thus for ω ∈ ΩN,b,m, ΘN,b(ω) is a probability measure on Nb having mean c.
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There are obvious analogies as well as differences between the droplet model and the dis-

crete ideal gas. The probability measure PN for the droplet model, which assigns equal prob-

ability 1/NK to each of the NK configurations ω ∈ ΩN = ΛK
N , corresponds to the probability

measure Pn for the discrete ideal gas, which assigns equal probability 1/rn to each of the rn

configurations ω ∈ Ωn = Λn. However, in the droplet model both K, the number of particles,

and N , the number of sites, tend to ∞, in contrast to the discrete ideal gas, where the number

of possible energy values yj is a fixed number r. While the microcanonical ensemble PN,b,m for

the droplet model is an analog of the microcanonical ensemble for the discrete ideal gas, PN,b,m

incorporates more information corresponding to the more complicated definition of the droplet

model.

Because of the analogies between the two models, it is important to point out that the number

density measures ΘN,b are the empirical measures of the random variables K`, which count the

droplet sizes at the sites ` ∈ ΛN ; i.e., for ω ∈ ΩN,b,m, ΘN,b(ω) assigns to subsets A of Nb the

probability

ΘN,b(ω, A) =
1

N

N
∑

`=1

δK`(ω){A}.

This characterization of ΘN,b follows from the fact that the empirical measure of K` assigns to

j ∈ Nb the probability

1

N

N
∑

`=1

δK`(ω)({j}) =
1

N
· card{` ∈ ΛN : K`(ω) = j} =

Nj(ω)

N
= ΘN,b;j(ω). (5.4)

Thus ΘN,b is an obvious analog of the empirical vectors Ln for the discrete ideal gas, which

are the empirical measures of the random variables Xi. This analogy, however, is deceptive

because of a fundamental difference between ΘN,b and Ln. The empirical vector Ln is the em-

pirical measure of the random variables Xi, which are independent and identically distributed.

On the other hand, the empirical measure ΘN,b is the empirical measure of the random vari-

ables K`, which denote the number of particles occupying the sites ` ∈ ΛN . Hence for all

ω ∈ ΩN,K,m,
∑

`∈ΛN
K`(ω) = K. Although they are identically distributed, the random vari-

ables K` are not independent because of this equality constraint. To give an extreme example,

if site 1 is occupied by the maximum number of particles K − (N −1)b, then each of the N −1
other sites must be occupied by the minimum of b particles. This lack of independence makes

the asymptotic analysis of ΘN,b much more complicated than that of the empirical vector Ln.

In the next section we discuss the LDP for the number-density measures and describe the

equilibrium distribution of these measures and of the droplet-size random variables K`.

34



6 Asymptotic Analysis of the Droplet Model

The asymptotic analysis of the droplet model involves the LDP for the number-density measures

ΘN,b, which is summarized in (6.2), and the description of the equilibrium distribution, which is

summarized in (6.4) both for the number-density measures ΘN,b and for the droplet-size random

variables K`. Our proof of the LDP is outlined in section 8.

6a Preliminaries

We first introduce two sets of probability measures that arise in this asymptotic analysis. PNb

denotes the set of probability measures on Nb = {n ∈ Z : n ≥ b}. Thus θ ∈ PNb
has the form

∑

j∈Nb
θjδj, where the components θj satisfy θj ≥ 0 and θ{Nb} =

∑

j∈Nb
θj = 1. We say that a

sequence of measures {θ(n), n ∈ N} in PNb
converges weakly to θ ∈ PNb

, and write θ(n) ⇒ θ,

if for any bounded function f mapping Nb into R

lim
n→∞

∫

Nb

fdθ(n) =

∫

Nb

fdθ.

