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Abstract

This talk is an introduction to the theory of large deviations, which studies the asymp-

totic behavior of probabilities of rare events. The talk is accessible to a general mathemati-

cal audience including graduate students. The theory of large deviations has its roots in the

work of Ludwig Boltzmann, the founder of statistical mechanics. In 1877 he did the first

large deviation calculation in science when he showed that large deviation probabilities of

the empirical vector could be expressed in terms of the relative entropy function. In this talk

Boltzmann’s insight is applied to prove a conditional limit theorem that addresses a basic

issue arising in mathematics, statistical mechanics, and other applications. What is the most
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likely way for an unlikely event to happen? This question is answered in the context of n

tosses of a cubic die and other random experiments involving finitely many outcomes. Let

Xi denote the outcome of the i’th toss and define Sn = X1 + ... + Xn. If the die were fair,

then one would expect that for large n, Sn/n should be close to the theoretical mean of 3.5.

Given that n is large but that Sn/n is close to a number z not equal to 3.5, the problem is to

compute, in the limit n to infinity, the probability of obtaining k = 1, 2, 3, 4, 5, 6on a single

toss. Interestingly, this conditional limit theorem is intimately related to statistical mechan-

ics because it gives a rigorous derivation, for a random ideal gas, of a basic construction due

to Gibbs; namely, to derive the form of the canonical ensemble from the microcanonical

ensemble. A related conditional limit theorem for the distribution of X1, X2 illustrates the

phenomenon of propagation of chaos.

Our Lives Are Large Deviations

Statistically, the probability of any one of us being here is so small that you’d

think the mere fact of existing would keep us all in a contented dazzlement of sur-

prise. We are alive against the stupendous odds of genetics, infinitely outnumbered

by all the alternates who might, except for luck, be in our places.

Even more astounding is our statistical improbability in physical terms. The

normal, predictable state of matter throughout the universe is randomness, a relaxed

sort of equilibrium, with atoms and their particles scattered around in an amorphous

muddle. We, in brilliant contrast, are completely organized structures, squirming

with information at every covalent bond. We make our living by catching electrons

at the moment of their excitement by solar photons, swiping the energy released at

the instant of each jump and storing it up in intricate loops for ourselves. We violate

probability, by our nature. To be able to do this systemically, and in such wild

varieties of form, from viruses to whales, is extremely unlikely; to have sustained

the effort successfully for the several billion years of our existence, without drifting

back into randomness, was nearly a mathematical impossibility.

Lewis Thomas, The Lives of a Cell

(New York: Viking Press, 1974), p. 141
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“Life, by Any Reasonable Measure, Is Impossible”

Art is a way of saying what it means to be alive, and the most salient feature

of existence is the unthinkable odds against it. For every way that there is of be-

ing here, there are an infinity of ways of not being here. Historical accident snuffs

out whole universes with every clock tick. Statistics declare us ridiculous. Ther-

modynamics prohibits us. Life, by any reasonable measure, is impossible, and my

life—this, here, now—infinitely more so. Art is a way of saying, in the face of all

that impossibility, just how worth celebrating it is to be able to say anything at all.

Richard Powers, Conjunctions,

quoted in John Leonard, “Mind Painting,”

The New York Review of Books,

11 January 2001, p. 47.

“Something Just Short of Infinity to One”

This is the kind of question Henry liked to put to himself when he was a school-

boy: what are the chances of this particular fish, from that shoal, off that continen-

tal shelf ending up in the pages, no, on this page of this copy of the Daily Mirror?

Something just short of infinity to one. Similarly, the grains of sand on a beach,

arranged just so. The random ordering of the world, the unimaginable odds against

any particular condition, still please him. Even as a child, and especially after Aber-

fan1, he never believed in fate or providence, or the future being made by someone

in the sky. Instead, at every instant, a trillion trillion futures; the pickiness of pure

chance and physical laws seemed like freedom from the scheming of a gloomy god.

Ian McEwan, Saturday

(New York: Nan A. Talese, 2005), pp. 228–229

1On 21 October 1966, 144 people, 116 of them children, were killed when thousands of tons of coal waste slid

onto the village of Aberfan in South Wales.
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The theory of large deviations studies the asymptotic behavior of probabilities of rare events

in certain random systems. The main focus is on events whose probabilities decay exponentially

fast as the size of the system goes to∞. The theory has been applied to a wide range of problems

in which detailed information on rare events is required. One is often interested not only in the

probability of rare events but also in the characteristic behavior of the system as the rare event

occurs. For example, in applications to queueing theory and communication systems, the rare

event could represent an overload or breakdown of the system. In this case, large deviation

methodology can lead to an efficient redesign of the system so that the overload or breakdown

does not occur. In applications to statistical mechanics the theory of large deviations gives

precise, exponential-order estimates that are perfectly suited for asymptotic analysis.

In this talk I will illustrate the basic ideas of the theory of large deviations by studying a

crooked gambling game. As I will indicate later, these ideas are closely related to statistical

mechanics. They originated with Ludwig Boltzmann, one of founders of statistical mechanics,

who used these ideas to calculate the equilibrium distribution of a random ideal gas. I will com-

ment on Boltzmann’s work at the end of the talk. Because of this historical fact, the talk should

really be called ”From Statistical Mechanics to Large Deviations” rather than the reverse. In

order to emphasize the beauty and flexibility of the theory of large deviations, I will motive the

results using a formal notation. Complete proofs are given in sections 3–5 of my lecture notes

for École de Physique Les Houches. An updated version of these lecture notes is available at the

URL http://www.math.umass.edu/˜rsellis/pdf-files/Les-Houches-lectures.pdf (see the handout).

Main problem of the talk. Here is a quick overview. A more detailed description will be given

in a few minutes. We toss a fair cubic die n times. Each of the six faces of the die has the same

probability of occurring (namely, 1/6), and the individual tosses are independent, which means

that no toss has any influence on any of the other tosses. Define Sn to be the sum of the n tosses.

The quantity Sn/n takes values in the interval [1, 6]. According to the law of large numbers

lim
n→∞

Pn{Sn/n ∼ 3.5} = 1.

Therefore, for any z 6= 3.5, we have Pn{Sn/n ∼ z} → 0. In fact, this is a large deviation event

that converges to 0 exponentially fast as n → ∞.

