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Our Lives Are Large Deviations

Statistically, the probability of any one of us being hereasmall
that you'd think the mere fact of existing would keep us al&inon-
tented dazzlement of surprise. We are alive against theestiqus
odds of genetics, infinitely outnumbered by all the altezsatho
might, except for luck, be in our places.

Even more astounding is our statistical improbability irygibal
terms. The normal, predictable state of matter throughtituini-
verse is randomness, a relaxed sort of equilibrium, witmatand
their particles scattered around in an amorphous muddleiriieil-
liant contrast, are completely organized structures,regng with
information at every covalent bond. We make our living bycbatg
electrons at the moment of their excitement by solar photeng-
Ing the energy released at the instant of each jump and gttrup
In intricate loops for ourselves. We violate probability, bur na-
ture. To be able to do this systemically, and in such wildetss of
form, from viruses to whales, is extremely unlikely; to haustained
the effort successfully for the several billion years of existence,
without drifting back into randomness, was nearly a matherala
impossibility.

Lewis ThomasThe Lives of a Cell
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1 Introduction

The theory of large deviations studies the exponentialyle€arobabilities in
certain random systems. It has been applied to a wide rangeobfems in
which detailed information on rare events is required. Gnefien interested
not only in the probability of rare events but also in the elaéeristic behavior
of the system as the rare event occurs. For example, in apipis to queueing
theory and communication systems, the rare event coul@sept an overload
or breakdown of the system. In this case, large deviatiolmatetlogy can lead
to an efficient redesign of the system so that the overloadeakaown does
not occur. In applications to statistical mechanics themyef large deviations
gives precise, exponential-order estimates that are gbrfguited for asymp-
totic analysis.

These lectures will present a number of topics in the thebtgirge devia-
tions and several applications to statistical mechanicsnied by the concept
of relative entropy. This concept entered human cultureudin the first large
deviation calculation in science, carried out by Ludwigtolann. Stated in a
modern terminology, his discovery was that the relativeagayt expresses the
asymptotic behavior of certain multinomial probabilitidhis statistical inter-
pretation of entropy has the following crucial physical irgtion [33,51.1].

Entropy is a bridge between a microscopic level, on whichspiaf
systems are defined in terms of the complicated interacaarang
the individual constituent particles, and a macroscomell@n which
the laws describing the behavior of the system are formdlate

Building on the work of Boltzmann, Gibbs asked a fundameaqtedstion.
How can one use probability theory to study equilibrium mies of physical
systems such as an ideal gas, a ferromagnet, or a fluid? Tiogsr{es include
such phenomena as phase transitions; e.g., the liquidayastton or sponta-
neous magnetization in a ferromagnet. Another examplesirsthe study of
freely evolving, inviscid fluids, for which one wants to debe coherent states.
These are steady, stable mean flows comprised of one or mdieegothat
persist amidst the turbulent fluctuations of the vorticigldi Gibbs'’s answer,
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which led to the development of classical equilibrium statal mechanics, is
that one studies equilibrium properties via probabilityasiees on configura-
tion space known today as Gibbs canonical ensembles or Gilabss. For
background in statistical mechanics, | recommend [33, 95, Which cover a
number of topics relevant to these lectures.

One of my main purposes is to show the utility of the theoryanfjé devia-
tions by applying it to a number of statistical mechanicatiels. Our applica-
tions of the theory include the following.

e A derivation of the form of the Gibbs state for a discrete ldges (section
5).

e A probabilistic description of the phase transition in thei€-Weiss model
of a ferromagnet in terms of the breakdown of the law of largmbers
for the spin per site (section 9).

e An analysis of equivalence and nonequivalence of enserfdriagyeneral
class of models, including spin models and models of coliesteunctures
in turbulence (section 10).

e Aderivation of variational formulas that describe the éiguum macrostates
in models of two-dimensional turbulence (section 11). i of these
macrostates, coherent vortices of two-dimensional tertee can be stud-
led.

Like many areas of mathematics, the theory of large dewatitas both a
left hand and a right hand; the left hand provides heuriststgint while the
right hand provides formal proofs. Although the theory iplagable in many
diverse settings, the right-hand technicalities can bmidable. Recognizing
this, | would like to supplement the rigorous, right-handnfoilation of the
theory with a number of basic results presented in a lefddammat useful to
the applied researcher.