PNb
is topologized by the topology of weak convergence. There is a standard technique for

introducing a metric structure on PNb
in terms of a metric known as the Prohorov metric and

denoted by π. This metric has the following two properties:

• Convergence with respect to the Prohorov metric is equivalent to weak convergence [18,

Thm. 3.3.1]; i.e., θ(n) ⇒ θ if and only if π(θ(n), θ) → 0 as N → ∞.

• With respect to the Prohorov metric, PNb
is a complete, separable metric space [18, Thm.

3.1.7].

We denote by PNb,c the set of measures in PNb
having mean c. Thus θ ∈ PNb,c has the

form
∑

j∈Nb
θjδj, where the components θj satisfy θj ≥ 0,

∑

j∈Nb
θj = 1, and

∫

N
xθ(dx) =

∑

j∈Nb
jθj = c. By (5.3) the number-density measures ΘN,b take values in this set. Not only

is PNb,c the smallest convex set containing the range of ΘN,b for all N ∈ N, but also the union

over N ∈ N of the range of ΘN,b is dense in PNb,c. Hence PNb,c is the most natural space in

which to formulate the LDP for these measures.

A natural question is to determine two equilibrium distributions of the droplet model: the

equilibrium distribution ρ? of the number-density measures and the equilibrium distribution

ρ∗∗ =
∑

j∈Nb
ρ∗∗

j δj of the droplet-size random variables K`. These distributions are defined by

the following two limits: for any ε > 0, any ` ∈ ΛN , and all j ∈ Nb

lim
N→∞

PN,b,m{ΘN,b ∈ Bπ(ρ∗, ε)} = 1 and lim
N→∞

PN,b,m{K` = j} = ρ∗∗
j .
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Bπ(ρ∗, ε)) denotes the open ball with center ρ∗ and radius ε in PNb,c defined with respect to the

Prohorov metric π; in symbols

Bπ(ρ
∗, ε)) = {θ ∈ PNb,c : π(ρ∗, θ) < ε}.

The two limits in the last display are analogs of the limits defining the equilibrium distri-

bution of the discrete ideal gas, the first corresponding to (4.7), which defines the equilibrium

distribution of the empirical vectors Ln, and the second corresponding to the limit in part (a)

of Theorem 4.2, which defines the equilibrium distribution of X1. As we show in (4.8) and in

part (a) of Theorem 4.2, the equilibrium distributions of Ln and of X1 coincide and are equal to

the Maxwell-Boltzmann distribution ρ(β). In part (a) of Theorem 4.1, the Maxwell-Boltzmann

distribution is characterized as the unique measure at which the relative entropy R(θ|ρ) attains

its minimum for all θ ∈ Pr satisfying 〈θ〉 ∈ Fz,a.

Because of the analogy with the discrete ideal gas, the following observations concerning

the equilibrium distributions for the droplet model should not be surprising.

1. The equilibrium distributions of ΘN,b and K` coincide.

2. We first determine the equilibrium distribution ρ∗ of ΘN,b and then prove that ρ∗ is also

the equilibrium distribution of K`.

3. As in many statistical mechanical models, an efficient way to determine the equilibrium

distribution of ΘN,b is to prove an LDP for ΘN,b, which is summarized in (6.2).

4. The equilibrium distribution ρ∗ is characterized as the unique measure at which the rela-

tive entropy R(θ|ρb,αb(c)) attains its minimum for all θ ∈ PNb,c.

We first describe the LDP for the number-density measures ΘN,b.

6b LDP for number density measures ΘN,b

The LDP for ΘN,b is proved in Theorem 2.1 in [16]. The proof is self-contained and starts from

first principles, using techniques that are familiar in statistical mechanics. The centerpiece of

the proof is the local large deviation estimate in Theorem 3.1 in [16], the proof of which uses

combinatorics, Stirlings formula, and Laplace asymptotics.