The main problem of the talk refers to a crooked gambling game. Given z 6= 3.5, suppose

that Sn/n ∼ z. Conditioned on this large deviation event, we ask the following question. What

are the probabilities that each of the numbers 1, 2, 3, 4, 5, 6 appears on a toss of the die? For

reasons that I explain later we consider this in the limit n → ∞. Thus the problem is to calculate

for 1 ≤ k ≤ 6

ρ∗
k = lim

n→∞
Pn{X1 = k |Sn/n ∼ z}.

As we will see later [Theorem 1 Restated, part (b)], in a well-defined sense the vector ρ∗ =

(ρ∗
1, . . . , ρ

∗
6) is the most likely way for the unlikely event {Sn/n ∼ z} to happen. A related



Richard S. Ellis: Introduction to the Theory of Large Deviations 5

problem is to calculate for 1 ≤ k, ` ≤ 6

ρ∗
k,` = lim

n→∞
Pn{X1 = k, X2 = ` |Sn/n ∼ z}

and its generalization for X1, X2, . . . , Xr, r ≥ 3.

We will analyze this problem in the following more general context of a game having α different

outcomes. The dice game corresponds to α = 6, which is the number of possible outcomes

on each toss of the die. As in the dice game, the individual plays of the general game are

independent. This is modeled by choosing Pn in the last bullet to be product measure.

• α ≥ 2 an integer, the number of possible outcomes on each play of the game

Dice game: α = 6

• y1 < y2 < . . . < yα real numbers, the possible outcomes on each play of the game

Dice game: yk = k for 1 ≤ k ≤ 6

• ρ1, ρ2, . . . , ρα positive numbers summing to 1; each yk has probability ρk

Dice game: each ρk = 1/6

• Λ = {y1, y2, . . . , yα}

Dice game: Λ = {1, 2, 3, 4, 5, 6}

• ρ = (ρ1, ρ2, . . . , ρα) a probability vector or ρ =
∑α

k=1 ρkδyk
, a probability measure on Λ

Dice game: ρ = (1
6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
) or ρ =

∑6
k=1

1
6
δk

• Ωn = Λn, the configuration space for n repetitions of the game

Dice game: Ωn = {1, 2, 3, 4, 5, 6}n

• ω = (ω1, ω2, . . . , ωn) ∈ Ωn, where ωj is the outcome of the j’th play

• Pn = ρn, finite product measure: Pn{ω) =
∏n

j=1 ρkj if ωj = ykj

Dice game: Pn{ω} = 1/6n for each ω ∈ Ωn

• Xj(ω) = ωj for ω ∈ Ωn and 1 ≤ j ≤ n. This is an i.i.d. sequence of random variables

with common distribution ρ =
∑α

k=1 ρkδyk
.
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Microscopic level of description. We play the game n times. Each ω ∈ Λn gives a microscopic

description of the n plays. As in the next-to-last bullet, we define Pn to be the product measure

ρn, and for B ⊂ Λn we define

Pn{B} =
∑

ω∈B

Pn{ω}.

For the dice game, since Pn{ω} = 1/6n, we have Pn{B} = card(B)/6n. Although the micro-

scopic level of description is precise, it is much too detailed to give useful information.

Macroscopic level of description: sample mean. There are various macroscopic levels of

description, including the sample mean and the empirical vector. The simplest macroscopic

level involves the sample mean. Given ω ∈ Λn, define

Sn(ω) =
n∑

j=1

Xj(ω) =
n∑

j=1

ωj.

The sample mean Sn/n takes values in the closed interval [y1, yα]. For the dice game we define

ȳ = 3.5 = 1
6

∑6
k=1 k. For the general game we define

ȳ =

α∑

k=1

ykρk.

In both cases ȳ equals EPn{X1}, the mean of X1, where EPn denotes expectation with respect

to Pn. The law of large numbers implies that

lim
n→∞

Pn{Sn/n ∼ ȳ} = 1.

The theory of large deviations (specifically, Cramér’s Theorem) shows that there exists a func-

tion I mapping (y1, yα) into [0,∞) such that for any z ∈ (y1, yα)

Pn{Sn/n ∼ z} ≈ exp[−nI(z)] as n → ∞.

Notation. Let a be a sufficiently small number. The event {Sn/n ∼ z} is shorthand for the

event

{Sn/n ∈ [ȳ − a, ȳ + a]} if z = ȳ,

{Sn/n ∈ [z − a, z]} if y1 < z < ȳ,

{Sn/n ∈ [z, z + a]} if ȳ < z < yα.

In each of the three cases we choose a so small that the respective interval is a subset of (y1, yα).
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With reference to this notation, the large deviation estimate appearing just before the last

paragraph means that

lim
a→0

lim
n→∞

1

n
log Pn{Sn/n ∼ z} = −I(z).

We now combine the law of large numbers with the large deviation estimate. If z = ȳ, then

Pn{Sn/n ∼ ȳ} → 1, and if z 6= ȳ, then Pn{Sn/n ∼ z} → 0. It follows that if z = ȳ, then

I(z) = 0. On the other hand, if z 6= ȳ, then I(z) > 0, implying that

Pn{Sn/n ∼ z} ≈ exp[−nI(z)] → 0 exponentially fast.

If z 6= ȳ, then we call the event {Sn/n ∼ z} a large deviation event. The function I is called

a rate function or an entropy function.

For the dice game

Pn{Sn/n ∼ z} =
1

6n
· card{ω ∈ Λn : Sn(ω)/n ∼ z}.

Thus I(z) records the multiplicity of microstates ω consistent with the macrostate z through the macroscopic variable Sn/n. This interpretation

of the rate function is consistent with Boltzmann’s insight of 1877 concerning the role of entropy in statistical mechanics, which uses probability

theory to study systems consisting of large numbers of particles. Boltzmann’s insight is the following. “Entropy is a bridge between a

microscopic level, on which physical systems are defined in terms of the complicated interactions among the individual constituent particles,

and a macroscopic level, on which the laws describing the behavior of the system are formulated.”

Main problem of the talk. The main problem of the talk refers to a crooked game. Given

z ∈ (y1, yα), z 6= ȳ, suppose that Sn/n ∼ z. Conditioned on this large deviation event, we

ask the following question. What are the n → ∞ limits of the probabilities that each of the

outcomes y1, y2, . . . , yα appears on a play of the game?

Part (a) of the next theorem gives the form of this limit. Parts (c) and (d) give the surprising

generalizations to the n → ∞ limits of the probabilities of the outcomes on two successive

plays of the game and on r successive plays of the game. My goal in this talk is to give the main

ideas of the proof of part (a). If I have time, then I will remark on the proofs of parts (c) and (d)

and the relationship of part (d) to statistical mechanics.