Boltzmann'’s calculation of the asymptotic behavior of rmdtnial probabil-
ities in terms of relative entropy was carried out in 1877 &syacomponent of
his paper that gave a probabilistic interpretation of theo&e Law of Thermo-
dynamics [4]. This momentous calculation represents aludeoary moment
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in human culture during which both statistical mechanicktae theory of large
deviations were born. Boltzmann based his work on the hygsilthat atoms
exist. Although this hypothesis is universally accepteataio one might be sur-
prised to learn that it was highly controversial during Bolann’s time [57, pp.
Vii—X].

Boltzmann’s work is put in historical context by W. R. Eveltde his book
The First Modernswhich traces the development of the modern consciousness
in nineteenth and twentieth century thought [46]. Chaptéocises on the
mathematicians of Germany in the 1870's — namely, CantodeRimd, and
Frege — who “would become the first creative thinkers in arig tie look at the
world in a fully twentieth-century manner” [p. 31]. Boltzmais then presented
as the man whose investigations in stochastics and statisthde possible the
work of the two other great founders of twentieth-centuatetical physics,
Planck and Einstein. As Everdell writes, “he was at the gesit¢he change”
[p. 48].

Although the topic of these lectures is the theory of largaatens and not
the history of science, it is important to appreciate theaalchature of Boltz-
mann’s ideas. His belief in the existence of atoms and hiotipeobabilistic
laws at the microscopic level of atoms and molecules to damacroscopic
properties of matter profoundly challenged the convemtiavisdom of 1¢’
century physics: physical laws express absolute truthsdoast on probabilis-
tic assumptions, but on Newtons laws of motion and precisgasorements of
observable phenomena.

For his subsersive attack on the temple of conventionalamsdBoltzmann
would eventually pay the ultimate price [8, p. 34].

Boltzmann had never worried about his health, but had seedit to
his scientific activity. When however even that vacation unri» did
not bring any relief from his iliness, in a moment of deep @spgron
he committed suicide by hanging on 5 September 1906. Thedagxt
he should have gone to Vienna to start his lectures.

The irony is that in 1905, the year before Boltzmanns sujdidastein ap-
plied Boltzmanns insights with great success [57, ch. Tlare paper he used
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Boltzmanns idea to partition the energy of a gas into discugtits in order
to explain a phenomenon known as the photoelectric effeluis Work would
mark the beginning of quantum mechanics and would eventuatl him the
Nobel Prize. In two other papers also written in 1905 Eimstgve a statis-
tical mechanical explanation based directly on Boltzmathesry to explain
the random motion of a particle suspended in a fluid, a phenom&nown
as Brownian motion. This work strongly corroborated theseetice of atoms,
putting statistical mechanics on a firm theoretical basisnfthese papers and
two additional 1905 papers on special relativity, the selcofiwhich contains
the famous formuld& = mc?, modern physics was born.

Boltzmann'’s insights are now part of the canon, but he paidHs with
his life. Without his insights, modern physics might nevavé been born, and
unborn, it would not have become our civilization’s main ceptual lens for
interpreting the universe and our place in it.

Here is an overview of the contents of each section of thesterkes.

e Section 2.A basic probabilistic model is introduced.

e Section 3.Boltzmann’s discovery of the asymptotic behavior of mutin
mial probabilities in terms of relative entropy is descdbe

e Section 4.The probabilities of a loaded die are calculated as an iiHtisin
of a general principle expressed in the following questidtvhat is the
most likely way for an unlikely event to happen?

e Section 5.The probabilities of the energy states of a discrete idesbga
calculated, generalizing the calculation in section 3.

The solutions of the problems in sections 4 and 5 motivatddima of the
Gibbs canonical ensemble. This is a probability distritmutiised to determine
the equilibrium properties of statistical mechanical syss; it is discussed in
section 9 for a specific model and in section 10 for a geneaalsabf models.

e Section 6.We introduce the general concepts of a large deviation jpliec
and a Laplace principle, together with related results.
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e Section 7.We prove Cramér’s Theorem, which is the large deviation-pri
ciple for the sample means of i.i.d. random variables.

e Section 8.The generalization of Cramér’s Theorem known as the @&rtn
Ellis Theorem is presented.