The content of Theorem 2.1 in [16] is the following: as N → ∞ the sequence of number-

density measures ΘN,b satisfies the LDP on PNb,c with respect to the measures PN,b,m. Thus

there is a lower large deviation bound for PN,b,m{ΘN,b ∈ G}, where G is an open subset of

PNb,c, and there is an upper large deviation bound for PN,b,m{ΘN,b ∈ F}, where F is a closed
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subset of PNb,c. The rate function in this LDP is the relative entropy with respect to a Poisson

distribution ρb,α restricted to Nb = {j ∈ Z : j ≥ b} and having components

ρb,α;j =
1

Zb(α)
·
αj

j!
for j ∈ Nb. (6.1)

In this formula α equals the quantity αb(c) defined in the next paragraph. In addition Zb(α) is

the normalization that makes ρb,α a probability measure. Thus we have Z0(α) = eα while for

b ∈ N

Zb(α) = eα −

b−1
∑

j=0

αj/j!.

For θ =
∑

j∈Nb
θjδj ∈ PNb,c, the relative entropy of θ with respect to ρb,αb(c) is defined by

R(θ|ρb,αb(c)) =
∑

j∈Nb

θj log(θj/ρb,αb(c);j).

If θj = 0, then θj log(θj/ρb,αb(c);j) = 0. For subsets Γ of PNb,c we summarize the LDP for ΘN,b

by the notation

PN,b,m(ΘN,b ∈ Γ) ≈ exp[−NR(Γ|ρb,αb(c))], (6.2)

where R(Γ|ρb,αb(c)) denotes the infimum of R(θ|ρb,αb(c)) over θ ∈ Γ.

In (6.1) α equals the quantity αb(c) having the property that ρb,αb(c) has mean c and thus lies

in the space PNb,c. We first consider b = 0. In this case ρ0,α is a standard Poisson distribution

on N0 having mean α. It follows that α0(c) = c is the unique value for which ρ0,α0(c) has mean

c. We now consider b ∈ N. In this case ρb,α is a probability measure on Nb having mean

〈ρb,α〉 =
∑

j∈Nb

jρb,α;j =
1

Zb(α)
·
∑

j∈Nb

αj

(j − 1)!
(6.3)

=
1

Zb(α)
· α

∞
∑

j=b−1

αj

j!
=

1

Zb(α)
· αZb−1(α).

Thus ρb,α has mean c if and only if α satisfies γb(α) = c, where γb(α) = αZb−1(α)/Zb(α). In

Theorem A.2 in [16] we prove that γb(α) = c has a unique solution αb(c) ∈ (0,∞) for all b ∈ N

and any c > b. In contrast to the straightforward proof for b = 1 [15, Thm. C.2(a)], the proof

for general b ∈ N is much more difficult. In Theorem C.2 in [15] we show other properties

of αb(c) including the facts that αb(c) satisfies the inequalities c > αb(c) > c − b and thus is

asymptotic to c as c → ∞; i.e., limc→∞ αb(c)/c = 1.
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For b ∈ N the distribution ρb,αb(c) differs from a standard Poisson distribution because the

former has 0 mass at 0, 1, . . . , b − 1 while the latter has positive mass at these points. In fact,

as shown in part (d) of Theorem C.1 in [15] ρb,αb(c) can be identified as the distribution of a

Poisson random variable Ξαb(c) with parameter αb(c) conditioned on Ξαb(c) ∈ Nb.

We point out an unavoidable subtlety in the statement of the LDP for ΘN,b in Theorem 2.1

in [16]. This subtlety arises because PNb,c is not a closed subset of the complete separable

metric space PNb
, necessitating a different form of the large deviation upper bound for compact

subsets of PNb,c, stated in part (b) of that theorem, and for closed noncompact subsets of PNb,c,

stated in part (c) of that theorem. The interested reader is referred to section 2 of [16] for a

complete discussion. Another consequence of the fact that PNb,c is not a closed subset of PNb

is that many of the standard results in the theory of large deviations are not directly applicable,

making our self-contained proof based on combinatorics and the local large deviation estimate

more attractive.