Theorem 1. For z ∈ (y1, yα) the following results hold.

(a) For 1 ≤ k ≤ α

ρ∗
k = lim

n→∞
Pn{X1 = yk |Sn/n ∼ z}

exists and for a suitable choice of β

ρ∗
k =

1

Normalization
· exp[βyk] ρk.

(b) In the sense of part (b) of Theorem 1 Restated (limn→∞ Pn{Ln ∼ ρ∗ |Sn/n ∼ z} = 1),

ρ∗ = (ρ∗
1, . . . , ρ

∗
α) is the most likely way for the unlikely event {Sn/n ∼ z} to happen.

(c) For 1 ≤ k, ` ≤ α

ρ∗
k,` = lim

n→∞
Pn{X1 = yk, X2 = y` |Sn/n ∼ z}



Richard S. Ellis: Introduction to the Theory of Large Deviations 8

exists and equals ρ∗
kρ

∗
` . Thus, although X1 and X2 are not independent when conditioned on

Sn/n ∼ z, in the limit n → ∞ we recover the independence with one-dimensional marginals

ρ∗.

(d) For a positive integer r ≥ 3 the limiting conditional distribution of X1, X2, . . . , Xr,

conditioned on Sn/n ∼ z, equals the r-fold product measure ρ∗r; i.e., for any subset B ⊂ Ωr

lim
n→∞

Pn{(X1, X2, . . . , Xr) ∈ B |Sn/n ∼ z} = ρ∗r{B}.

Thus, although X1, X2, . . . , Xr are not independent when conditioned on Sn/n ∼ z, in the limit

n → ∞ we recover the independence with one-dimensional marginals ρ∗.

In order to see that this result is plausible, we consider the special case z = ȳ =
∑α

k=1 ykρk. In

this case the law of large numbers implies that Pn{Sn/n ∼ z} → 1 as n → ∞. Hence

ρ∗
k = lim

n→∞
Pn{X1 = yk} = ρk and ρ∗

k,` = lim
n→∞

Pn{X1 = yk, X2 = y`} = ρkρ`.

There is a similar statement for part (d).

Strategy of proof of part (a). The quantity ρ∗
k is the limiting conditional probability of the event

that X1 = yk given the large deviation event Sn/n ∼ z. The key to proving part (a) of Theorem

1 is to rewrite these two events in terms of a new macroscopic variable, the empirical vector,

and to appeal to a large deviation estimate for the empirical vector discovered by Boltzmann

and proved rigorously by Sanov in 1957.

Macroscopic level of description: empirical vector. The most elementary macroscopic level

of description is in terms of the sample mean

Sn(ω)/n =
1

n
·

m∑

j=1

Xj(ω) =
1

n
·

m∑

j=1

ωj.

This macroscopic variable summarizes the αn degrees of freedom in the microscopic descrip-

tion ω ∈ Ωn in terms of a single quantity. A more refined macroscopic level of description is in

terms of the empirical vector. For ω ∈ Ωn and y ∈ Λ define

Ln(y) = Ln(ω, y) =
1

n

n∑

j=1

δXj(ω){y}.

Thus Ln(ω, y) counts the relative frequency with which y appears in the configuration ω; in

symbols, Ln(ω, y) = n−1 · card{j ∈ {1, . . . , n} : ωj = y}. We then define the empirical vector

Ln = Ln(ω) = (Ln(ω, y1), . . . , Ln(ω, yα))

=
1

n

n∑

j=1

(
δXj(ω){y1}, . . . , δXj(ω){yα}

)
.
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Ln equals the sample mean of the i.i.d. random vectors (δXj(ω){y1}, . . . , δXj(ω){yα}). It takes

values in the set of probability vectors

Pα =

{
γ = (γ1, γ2, . . . , γα) ∈ R

α : γk ≥ 0,
α∑

k=1

γk = 1

}
.

The macroscopic variables Ln and Sn/n are closely related. In fact, the mean of the empiri-

cal vector Ln equals the sample mean Sn/n; in symbols, for each ω ∈ Ωn,
∑α

k=1 ykLn(yk, ω) =

Sn(ω)/n. This fact is used in the proof of part (a) of Theorem 1, where I will say more about it.

The limiting behavior of Ln is straightforward to determine. Since the Xj have the common

distribution ρ, for each yk ∈ Λ

EPn{Ln(yk)} = EPn

{
1

n

n∑

j=1

δXj{yk}

}
=

1

n

n∑

j=1

Pn{Xj = yk} = ρk,

where EPn denotes expectation with respect to Pn. Hence by the law of large numbers for the

sample means of i.i.d. random variables

lim
n→∞

Pn{Ln ∼ ρ} = 1.

Notation. For γ ∈ Pα the event {Ln ∼ γ} is shorthand for the event {Ln ∈ B(γ, ε)} for ε > 0,

where B(γ, ε) is the open ball {ν ∈ Pα : ‖γ − ν‖ < ε}. In this definition ‖ · ‖ denotes the

Euclidean norm on R
α. If γ 6= ρ, then we choose ε > 0 so small that ρ 6∈ B(γ, ε).

It follows that for any γ ∈ Pα not equal to ρ

lim
n→∞

Pn{Ln ∼ γ} = 0.

Boltzmann’s discovery, which was proved rigorously by Sanov, implies that these probabilities

converge to 0 exponentially fast in n. The exponential decay rate is given in terms of the relative

entropy, which we now define.

Definition 2. Relative Entropy. The relative entropy of γ ∈ Pα with respect to ρ is defined by

Iρ(γ) =
α∑

k=1

γk log
γk

ρk

.

The main property of the relative entropy that we need is that Iρ(ρ) = 0 and that Iρ(γ) > 0

for any γ ∈ Pα, γ 6= ρ (Lem. 3).

The following two limit results are valid.
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• Law of large numbers. Pn{Ln ∼ ρ} → 1.

• Boltzmann–Sanov’s large deviation estimate. For γ ∈ Pα, γ 6= ρ, we have Iρ(γ) > 0

and

Pn{Ln ∼ γ} ≈ exp[−nIρ(γ)] → 0 exponentially fast;

i.e.,

lim
ε→0

lim
n→∞

1

n
log Pn{Ln ∈ B(γ, ε)} = −Iρ(γ).