In the remainder of the sections the theory of large deviatis applied to a
number of questions in statistical mechanics.

e Section 9. The theory of large deviations is used to study equilibrium
properties of a basic model of ferromagnetism known as theeGAfeiss
model, which is a mean-field approximation to the much moregaated
Ising model.

e Section 10. Our work in the preceding section leads to the formulation

of a general procedure for applying the theory of large dexa to the

analysis of an extensive class of statistical mechanicdeispan analysis
that will allow us to address the fundamental problem of egjence and
and nonequivalence of ensembles.

e Section 11. The general procedure developed in the preceding section

Is used along with Sanov’s Theorem to derive variationainidas that
describe the equilibrium macrostates in two models of catestates in
two-dimensional turbulence; namely, the Miller-Robeddhy and a mod-
ification of that theory proposed by Turkington.

Sanov’s Theorem, which is used in section 11 to analyze twdeaisoof
coherent states in two-dimensional turbulence, genesBoltzmann’s 1877
calculation. Because this theorem plays a vital role in #@vdtion, this final
application of the theory of large deviations brings ouruedack home to
Boltzmann, through whose research in the foundations @gtal mechanics
the theory began to blossom.

Acknowledgement. The research of Richard S. Ellis is supported by a grant

from the National Science Foundation (NSF-DMS-0604071).
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2 A Basic Probabilistic Model

In later sections we will investigate a number of questiornse theory of large
deviations in the context of a basic probabilistic modeljcRhve now intro-
duce. Leta > 2 be an integery; < y» < ... < y, a set ofa real numbers,
andpy, po, ..., po & set ofa positive real numbers summing to 1. We think of
A = A{y1,y2,...,y.} as the set of possible outcomes of a random experiment
in which each individual outcomg, has the probability;, of occurring. The
vectorp = (p1, p2, - - -, pa) iS @an element of the set of probability vectors

Po = {7:(71,72,...,%) ER“:%>O,Z%:1}.

k=1

Any vectory € P, also defines a probability measure on the set of subséis of
via the formula

v =dy) = by, (dy),
k=1

where fory € A, 6, {y} = 1if y = y; and equals 0 otherwise. Thus fBrC A,

’Y{B} - ZykGB V-
For each positive integet, the configuration space farindependent repe-
titions of the experiment i8,, = A", a typical element of which is denoted by

w= (w1, ws,...,w,). Foreachw € ), we define
P{w} =[] plws}
j=1

and extend this to a probability measure on the set of sub§éls by defining

P{B} =) P{w}for B CQ,
weB
P, is called the product measure with one dimensional margmaWith re-
spect toP, the coordinate functioni;(w) = w;,j = 1,2,...,n, are indepen-
dent, identically distributed (i.i.d.) random variablestwcommon distribution
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p; thatis, for any subsetB;, B, ..., B, of A

P{wEQ : Xj(w) € Bjforj = 12...,n}

_HP{wEQ ' X;(w) € B} = Hp{B}
j=1
Example 2.1. Random phenomena that can be studied via this basic model
include standard examples such as coin tossing and diagossd also include
a discrete ideal gas.

(a) Coin tossingln this case\ = {1,2} andp; = p, = 1/2.

(b) Die tossing.n this case\ = {1,2,...,6} and eaclp; = 1/6.

(c) Discrete ideal gasConsider a discrete ideal gas consisting @dentical,
noninteracting particles, each havimgqually likely energy levelg,, v, . . . , ya;
in this case eachy, equalsl/«a. The coordinate functionX; represent the ran-
dom energy levels of the molecules of the gas. The statistidapendence
of these random variables reflects the fact that the molsaiflthe gas do not
interact. W

We will return to the discrete ideal gas in section 5 afteradticing some
basic concepts in theory of large deviations.
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3 Boltzmann’s Discovery and Relative Entropy

In its original form Boltzmann’s discovery concerns the ragyotic behavior
of certain multinomial coefficients. For the purpose of amions in these
lectures, it is advantageous to formulate it in terms of dgahilistic quantity
known as the empirical vector. We use the notation of theqalieg section.
Thus letae > 2 be an integery; < y» < ... < y, a set ofa real num-
bers,p1, po, ..., po @ Set ofa positive real numbers summing to A,the set
{v1,92,...,9a}, and P, the product measure dn, = A" with one dimen-
sional marginaly = >/ _; prdy,. Forw = (wi,ws,...,w,) € Q,, we let
{X;,7 = 1,...,n} be the coordinate functions defined By(w) = w;. The
X, form a sequence of i.i.d. random variables with common ithistion p.