The discussion concerning the quantity αb(c) in the third paragraph above points to other

significant connections between the discrete ideal gas and the droplet model. In the discrete

ideal gas the microcanonical ensemble is parametrized by the energy parameter z ∈ (y1, yr),
and the canonical ensemble is parametrized by β, which equals the inverse temperature 1/T .

The canonical ensemble is a finite product measure with one-dimensional marginals equal to the

Maxwell-Boltzmann distribution ρ(β); the parameter β equals β(z) = −t(z), where t = t(z) is

the unique solution of c ′(t) = z, c(t) being the cumulant generating function defined in (2.5).

As discussed after the statement of Theorem 4.1, c ′(t) is a strictly increasing function of t ∈ R

and thus a strictly convex function on R. Furthermore, c ′ defines a bijection of R onto (y1, yr),
the open interval in which the energy parameter z lies.

All of these ideas have close analogs in the droplet model. In this model the microcanonical

ensemble is parametrized by c, which equals the ratio K/N , the average number of particles per

site. The quantity c satisfies c > b, where b ∈ N ∪ {0} is the minimum number of particles per

site. The equilibrium distribution ρb,αb(c) is the analog of the Maxwell-Boltzmann distribution

ρ(β) in the discrete ideal gas. The distribution ρb,αb(c) — and presumably the canonical ensemble,

which we did not consider — is parametrized by α = αb(c), which is the unique solution of

γb(α) = c. In the proof in Theorem A.2 in [16] that this equation has a unique solution, we

prove that γb(α) is a strictly increasing function of α ∈ (0,∞) and that γb defines a bijection

of (0,∞) onto (b,∞), the open interval in which c lies. Interestingly, in the proof of these

properties of γb(α) there arises a cumulant generating function, the strict convexity of which is

used in the proof.

This completes our discussion of the LDP for ΘN,b. Our next topic is the fact that ρb,αb(c) is

the equilibrium distribution of the droplet model.
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6c Equilbrium distribution ρb,αb(c)

The LDP for ΘN,b is summarized in (6.2) and is proved in Theorem 2.1 in [16]. As we now

explain, this LDP implies that ρb,αb(c) is the equilibrium distribution of both ΘN,b and K`, satis-

fying for any ε > 0, any ` ∈ ΛN , and all j ∈ Nb

lim
N→∞

PN,b,m{ΘN,b ∈ Bπ(ρb,αb(c), ε)} = 1 and lim
N→∞

PN,b,m{K` = j} = ρb,αb(c);j. (6.4)

We sketch how the first of these limits is proved. By applying the large deviation upper

bound for ΘN,b lying in the closed set [B(ρb,αb(c), ε)]
c and by using the fact that R(θ|ρb,αb(c))

attains its infimum of 0 over θ ∈ PNb,c at the unique measure θ = ρb,αb(c), we prove that

lim
N→∞

PN,b,m{ΘN,b ∈ [Bπ(ρb,αb(c), ε)]
c} = 0.

This limit yields the first limit in (6.4), thus showing that ρb,αb(c) is the equilibrium distribution

of ΘN,b. Details of this proof are given in Theorem 2.2 in [16]. The proof that ρb,αb(c) is also

the equilibrium distribution of K` is proved in Corollary 2.3 in [16] by applying Theorem 2.2.

These proofs concerning the equilibrium distribution ρb,αb(c) of ΘN,b and K` in the droplet model

parallel the proofs concerning the Maxwell-Boltzmann equilibrium distribution in the discrete

ideal gas although the proofs for the droplet model involve many more technicalities.

The fact that the rate function in the LDP for the empirical measures ΘN,b is the relative en-

tropy suggests a possible connection between this LDP and Sanov’s Theorem. This connection

is explored in the next section.

