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Let {µn} be a sequence of probability measures on a Polish spaceE with Borel field B, and
suppose that, asn→∞, µn → δx for somex ∈ E. Loosely speaking, one can say that, asn gets
large, theµn’s “see more and more ofE as being likex.” Thus, under theµn’s, x is the “typical”
element ofE andy ∈ E which are increasing far fromx are seen as increasingly “deviant”. In
particular, ifΓ ∈B andx 6∈ Γ, thenµn(Γ)→ 0. Now suppose that one has reason to believe that
µn tends toδx so fast thatµn(Γ) tends to 0 exponentially fast ifx 6∈ Γ, and consider the problem
of finding the exponential ratelimn→∞n−1 log(µn(Γ)) at whichµn(Γ) goes to 0. In order to get a
feeling for what to expect, assume, for the moment, thatµn(dy) = cn exp(−nI(y))λ(dy), where
n−1log cn → 0 andI:E → [0,∞] has the properties thatI(x) = 0 andI(y) > 0 for y 6= x. It is
then clear, at least whenλ(Γ) ∈ (0,∞), that

lim
n→∞

n−1 log(µn(Γ)) = lim
n→∞

log(‖e−IχΓ‖Ln(λ)) =− inf
y∈Γ

I(y).

Of course, one does not want to restrict oneself toµn’s which are becoming degenerate in such
a regular fashion; in particular, the assumption that a reference measureλ exists is unrealistic in
most applications. On the other hand, one can hope that the general structure displayed by the
preceding example will persist even whenλ fails to exist. Thus, one says that{µn} satisfies the
large deviation principle with rate functionI if, for eachΓ ∈B:

(L.D.) inf
y∈int Γ

I(y)≤ lim inf
n→∞

n−1 log(µn(Γ))

≤ lim sup
n→∞

n−1 log(µn(Γ))≤− inf
y∈Γ

I(y).
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Usually, one requires that the rate functionI:E → [0,∞] have the property that{y: I(y)≤ l} be a
compact subset ofE for eachl ≥ 0, in which case Varadhan showed that, forΦ ∈ C(E) satisfying
reasonable growth conditions:

(V) lim
n→∞

n−1 log
(∫

exp(nΦ(y))µn(dy)
)

=

sup{Φ(y)− I(y): y ∈ E}.
What is referred to as the “theory of large deviations” is, in fact, a collection of techniques which

have been used to prove, for certain classes of examples, that{µn} satisfies the large deviation
principle and to describe the associated rate functionI. In this book, the author concentrates, for
the most part, on the case whenE = RN ; and his techniques rest on the fact that the large devia-
tion principle for{µn} holds whenever the associated Laplace transformsΛn(ξ) =

∫
eξ·yµn(dy)

converge to a sufficiently well-behaved functionΛ, in which case the rate functionI is given by
the Legendre transformI(y) ≡ sup{ξ · y−Λ(ξ): ξ ∈RN}. (Note that, by the inversion formula
for the Legendre transform, this choice ofI guarantees (V) whenΦ(y) = ξ · y for someξ ∈RN .
Thus, the point is that under appropriate conditions one is able to show that (V) for generalΦ’s
follows from (V) for linearΦ’s.) Besides the fact that the author’s treatment of large deviations is
a nice contribution to the literature on the subject, his book has the virtue that it provides a beau-
tifully unified and mathematically appealing account of certain aspects of statistical mechanics.
In particular, he carries out the program suggested by O. E. Lanford, III and substantiates, once
again, that good mathematics often originates from good physics. Furthermore, he does not make
the mistake of assuming that his mathematical audience will be familiar with the physics and has
done an admirable job of explaining the necessary physical background. Finally, it is clear that the
author’s book is the product of many painstaking hours of work; and the reviewer is confident that
its readers will benefit from his efforts.
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