Several properties of the relative entropy are given in the next lemma. The proof is typical

of proofs of analogous results involving the relative entropy (see Propositions 7 and 8) in that

we use a global, convexity-based inequality rather than calculus to determine where Iρ attains

its infimum over Pα. In the present case the global convexity inequality is that for x ≥ 0,

x log x ≥ x − 1 with equality if and only if x = 1.

Lemma 3. (a) For γ ∈ Pα, Iρ(γ) ≥ 0 and Iρ(γ) = 0 ⇐⇒ γ = ρ. Thus Iρ(γ) attains its

infimum of 0 over Pα at the unique measure γ = ρ.

(b) Iρ is strictly convex on Pα.

Partial proof of part (a). If γ = ρ, then the definition of the relative entropy shows that

Iρ(γ) = 0. We now prove that Iρ(γ) ≥ 0 for all γ ∈ Pα. For x ≥ 0 the graph of the strictly

convex function x log x has the tangent line y = x − 1 at x = 1. Hence x log x ≥ x − 1 with

equality if and only if x = 1. It follows that for any γ ∈ Pα

γk

ρk
log

γk

ρk
≥

γk

ρk
− 1

with equality if and only if γk = ρk. Multiplying this inequality by ρk and summing over k

yields

Iρ(γ) =
α∑

k=1

γk log
γk

ρk

≥
α∑

k=1

(γk − ρk) = 0.

Remainder of the proof. (a) In order to prove that Iρ(γ) = 0 if and only if γ = ρ, we must show that if Iρ(γ) = 0, then γ = ρ. Assume

that Iρ(γ) = 0. Then

0 =
αX

k=1

γk log
γk

ρk

=
αX

k=1

„
γk log

γk

ρk
− (γk − ρk)

«

=

αX

k=1

ρk

„
γk

ρk
log

γk

ρk
−

„
γk

ρk
− 1

««
.

We now use the facts that ρk > 0 and that for x ≥ 0, x logx ≥ x − 1 with equality if and only if x = 1. It follows that for each k,

γk = ρk and thus that γ = ρ. This completes the proof that Iρ(γ) ≥ 0 and Iρ(γ) = 0 if and only if γ = ρ, which is the first assertion in the

proposition.
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(b) Since

Iρ(γ) =

αX

k=1

ρk
γk

ρk
log

γk

ρk
,

the strict convexity of Iρ is a consequence of the strict convexity of x logx for x ≥ 0.

We are now ready to give Boltzmann’s discovery, which we state using a heuristic notation.

The formal calculations used to motivate the next result can easily be turned into a rigorous

proof of an asymptotic theorem, known as Sanov’s Theorem (page 13). From Boltzmann’s

momentous discovery both the theory of large deviations and the Gibbsian formulation of equi-

librium statistical mechanics grew.

Theorem 4. Boltzmann’s Discovery (1877). For γ ∈ Pα

Pn{Ln ∼ γ} ≈ exp[−nIρ(γ)] as n → ∞.

If γ 6= ρ, then Iρ(γ) > 0, and so Pn{Ln ∼ γ} → 0 exponentially fast.

Proof. We assume that γ is in the range of Ln. In this case Pn(Ln = γ) > 0. By elementary

combinatorics

Pn{Ln = γ} = Pn

{
ω ∈ Ωn : Ln(ω) =

1

n
(nγ1, nγ2, . . . , nγα)

}

= Pn{card{ωj = y1} = nγ1, . . . , card{ωj = yα} = nγα}

=
n!

(nγ1)!(nγ2)! · · · (nγα)!
ρnγ1

1 ρnγ2
2 · · · ρnγα

α .

We now use Stirling’s formula in the weak form k! = kke−keO(log k). An elementary calculation

yields
1

n
log Pn{Ln = γ} = −Iρ(γ) + O

(
log n

n

)
.

The term O(log n/n) converges to 0 as n → ∞. Hence multiplying both sides of the last display

by n and exponentiating yields the results.

Here is the detailed calculation. Stirling’s formula in the weak form n! = nne−neO(log n) yields

1

n
logPn{Ln = γ}

=
1

n
log

„
n!

(nγ1)!(nγ2)! · · · (nγα)!

«
+

αX

k=1

γk log ρk

=
1

n
log

„
nne−n

(nγ1)nγ1e−nγ1 · · · (nγα)nγαe−nγα

«
+

αX

k=1

γk logρk + O

„
log n

n

«

=
1

n
log

„
1

γnγ1

1 · · ·γnγα
α

«
+

αX

k=1

γk logρk + O

„
log n

n

«

= −
αX

k=1

γk logγk +
αX

k=1

γk logρk + O

„
logn

n

«

= −

αX

k=1

γk log
γk

ρk
+ O

„
log n

n

«
= −Iρ(γ) + O

„
log n

n

«
.
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The term O(logn/n) converges to 0 as n → ∞. Hence multiplying both sides of the last display by n and exponentiating yields the results.

Theorem 4 is a local estimate, which we now convert into a global estimate. For C a Borel

subset of Pα define

Iρ(C) = inf
γ∈C

Iρ(γ).

For any γ ∈ C , Iρ(γ) ≥ Iρ(C). The range of Ln(ω) for ω ∈ Ωn is the set of probability vectors

having the form k/n, where k ∈ R
α has nonnegative integer coordinates summing to n; hence

the cardinality of the range does not exceed (n + 1)α. Since

Pn{Ln ∈ C} =
∑

γ∈C

Pn{Ln ∼ γ} ≈
∑

γ∈C

exp[−nIρ(γ)]

and

exp[−nIρ(C)] ≤
∑

γ∈C

exp[−nIρ(γ)] ≤ (n + 1)α exp[−nIρ(C)],

one expects that to exponential order the following result holds.

Corollary 5. Pn{Ln ∈ C} ≈ exp[−nIρ(C)] as n → ∞.

Here is a rigorous statement. Any open ball B(γ, ε) satisfies the condition on C in the first

sentence of the corollary.

Corollary 6. Let C be a Borel subset of Pα satisfying cl(C) = cl(int(C)) (e.g., C = B(γ, ε)).

If ρ 6∈ cl(C), then Iρ(C) > 0 and

lim
n→∞

1

n
log Pn{Ln ∈ C} = −Iρ(C).

Hence Pn{Ln ∈ C} → 0 exponentially fast.
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Corollary 6 is a consequence of the following rigorous reformulation of Boltzmann’s discovery, known as Sanov’s Theorem, which

expresses the large deviation principle for the empirical vectors Ln.