7 Motivating the LDP for ΘN,b via Sanov’s Theorem

For ω ∈ ΩN the number-density measures ΘN,b(ω) take values in the space PNb,c consisting

of probability measures on Nb that have mean c. As we verify in (5.4), ΘN,b is the empirical

measure of the random variables K`, which count the droplet sizes at the sites ` ∈ ΛN . The LDP

for ΘN,b is summarized in (6.2). The random variables K` are identically distributed but are not

independent because
∑N

`=1 K`(ω) = K for each N . In addition, because the distributions of K`

depend on N , these random variables form a triangular array. Hence, although the rate function

in the LDP for the empirical measures ΘN,b is the relative entropy, Sanov’s Theorem for i.i.d.

random variables cannot be applied as stated to prove this LDP.

Despite this state of affairs, there is a surprise: one can motivate the LDP for ΘN,b by

a calculation based on Sanov’s Theorem for i.i.d. random variables. As we now show, this

application of Sanov’s Theorem yields an LDP having a rate function that is the relative entropy

with respect to a Poisson distribution ρb,c on Nb having parameter c. Although the mean of
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ρb,c is larger than c for b ∈ N, as c → ∞ the mean of ρb,c is asymptotic to c, which is the

mean of the Poisson distribution ρb,αb(c) appearing in the rate function in the LDP for ΘN,b.

It is reasonable to conjecture that as c → ∞ the random variables K` exhibit an asymptotic

independence property that is worth exploring.

In order to motivate the LDP for ΘN,b we replace K` by a suitable sequence of independent

random variables {K`, ` ∈ ΛN} defined on a probability space (Ω,F , P ) and taking values in

Nb. We denote by ΘN,b the empirical measure of these random variables. For ω ∈ Ω, ΘN,b

assigns to subsets A of Nb the probability

ΘN,b(ω, A) =
1

N

∑

`∈ΛN

δK`(ω){A}.

ΘN,b takes values in PNb
, the set of probability measures on Nb.

In order to determine the form of the LDP for ΘN,b, we calculate the common distribution

of the dependent random variables K` and then let the independent sequence K` have the same

common distribution. By the definition of the droplet model K distinguishable particles are

placed, each with equal probability 1/N , onto the N sites of the lattice ΛN = {1, 2, . . . , N}.

The ratio K/N equals the given parameter c, and if b ∈ N, then each site is required to be oc-

cupied by at least b particles. If b = 0, then empty sites are allowed. Because the distribution of

K` depends on N , these random variables form a triangular array having a common distribution

that is denoted by σ(N).

Let us assume for a moment that the random variables K` are not a triangular array, but

a fixed sequence with common distribution ρb,c. As shown in Theorem 6.2.10 in [8], Sanov’s

Theorem would then imply that the empirical measures ΘN,b, defined in terms of the i.i.d.

random variables K` having the same common distribution as K`, would satisfy the LDP on

PNb
with rate function the relative entropy with respect to ρb,c; in symbols, for subsets Γ of PNb

P{ΘN,b ∈ Γ} ≈ exp[−NR(Γ|ρb,c)]. (7.1)

One expects that this LDP could be modified in the present situation where we are dealing

with triangular arrays. If K` and thus K` have the common distribution σ(N), then formally for

subsets Γ of PNb
the empirical measures ΘN,b would have the asymptotic behavior

P{ΘN,b ∈ Γ} ≈ exp[−NR(Γ|σ(N))].

If σ(N) converges weakly to ρb,c as N → ∞, then we expect that the LDP in (7.1) would hold.

The LDP conjectured in the preceding paragraph and summarized in (7.1) is true. It is a

consequence of Theorem 5 in [1].
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As we will see in Theorem 7.1, the N-dependent distributions of K` converge weakly as

N → ∞ to a Poisson distribution ρb,c restricted to Nb and having parameter c; ρb,c has compo-

nents

ρb,c;j =
1

Zb(c)
·
cj

j!
for j ∈ Nb. (7.2)

In this formula Zb(c) is the normalization that makes ρb,c a probability measure. Thus Z0(c) =
ec while for b ∈ N

Zb(c) = ec −

b−1
∑

j=0

cj/j!.