We now turn to the object under study in the present section.wkFe €2,
andy € A define

Ln(y) = Ly(w,y) = %Z 0x;(w){y}-

ThusL, (w,y) counts the relative frequency with whigrappears in the config-
urationw; in symbols,L,,(w,y) = n~' - #{j € {1,...,n} : w; = y}. We then
define the empirical vector

L, = Ly(w)=(Lnplw,y1),--, Ln(w,ya))

1
= E E (5Xj(w){yl}7 ce 75Xj(w){yo‘}) :
=1

L, equals the sample mean of the i.i.d. random vegi¥s.){y1}, - - -, 0x, @) {¥a))-
It takes values in the set of probability vectors

k=1

Po = {7:(71,72,...,%) ER“:%>O,Z%:1}.

The limiting behavior of.,, is straightforward to determine. L&t || denote
the Euclidean norm oR“. For anyy € P, ande > 0, we define the open ball

B(v,e) ={v e Py : ||y —v|| < e}
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Since theX; have the common distributign for eachy;, € A
E"™{L,(yx)} = E™ { 25)( {yk}} an{Xj =Yk} = P
=

where EP» denotes expectation with respect®p. Hence by the weak law of
large numbers for the sample means of i.i.d. random vasafde anys > 0
lim P,{L, € B(p,e)} = 1. (3.1)

n—oo

It follows that for any~y € P, not equal top and for anys > 0 satisfying
0<e<|p—l
lim P,{L, € B(v,¢)} =0. (3.2)

As we will see, Boltzmann’s discovery implies that thesdoatalities converge
to 0 exponentially fast im. The exponential decay rate is given in terms of the
relative entropy, which we now define.

Definition 3.1 (Relative Entropy). Letp = (p1, . .., p.) denote the probability
vector inP, in terms of which the basic probabilistic model is definede Th
relative entropy ofy € P, with respect t is defined by

(0%

Yk
o) = rlog =

—1 Pk

Several properties of the relative entropy are given in e lemma.

Lemma 3.2. For v € P,, I,(y) measures the discrepancy betweesnd p in
the sense that,(p) > 0 and,(p) = 0 if and only ify = p. Thus/,(v) attains
its infimum of0 overP, at the unique measure= p. In addition,/, is strictly
convex orP,,.

Proof. Forxz > 0 the graph of the strictly convex functionlog x has the
tangent liney = r — 1 atx = 1. Hencezlogx > = — 1 with equality if and
only if z = 1. It follows that for anyy € P,

Elogﬂ_ﬂ—l (3.3)
Pk Pk Pk
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with equality if and only ifv, = p,. Multiplying this inequality byp, and
summing ovek yields

L,(7) =Y log 2 > (3 — i) = 0.
k=1 Pk

I,(v) = 0 if and only if equality holds in (3.3) for eack i.e., if and only if
~v = p. This yields the first assertion in the proposition. Thisgfiis typical of
proofs of analogous results involving relative entropg[gProp. 4.2] in that we
use a global convexity inequality — in this casdog = > « — 1 with equality
if and only if z = 1 — rather than calculus to determine whdjeattains its
infimum overpP,,. Since

- Yk Tk
I(v) = > pr—log—,
v— Pk Pk
the strict convexity of/, is a consequence of the strict convexityxdbg = for

x>0. 1

We are now ready to give the first formulation of Boltzmanniscdvery,
which we state using a heuristic notation and which we lahekcognition of
its formal status, as a “theorem.” However, the formal clatans used to mo-
tivate the “theorem” can easily be turned into a rigoroupod an asymptotic
theorem. That theorem is stated in Theorem 3.4. From Bolt‘esanomen-
tous discovery both the theory of large deviations and theo&an formulation
of equilibrium statistical mechanics grew.

“Theorem” 3.3 (Boltzmann’s Discovery—Formulation 1). For any~ € P,
and all sufficiently smali > 0

P.{L, € B(v,¢)} =~ exp[—nl,(y)] asn — oo.
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Heuristic Proof. By elementary combinatorics

1
PA{L, € B(v,e)} = Pn{w €y Ly(w) ~ E(n’yl,n’yg, . ,n’ya)}

PA#{wj's =} ~ny, ..., #{w'S = ya} ~ 17}
n!