Sanov’s Theorem (1957). The sequence of empirical vectors Ln satisfies the large deviation principle on Pα with rate function Iρ in the

following sense.

(a) Large deviation upper bound. For any closed subset F of Pα

lim sup
n→∞

1

n
log Pn{Ln ∈ F} ≤ −Iρ(F ).

(b) Large deviation lower bound. For any open subset G of Pα

lim inf
n→∞

1

n
logPn{Ln ∈ G} ≥ −Iρ(G).

Comments on the Proof. For γ ∈ Pα and ε > 0, B(γ,ε) denotes the open ball with center γ and radius ε and B(γ, ε) denotes the

corresponding closed ball. Since Pα is a compact subset of R
α, any closed subset F of Pα is automatically compact. By a standard covering

argument it is not hard to show that the large deviation upper bound holds for any closed set F provided that one obtains the large deviation

upper bound for any closed ball B(γ, ε):

lim sup
n→∞

1

n
logPn{Ln ∈ B(γ, ε)} ≤ −Iρ( B(γ, ε)).

Likewise, the large deviation lower bound holds for any open set G provided one obtains the large deviation lower bound for any open ball

B(γ, ε):

lim inf
n→∞

1

n
logPn{Ln ∈ B(γ,ε)} ≥ −Iρ(B(γ,ε)).

The bounds in the last two displays can be proved via combinatorics and Stirling’s formula as in the heuristic proof of Theorem 5; one can

easily adapt the calculations given in section 1.4 of my 1985 book, Entropy, Large Deviations, and Statistical Mechanics. The details are

omitted.

Proof of Corollary 6 from Sanov’s Theorem. We apply the large deviation upper bound to C = cl(C) and the large deviation lower bound

to C◦ = int(C). Since C ⊃ C ⊃ C◦ , it follows that Iρ(C) ≤ Iρ(C) ≤ Iρ(C◦) and that

−Iρ(C ) ≥ lim sup
n→∞

1

n
logPn{Ln ∈ C }

≥ lim sup
n→∞

1

n
logPn{Ln ∈ C}

≥ lim inf
n→∞

1

n
log Pn{Ln ∈ C}

≥ lim inf
n→∞

1

n
log Pn{Ln ∈ C◦}

≥ −Iρ(C◦).

The continuity of Iρ on Pα implies that Iρ(C◦) = Iρ(C◦). Since by hypothesis C◦ = C, we conclude that the extreme terms in this display

are equal to each other and to Iρ(C) and thus that

lim sup
n→∞

1

n
logPn{Ln ∈ C} = lim inf

n→∞

1

n
log Pn{Ln ∈ C} = −Iρ(C).

The desired limit follows.
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We now turn to the proof of part (a) of Theorem 1. For z ∈ (y1, yα) and for 1 ≤ k ≤ α our

goal is to evaluate

ρ∗
k = lim

n→∞
Pn{X1 = yk |Sn/n ∼ z}.

Notation. For γ a probability vector in Pα, define

〈γ〉 =
α∑

k=1

ykγk.

This quantity equals the mean of the probability measure
∑α

k=1 γkδyk
.

If z = ȳ =
∑α

k=1 ykρk = 〈ρ〉, then by the law of large numbers Pn{Sn ∼ z} → 1 as

n → ∞. As we have already seen, in this case

ρ∗
k = lim

n→∞
Pn{X1 = yk |Sn/n ∼ z} = lim

n→∞
Pn{X1 = yk} = ρk.

In the next theorem we evaluate ρ∗
k when z 6= ȳ. The limit in part (a) of Theorem 1 involves X1

and Sn/n, which are not both symmetric functions of Xj . The basic idea in proving this limit

is to re-express the limit in terms of the empirical vector Ln, which is a symmetric function of

Xj , and then to use Boltzmann’s discovery in the form of Corollary 5. Part (b) motivates the

statement that ρ∗ is the most likely way for the unlikely event {Sn/n ∼ z} to happen.

Theorem 1 Restated [part (a)]. For any z ∈ (y1, yα) such that z 6= ȳ, the following results

hold.

(a) For 1 ≤ k ≤ α, ρ∗
k = limn→∞ Pn{X1 = yk |Sn/n ∼ z} exists and has the form

ρ∗
k =

1∑α
j=1 exp[βyj]ρj

· exp[βyk] ρk,

where β = β(z) is the unique value of β satisfying 〈ρ∗〉 = z. Hence ρ∗ = (ρ∗
1, ρ

∗
2, . . . , ρ

∗
α) ∈ Pα.

(b) The probability vector ρ∗ in part (a) has the property that

lim
n→∞

Pn{Ln ∼ ρ∗ |Sn/n ∼ z} = 1.

(c) Define A = {γ ∈ Pα : 〈γ〉 ∼ z}. Then ρ∗ in part (a) has the property that

lim
n→∞

Pn{Ln ∼ ρ∗ |Ln ∈ A} = 1.

Proof. We prove that (b) ⇒ (a), then prove that (c) ⇒ (b), then prove (c).

(b) ⇒ (a). We assume that

lim
n→∞

Pn{Ln ∼ ρ∗ |Sn/n ∼ z} = 1.



Richard S. Ellis: Introduction to the Theory of Large Deviations 15

Then for all large n we have with probability close to 1 that

ρ∗
k = EPn{ρ∗

k |Sn/n ∼ z} ≈ EPn{Ln(yk) |Sn/n ∼ z}

=
1

n

n∑

j=1

EPn{δXj(yk) |Sn/n ∼ z}

=
1

n

n∑

j=1

Pn{Xj = yk |Sn/n ∼ z}

= Pn{X1 = yk |Sn/n ∼ z}.

The last line follows by symmetry. This completes the proof of part (a) from part (b).

(c) ⇒ (b). We assume that

lim
n→∞

Pn{Ln ∼ ρ∗ |Ln ∈ A} = 1,

where

A = {γ ∈ Pα : 〈γ〉 ∼ z}.

Part (b) follows if we can prove that the events {Ln ∈ A} and {Sn/n ∼ z} coincide. In order

to see this, we note that Ln ∈ A if and only if the mean 〈Ln〉 of the empirical vector satisfies

〈Ln〉 ∼ z. A straightforward calculation shows that 〈Ln〉 = Sn/n, which implies that

Ln ∈ A ⇐⇒ 〈Ln〉 ∼ z ⇐⇒ Sn/n ∼ z.