Theorem 7.1 appears at the end of this section.

The results in this section for the droplet model have a different form for b = 0 and for

b ∈ N. We first consider b = 0. Because the N-dependent distributions of K` converge weakly

to ρ0,c, Theorem 5 in [1] implies the following: as K → ∞ and N → ∞ with K/N = c, the

empirical measures ΘN,0 satisfy the LDP on PN,0 with rate function the relative entropy with

respect to ρ0,c, which is a probability measure on N ∪ {0}. This verifies (7.1) for b = 0.

For b = 0 we now compare the LDP for ΘN,0 proved in Theorem 5 in [1] and summarized

in (7.1) with the LDP for ΘN,0 proved in Theorem 2.1 in [16] and summarized in (6.2). The

rate function in the LDP for ΘN,0 is the relative entropy with respect to the Poisson distribution

ρ0,α0(c) on N ∪ {0}, the components of which are defined in (6.1) with α = α0(c). Since α0(c)
has the property that the mean of ρ0,α0(c) equals c, it follows that α0(c) = c and thus that ρ0,α0(c)

equals ρ0,c defined in (7.2). Remarkably the rate functions in the LDP (7.1) for ΘN,0 and in the

LDP (6.2) for ΘN,0 are exactly the same.

We now discuss the results in this section for b ∈ N. Because the N-dependent distributions

of K` converge weakly to ρb,c, Theorem 5 in [1] implies the following: as K → ∞ and N → ∞
with K/N = c, the empirical measures ΘN,b satisfy the LDP on PNb

with rate function the

relative entropy with respect to ρb,c, which is a probability measure on Nb = {n ∈ Z : n ≥ b}.

This verifies (7.1) for b ∈ N.

For b ∈ N we now compare the LDP for ΘN,b proved in Theorem 5 in [1] and summarized

in (7.1) with the LDP for ΘN,b proved in Theorem 2.1 in [16] and summarized in (6.2). The

rate function in the LDP for ΘN,b is the relative entropy with respect to the Poisson distribution

ρb,αb(c) on Nb, the components of which are defined in (6.1) with α = αb(c). By the choice of

αb(c), ρb,αb(c) has mean c. By contrast the Poisson distribution ρb,c has mean

〈ρb,c〉 =
∑

j∈N

jρb,c;j =
cZb−1(c)

Zb(c)
.
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This follows from (6.3) if α is replaced by c. Since Zb−1(c) > Zb(c), it follows that

〈ρb,c〉 > c = 〈ρb,α〉.

Thus in contrast to the situation for b = 0, for b ∈ N the distribution ρb,c appearing in the rate

function in the LDP (7.1) for ΘN,b differs from the distribution ρb,αb(c) appearing in the rate

function in the LDP (6.2) for ΘN,b.

Despite the fact that for b ∈ N the two distributions do not coincide, they are both Poisson

distributions and their means are related. As we now show, as c → ∞, the mean of ρb,c is

asymptotic to the mean of ρb,αb(c), which equals c. To prove this, we use the last two displays to

write

c < 〈ρb,c〉 =
cZb−1(c)

Zb(c)
= c +

c(Zb−1(c) − Zb(c))

Zb(c)

= c +
cb/(b − 1)!

Zb(c)
< c +

cb/(b − 1)!

cb/b!
= c + b.

It follows that 1 ≤ 〈ρb,c〉/c < 1 + b/c. This implies that limc→∞〈ρb,c〉/c = 1, as claimed.

In order to complete our motivation of the LDP for ΘN,b via Sanov’s Theorem, we now

prove that as N → ∞ the N-dependent distributions of K` converge weakly to the Poisson

distribution ρb,c having components (7.2).