Thus the quantities whose limits are evaluated in parts (b) and (c) coincide.

Here is a quick proof that 〈Ln〉 = Sn/n. For each ω ∈ Ωn

〈Ln(ω)〉 =
α∑

k=1

ykLn(ω, yk)

=
α∑

k=1

yk ·
1

n
card{j ∈ {1, 2, . . . , n} : Xj(ω) = yk}

=
1

n

n∑

j=1

Xj(ω) = Sn(ω)/n.

Here is a second proof that 〈Ln〉 = Sn/n. For each ω ∈ Ωn

〈Ln(ω)〉 =

αX

k=1

ykLn(ω, yk) =

αX

k=1

yk ·
1

n

nX

j=1

δXj(ω)(yk)

=
1

n

nX

j=1

αX

k=1

ykδXj (ω)(yk)

=
1

n

nX

j=1

Xj(ω) = Sn(ω)/n.
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(c). We now prove part (c), which we write in the form

lim
n→∞

Pn{Ln ∈ B(ρ∗, ε) |Ln ∈ A} = 1,

where again

A = {γ ∈ Pα : 〈γ〉 ∼ z}.

Heart of the proof. The key is to use the large deviation estimate

Pn{Ln ∈ C} ≈ exp[−nIρ(C)] as n → ∞

for Borel subsets C of Pα, which is discussed in Corollary 5. According to this estimate, to

exponential order

Pn{Ln ∈ B(ρ∗, ε) |Ln ∈ A} = Pn{Ln ∈ B(ρ∗, ε) ∩ A} ·
1

Pn{Ln ∈ A}

≈ exp[−n(Iρ(B(ρ∗, ε) ∩ A) − Iρ(A)) ].

Thus one should obtain the conditioned limit

lim
n→∞

Pn{Ln ∈ B(ρ∗, ε) |Ln ∈ A} = 1

if Iρ(B(ρ∗, ε) ∩ A) = Iρ(A). By sending ε → 0, we see that ρ∗ must satisfy

Iρ({ρ
∗} ∩ A) = Iρ(A);

i.e., ρ∗ ∈ A and the infimum of Iρ on A is attained at the unique point ρ∗. This is proved in

Proposition 8.

For z ∈ (y1, ȳ) the set A has the form

A = {γ ∈ Pα : 〈γ〉 ∼ z} = {γ ∈ Pα : 〈γ〉 ∈ [z − a, z]}.

We motivate Proposition 8 by replacing the constraint 〈γ ∼ [z − a, z] by the equality constraint

〈γ〉 = z, which is easier to handle. We also consider any z ∈ (y1, yα), z 6= ȳ.

Proposition 7. Let z ∈ (y1, yα) be given, z 6= ȳ. Then Iρ attains its infimum over

Ã = {γ ∈ Pα : 〈γ〉 =
∑α

k=1 ykγk = z}

at the unique point ρ∗ = (ρ∗
1, ρ

∗
2, . . . , ρ

∗
α) defined in part (a) of Theorem 1 Restated: for each

k = 1, 2, . . . , α

ρ∗
k =

1∑α
j=1 exp[βyj] ρj

· exp[βyk] ρk,

where β = β(z) 6= 0 is the unique value of β satisfying 〈ρ∗〉 =
∑α

k=1 ykρ
∗
k = z.
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The form of ρ∗
k reflects the form of the constraint on

∑α
k=1 ykγk. The quantities yk in the

constraint appear in the exponents defining ρ∗
k. This is a special case of a general principle.

Why does the point ρ∗ arise as the unique minimum point of Iρ(γ) for γ ∈ Ã? We motivate

this by considering the calculus problem of determining critical points of Iρ(γ) for γ ∈ Ã; i.e.,

for γ subject to the constraints that
∑α

k=1 γk = 1 and
∑α

k=1 ykγk = z. Let λ and −β be La-

grange multipliers corresponding to these two constraints. Since Iρ(γ) =
∑α

j=1 γj log(γj/ρj),

for each k we have

0 =
∂(Iρ(γ) + λ

(∑α
j=1 γj − 1

)
− β

(∑α
j=1 yjγj − z

)

∂γk

= log γk + 1 − log ρk + λ − βyk.

It follows that

γk = exp[−λ − 1] exp[βyk] ρk.

Now pick λ so that
∑α

k=1 γk = 1 and pick β = β(z) so that
∑α

k=1 ykγk = z. With these choices

of λ and β, γk equals ρ∗
k.

We now have a candidate ρ∗ for the minimum point of Iρ(γ) on Ã. The proof that ρ∗ is

the unique such minimum point is based on properties of the relative entropy and does not use

calculus. We recall that for each k ∈ {1, . . . , α}

ρ∗
k

ρk
=

1

V
· exp[βyk],

where V is the normalization
∑α

j=1 exp[βyj]ρj. We assume that there exists a unique value of

β ∈ R such that 〈ρ∗〉 = z; if so, then ρ∗ ∈ Ã. This fact is proved in Lemma 10. For any γ ∈ Ã

Iρ(γ) =

α∑

k=1

γk log
γk

ρk
=

α∑

k=1

γk log
γk

ρ∗
k

+

α∑

k=1

γk log
ρ∗

k

ρk

= Iρ∗(γ) + β

α∑

k=1

ykγk − (log V )

α∑

k=1

γk

= Iρ∗(γ) + βz − log V.

Since Iρ∗(γ) ≥ 0 with equality if and only if γ = ρ∗ [Lemma 3], it follows that if γ = ρ∗, then

Iρ(ρ
∗) = βz − log V and that if γ 6= ρ∗, then

Iρ(γ) > βz − log V = Iρ(ρ
∗).

This completes the proof that Iρ attains its infimum over Ã at the unique vector ρ∗.
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Contraction principle relating Ln and Sn/n. We have just proved that

inf{Iρ(γ) : γ ∈ eA} = inf{Iρ(γ) : γ ∈ Pα, 〈γ〉 = z} = βz − logV,

where V =
Pα

j=1 exp[βyj ]ρj . It is not hard to show that the function I(z) = βz − log V equals the Cramér rate function in the large

deviation principle for Sn/n. This is an example of the contraction principle applied to the map γ ∈ Pα 7→ 〈γ〉 ∈ [y1, yα]. This map has the

property that for each ω ∈ Ωn , Sn(ω)/n = 〈Ln(ω)〉.

Statement and proof of Proposition 8. In Proposition 8 we prove that for z ∈ (y1, ȳ), Iρ(γ) attains its infimum over A at the unique point

ρ∗. The proof is similar for z ∈ (ȳ, yα). In Lemmas 10 and 11 we show that there exists a unique value of β = β(z) < 0 such thatPα
k=1 ykρ∗k = z.

Proposition 8. Let z ∈ (y1, ȳ) be given. Then Iρ attains its infimum over

A =

(
γ ∈ Pα : 〈γ〉 =

αX

k=1

ykγk ∈ [z − a, z]

)

at the unique point ρ∗ = (ρ∗1, ρ∗2, . . . , ρ∗α) defined in part (a) of Theorem 7: for each k = 1,2, . . . , α

ρ∗k =
1Pα

j=1 exp[βyj ] ρj
· exp[βyk]ρk,

where β = β(z) < 0 is the unique value of β satisfying 〈ρ∗〉 =
Pα

k=1 ykρ∗k = z.

Proof. Let

c(β) = log

0
@

αX

j=1

exp[βyj ] ρj

1
A .

For each k ∈ {1, . . . , α}
ρ∗k
ρk

=
1Pα

j=1 exp[βyj ] ρj
· exp[βyk] =

1

exp[c(β)]
· exp[βyk].

Hence for any γ ∈ A

Iρ(γ) =

αX

k=1

γk log
γk

ρk
=

αX

k=1

γk log
γk

ρ∗k
+

αX

k=1

γk log
ρ∗k
ρk

= Iρ∗ (γ) + β

αX

k=1

ykγk − c(β).

Since Iρ∗ (ρ∗) = 0 and
Pα

k=1 ykρ∗k = z, it follows that

Iρ(ρ∗) = Iρ∗(ρ∗) + β
αX

k=1

ykρ∗k − c(β) = βz − c(β).

Now consider any γ ∈ A, γ 6= ρ∗. Since β < 0,
Pα

k=1 ykγk ≤ z, and Iρ∗ (γ) ≥ 0 with equality if and only if γ = ρ∗, we obtain

Iρ(γ) = Iρ∗ (γ) + β

αX

k=1

ykγk − c(β)

> β

αX

k=1

ykγk − c(β) ≥ βz − c(β) = Iρ(ρ∗).

We conclude that for any γ ∈ A, Iρ(γ) ≥ Iρ(ρ∗) with equality if and only if γ = ρ∗. Thus Iρ attains its infimum over A at the unique point

ρ∗. The proof of the proposition is complete.
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We complete the proof of part (a) of Theorem 1 by showing how that there exists a unique

value of β = β(z) such that 〈ρ∗〉 = z, where

ρ∗
k =

1∑α
j=1 exp[βyj] ρj

· exp[βyk] ρk.

Lemma 9. The quantity

〈ρ∗〉 =

α∑

k=1

ykρ
∗
k =

1∑α
j=1 exp[βyj] ρj

·

α∑

k=1

yk exp[βyk] ρk

is a continuous, strictly increasing function of β ∈ R with range (y1, yα). For β < 0 the range is

(y1, ȳ), for β = 0 the range is ȳ, and for β > 0 the range is (ȳ, yα). Hence for each z ∈ (y1, yα)

there exists a unique value of β ∈ R such that 〈ρ∗〉 = z.

Proof. As β → ∞, 〈ρ∗〉 → yα, and as β → −∞, 〈ρ∗〉 → y1. In the next lemma we show that

c(β) = log

(
α∑

j=1

exp[βyj] ρj

)

has the properties that c ′(β) = 〈ρ∗〉 and c ′′(β) > 0 for all β ∈ R. In addition c ′(0) = 〈ρ〉 = ȳ.

It follows that for β < 0 the range of 〈ρ∗〉 = c ′(β) is (y1, ȳ), for β = 0 the range is ȳ, and for

β > 0 the range is (ȳ, yα). This property of the range of 〈ρ∗〉 yields the last assertion.

We now prove that c(β) has the properties stated in the last proof.

Lemma 10. For β ∈ R, c(β) has the following properties.

(a) c ′′(β) > 0 for all β; i.e., c is strictly convex on R.

(b) c ′(0) =
Pα

k=1 ykρk = ȳ.

(c) c ′(β) → y1 as β → −∞ and c ′(β) → yα as β → ∞.

(d) c ′ is a one-to-one function mapping R onto the open interval (y1, yα), which is the interior of the smallest interval containing the set

Λ = {y1, y2, . . . , yα}.

Proof. (a) We define

〈y〉β =
1Pα

j=1 exp[βyj ] ρj
·

αX

k=1

yk exp[βyk] ρk

and

〈(y − 〈y〉β)2〉β =
1Pα

j=1 exp[βyj ] ρj
·

αX

k=1

(yk − 〈y〉β)2 exp[βyk] ρk

and calculate

c ′(β) =
1Pα

j=1 exp[βyj ]ρj
·

αX

k=1

yk exp[βyk]ρk = 〈y〉β

and

c ′′(β) =
1Pα

j=1 exp[βyj ] ρj
·

αX

k=1

y2
k exp[βyk]ρk − 〈y〉2β

= 〈(y − 〈y〉β)2〉β > 0.
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The last line gives part (a). This calculation shows that c ′(β) equals the mean of the probability vector exp[βyk]ρk/
Pα

j=1 exp[βyj ]ρj , and

c ′′(β) equals the variance of this probability vector.

(b) This follows from the formula for c ′(β) in part (a).

(c) Since y1 < yj for all j = 2, . . . , α,

lim
β→−∞

c ′(β) = lim
β→−∞

1Pα
j=1 exp[β(yj − y1)] ρj

·

αX

k=1

yk exp[β(yk − y1]ρk = y1.

One similarly proves that limβ→∞ c ′(β) = yα.

(d) According to part (a), c ′(β) is a strictly increasing function of β. It follows from the limits in part (c) that c ′ is a one-to-one function

mapping R onto the open interval (y1, yα). This completes the proof of the lemma.