Theorem 7.1. Fix b ∈ N ∪ {0} and c > b. In the limit K → ∞ and N → ∞ with K/N = c
the distributions PN,b,m{K` ∈ ·} converge weakly to ρb,c.

Proof. Throughout this proof we write lim to denote the limit as K → ∞ and N → ∞ with

K/N = c. We start by determining the N-dependent distribution of K`, first for b = 0. For

j ∈ N0 satisfying 0 ≤ j ≤ K and for any ` ∈ ΛN , the event {K` = j} occurs if and only if j of

the K particles occupy the site ` and N − K particles occupy any of the other sites. Thus K`

has the distribution of a binomial random variable BK,1/N based on K independent Bernoulli

trials each having the probability of success 1/N . Thus for j ∈ N0 satisfying 0 ≤ j ≤ K

PN,b,m{K` = j} = P{BK,1/N = j} =
K!

j!(K − j)!

(

1

N

)j (

1 −
1

N

)K−j

. (7.3)

The N-dependent distribution of K` for general b ∈ N is more complicated. In this case,

because each site must be occupied by a minimum of b particles, K` has the distribution of

the binomial random variable BK,1/N conditioned on BK,1/N ≥ b. Thus for j ∈ Nb satisfying
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b ≤ j ≤ K the common distribution of K` is given by

PN,b,m{K` = j} = P{BK,1/N = j|BK,1/N ≥ b} (7.4)

=
1

P{BK,1/N ≥ b}
· P{BK,1/N = j}

=
1

1 −
∑b−1

k=0 P{BK,1/N = k}
· P{BK,1/N = j}.

We now prove that the N-dependent distributions of K` converge weakly to ρb,c, first for

b = 0. In this case K` has the same distribution as BK,1/N , and ρ0,c is a standard Poisson

distribution on N∪{0}. The weak convergence of the distributions of BK,1/n to ρ0,c is a classical

result known as the Poisson Theorem [30, Thm. III.3.4]. To prove it one uses characteristic

functions and the Continuity Theorem [30, Thm. III.3.1] to show that for each t ∈ R

limE{exp(itBK,1/N)} = exp[c(eit − 1)] =

∫

N∪{0}

exp(itx)ρ0,c(dx). (7.5)

This completes the proof that for b = 0 the N-dependent distribution of K` converges to ρ0,c.

We now prove that the N-dependent distributions of K` converge weakly to ρb,c for b ∈ N.

In this case K` has the same distribution as BK,1/N conditioned on BK,1/N ≥ b, and ρb,c is a

Poisson distribution restricted to Nb. We start by calculating the characteristic function of ρb,c.

For t ∈ R

∫

Nb

eitxρb,c(dx) =
1

Zb(c)

∞
∑

j=b

eitj c
j

j!
=

1

Zb(c)

(

exp(ceit) −

b−1
∑

k=0

(ceit)k

k!

)

. (7.6)

The next step is to calculate the characteristic function of K`. For t ∈ R we have by (7.4)

E{exp(itK`)} (7.7)

=
K
∑

j=b

eitjP{BK,1/N = j|BK,1/N ≥ b}

=
1

P{BK,1/N ≥ b}
·

K
∑

j=b

eitjP{BK,1/N = j}

=
1

P{BK,1/N ≥ b}
·

(

K
∑

j=0

eitjP{BK,1/N = j} −
b−1
∑

k=0

eitkP{BK,1/N = k}

)

=
1

1 −
∑b−1

k=0 P{BK,1/N = k}
·

(

E{exp(itBK,1/n)} −
b−1
∑

k=0

eitkP{BK,1/N = k}

)
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The weak convergence of the distributions of BK,1/N to ρ0,c, which is a consequence of the

limit (7.5) for all t ∈ R, implies that for each k ∈ N ∪ {0} satisfying 0 ≤ k ≤ K

limP{BK,1/N = k} = ρ0,c;k = e−c c
k

k!
.