Boltzmann introduced large deviation techniques into science when he calculated the equi-

librium distribution of energy levels in a random ideal gas. This equilibrium distribution is

known as the Maxwell–Boltzmann distribution. In fact, in Theorem 1 Restated I solve precisely

the same problem solved by Boltzmann by essentially the same method. In the model introduced

in this talk, we let Xj for 1 ≤ j ≤ n denote the energy levels of a random ideal gas consisting

of non-interacting particles. The possible energy levels are denoted by Λ = {y1, y2, . . . , yα},

which are an increasing sequence of real numbers. We assume that the Xj are i.i.d. with com-

mon distribution ρ =
∑α

k=1 ρkδyk
, where ρk = 1/α for each k. We also assume that the average

energy Sn/n ∼ z, where z is a fixed number in (y1, . . . , yα). In Theorem 1 Restated I prove

that

lim
n→∞

Pn{Ln ∼ ρ∗|Ln ∈ A} = lim
n→∞

Pn{Ln ∼ ρ∗|〈Ln〉 ∼ z} = 1

if ρ∗ is the probability measure defined in part (a) of that theorem. In this context ρ∗ is the

Maxwell–Boltzmann distribution.

In the talk I prove this assertion by using the global large deviation estimate in Corollary

5 to reduce the problem to calculating the probability measure ρ∗ ∈ Pα that minimizes the

relative entropy Iρ(γ) over all probability measures γ ∈ Pα having mean z. Boltzmann proves

this assertion by an equivalent technique, which starts with the local large deviation estimate

Pn{Ln ∼ γ} ≈ exp[−nIρ(γ)] as n → ∞.

He then argues that since 〈Ln〉 = Sn/n ∼ z and since Ln ∼ γ, the equilibrium measure ρ∗ is

that probability measure that has mean z and maximizes the probability in the last display over

all γ ∈ Pα having mean z, or equivalently the probability measure that minimizes the relative

entropy Iρ(γ) over all γ ∈ Pα having mean z. This is precisely the way I prove the assertion

made at the end of the preceding paragraph.
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I end this talk with a number of comments. In comment 3 I relate the limit in part (d) of

Theorem 1 to statistical mechanics.

1. Part (c) of Theorem 1 states that for 1 ≤ k, ` ≤ α

lim
n→∞

Pn{X1 = yk, X2 = y` |Sn/n ∼ z} = ρ∗
kρ

∗
` .

This gives the surprising conclusion that although X1 and X2 are not independent when

conditioned on Sn/n ∼ z, in the limit n → ∞ we recover the independence. One

proves this limit result by rewriting the conditional distribution of X1, X2 conditioned on

the event {Sn/n ∼ z} in terms of the empirical pair vector and appealing to the large

deviation estimate for the empirical pair vector that is analogous to the Boltzmann–Sanov

result.

This proof is based on standard ideas in information theory, which were pointed out to me by Neri Merhav, Department of Electrical

Engineering at the Technion – Israel Institute of Technology in Haifa, Israel. I am grateful to him for sharing this proof with me on

April 26, 2010 after my talk at the Technion. In order to simplify the notation we assume that n is a positive even integer. We start

with the definition of the empirical pair vector. For ω ∈ Ωn and k, ` ∈ {1, . . . , α} define

Ln,2({yk, y`}) = Ln,2(ω,{yk, y`})

=
1

n/2

0
@

n/2X

j=1

δX2j−1(ω),X2j (ω){yk , y`}

1
A

=
1

n/2

0
@

n/2X

j=1

δX2j−1
(ω){yk} × δX2j

(ω){y`}

1
A

This counts the relative frequency with which the pair {yk, y`} appears in the configuration ((ω1, ω2), (ω3, ω4), . . . , (ωn−1, ωn)).

We then define the empirical pair vector

Ln,2 = {Ln,2({yk, y`}), k, ` = 1, . . . , α}.

For each ω, Ln,2 takes values in the set Pα,2 consisting of all probability measures on Λ × Λ. For 1 ≤ j ≤ n/2 the sequence

(X2j−1, X2j ) is i.i.d. with common distribution ρ × ρ. By Sanov’s Theorem the sequence of empirical pair vectors Ln,2 satisfies

the large deviation principle on Pα,2 with rate function

Iρ×ρ(γ) =

αX

k,`=1

γk,` log
γk,`

ρk × ρ`
.

As in Lemma 3, for γ ∈ Pα,2, Iρ×ρ(γ) ≥ 0 and Iρ×ρ(γ) = 0 ⇐⇒ γ = ρ×ρ. In order to prove part (c) of Theorem 1, we rewrite,

in terms of Ln,2 , the conditional distribution of X1, X2 conditioned on the event {Sn/n ∼ z} and follow the pattern of the proof of

part (a) of Theorem 1. The only changes are changes in notation.

2. Part (d) of Theorem 1 states that for any positive integer r ≥ 3 the limiting conditional

distribution of X1, X2, . . . , Xr conditioned on Sn/n ∼ z equals the r-fold product mea-

sure ρ∗r. One proves this as in the case r = 2 by rewriting the conditional distribution of

X1, X2, . . . , Xr conditioned on Sn/n ∼ z in terms of the obvious generalization of the

empirical pair measure and again following the pattern of the proof of part (a) of Theorem

1.
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3. We recall that ρ∗ = (ρ∗
1, ρ

∗
2, . . . , ρ

∗
k), where

ρ∗
k =

1

Normalization
· exp[βyk] ρk.

I would like to give a statistical mechanics interpretation of the result stated in the pre-

ceding item. We start by rewriting the limit in part (d) of Theorem 1 in the following nice

form. For r ≥ 3 and any subset B of Ωr

lim
n→∞

Pn{(X1, X2, . . . , Xr) ∈ B |Sn/n ∼ z}

= ρ∗r{B} =
1

Normalization
·

∫

B

exp[βSr] dPr.

This limit has an interesting interpretation for a simple physical system known as a dis-

crete ideal gas. This system consists of n noninteracting particles, each of which can have

an energy value yk ∈ Λ with probability ρk = 1/α. For ω ∈ Ωn, Sn(ω) denotes the total

energy in ω. For this system the conditional measure Pn{· |Sn/n ∼ z} defines the micro-

canonical ensemble on the energy shell consisting of all ω ∈ Ωn for which Sn(ω)/n ∼ z.

The product measure ρ∗r defines the canonical ensemble. The limit in the last display

implies that the two ensembles are equivalent.

4. The result stated in the preceding item is a special case of the general problem of the

equivalence of the microcanonical and canonical ensembles for statistical models of tur-

bulence and spin systems. A complete answer to this problem has been obtained by Bruce

Turkington, myself, and co-workers in terms of concavity properties of the microcanoni-

cal entropy.