Combining this with (7.5)–(7.7), we see that for t ∈ R

limE{exp(itK`)}

=
1

1 −
∑b−1

k=0 e−cck/k!
·

(

exp[c(eit − 1)] −
b−1
∑

k=0

eitke−cck/k!

)

=
1

ec −
∑b−1

k=0 ck/k!
·

(

exp(ceit) −
b−1
∑

k=0

(ceit)k/k!

)

=
1

Zb(c)

(

exp(ceit) −

b−1
∑

k=0

(ceit)k

k!

)

=

∫

Nb

eitxρb,c(dx).

This shows that for all t ∈ R the characteristic functions of K` converge to the characteristic

function of ρb,c. Again, the Continuity Theorem [30, Thm. III.3.1] implies that the N-dependent

distributions of K` converge weakly to ρb,c for b ∈ N. This completes the proof of the theorem.

Our motivation of the LDP for ΘN,b by applying Sanov’s Theorem is now done. We end

this paper by outlining our approach to proving the LDP for ΘN,b

8 Our Approach to Proving the LDP for ΘN,b

Our approach to proving the LDP for ΘN,b involves the following four steps, which are exact

analogs of the four steps used in section 3 to prove the Boltzmann-Sanov LDP in Theorem 2.3.

It is thus fair to say that Boltzmann’s work on the discrete ideal gas was both an inspiration and

a road map for our large deviation analysis of the droplet model.

1. Local estimate. Inspired by Boltzmann’s calculation of the Maxwell–Boltzmann distri-

bution, step 1 is to derive a local large deviation estimate for ΘN,b, which is stated in part

(b) of Theorem 3.1 in [16]. This local estimate, one of the centerpieces of the paper, gives

information not available in the LDP for ΘN,b, which involves global estimates. It states
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that in the limit as K → ∞ and N → ∞ with K/N = c, for any probability measure

θ(N) in the range of the number-density measure ΘN,b

1

N
log PN,K,m(ΘN,b = θ(N)) = −R(θ|ρb,αb(c)) + εN (θ(N)),

where εN(θ(N)) → 0 uniformly for all measures θ(N) in the range of ΘN,b. Showing

that the parameter of the Poisson distribution in the local large deviation estimate equals

αb(c) is one of the crucial elements of the proof; it was inspired by the derivation of the

Maxwell–Boltzmann distribution as explained in part (a) of Theorem 4.1 in the present

paper. The proof of this local estimate involves the asymptotic analysis of a product of

two multinomial coefficients. The first of these is an analog of the multinomial coefficient

appearing in the last line of (3.1) in the proof of the local large deviation estimate for the

discrete ideal gas in Theorem 3.1 in this paper.

2. Approximation result. In Theorem B.1 in [15] we prove that for any probability measure

θ ∈ PNb,c there exists a sequence θ(N) in the range of ΘN,b for which the following

properties hold: θ(N) ⇒ θ as N → ∞ and if R(θ|ρb,α) < ∞, then R(θ(N)|ρb,α) →
R(θ|ρb,α) as N → ∞.

3. Large deviation limit for open balls and other subsets. In Theorem 4.1 in [15] we show

how to use the approximation result in step 2 to lift the local estimate in step 1 to the large

deviation limit for ΘN,b lying in open balls and in certain other subsets of PNb,c. Theorem

4.1 in [15] is derived as a consequence of the general formulation given in Theorem 4.2

in [15].

4. Large deviation upper and lower bounds. Theorem 4.3 in [15] presents a general

procedure that we apply to lift the large deviation limit for ΘN,b lying in open balls and in

certain other subsets of PNb,c in step 3 to the large deviation upper and lower bounds for

ΘN,K stated in Theorem 2.1 in [16].

This completes our discussion of how Boltzmann’s work on the discrete ideal gas guided

our large deviation analysis of the droplet model.
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