Q

Q

e 2L e
(TL%)'(TL’VQ)' . (n,}/a)' P1 P2 Pa -

Stirling’s formula in the weak forntog(n!) = nlogn — n + O(log n) yields

1
—log P,{L, € B(v,¢)}
n

1 n! -
~ —log i ' 7|+ wlog i
n (ny)!(ny2)! - - - (nya)! —

(0%

logn
Vi 1og i + O( i

) + > i log pr
k k=1

- ] ]
=—Zmogﬁ+0< Oi”) - —Ip(7)+0< Oi”)- u

1

“Theorem” 3.3 has the following interesting consequenatylbe any vec-
tor in P, which differs fromp. Sincel,(v) > 0 [Lemma 3.2], it follows that
for all sufficiently smalk > 0

P.{L, € B(v,¢)} = exp[—nl,(y)] — 0 asn — oo,

a limit which, if rigorous, would imply (3.2).

Let A be a Borel subset d?,; the class of Borel subsets includes all closed
sets and all open sets.dfis not contained in the closure df, then by the weak
law of large numbers

lim P,{L, € A} =0,

n—oo

and by analogy with the heuristic asymptotic result givefilineorem” 3.3 we
expect that these probabilities converge to 0 exponentasdt withn. Thisisin
fact the case. In order to express the exponential decagfrateeh probabilities
in terms of the relative entropy, we introduce the notafig) = inf,c4 1,().
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The range of., (w) for w € ), is the set of probability vectors having the form
k/n, wherek € R® has nonnegative integer coordinates summing;tbence
the cardinality of the range does not exce&d Since

PAL, € A} = Z Po{Ly ~~} =~ ZeXp[_n[p(V)]

~veA ~veA

and
exp[—nl,(A)] <Y " exp[—nl,(7)] < n”exp[—nl,(A)],
~yeA
one expects that at least to exponential order

P.{L, € A} = exp|—nl,(A)] asn — oo. (3.4)

As formulated in Corollary 3.5, this asymptotic result ide®d valid. It is a
consequence of the following rigorous reformulation oft2oiann’s discovery,
known as Sanov’s Theorem, which expresses the large daviptinciple for
the empirical vectord.,,. That concept is defined in general in Definition 6.1,
and a general form of Sanov’'s Theorem is stated in Theorem 6.7

Theorem 3.4 (Boltzmann’s Discovery—Formulation 2). The sequence of em-
pirical vectorsL,, satisfies the large deviation principle @), with rate function
I, in the following sense.

(a) Large deviation upper bound. For any closed subset of P,

1
limsup —log P,{L, € F'} < —1,(F).

n—oo N

(b) Large deviation lower bound. For any open subsé&t of P,

1
liminf —log P,{L,, € G} > —1,(G).

n—oo N

Comments on the Proof.For~ € P, andes > 0 B(~,¢) denotes the open ball
with centery and radius and B(, ) denotes the corresponding closed ball.
SinceP, is a compact subset &“, any closed subsét of P, is automatically
compact. By a standard covering argument it is not hard twshat the large
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deviation upper bound holds for any closed Bgtrovided that one obtains the
large deviation upper bound for any closed @afh, <):

1 — —
limsup —log P,{L,, € B(v,¢)} < —I1,( B(v,¢)).
n

n—oo

Likewise, the large deviation lower bound holds for any opet(= provided
one obtains the large deviation lower bound for any open®gil ¢ ):

1
liminf —log P,{L, € B(v,¢)} > —1,(B(v,¢)).

n—oo N

The bounds in the last two displays can be proved via cominicatand Stir-
ling’s formula as in the heuristic proof of “Theorem” 3.3;e@nan easily adapt
the calculations given in [33).4]. The details are omittedll

Given A a Borel subset oP,, we denote byA° the interior of A relative to
P, and byA the closure ofd. For a class of Borel subsetiswe can now derive
a rigorous version of the asymptotic formula (3.4). Thissslaonsists of sets
A such thatd° equalsA. Any open ballB(~, ¢) or closed ballB(v, ¢) satisfies
this condition.

Corollary 3.5. Let A be any Borel subset @, such thatd° = A. Then

lim = log Pu{Ln € A} = —1,(A).

n—oo 1

Proof. We apply the large deviation upper bound4and the large deviation
lower bound ta4°. Sinced > A D A°, it follows that

_ 1 _
—1,(A) > limsup—logP,{L, € A}
n

n—oo

1
> limsup —log P,{L,, € A}
n

n—oo

1
liminf —log P,{L, € A}

>
n—oo N
1
> liminf —log P,{L, € A°}
n—oo N
> _IP(AO)~
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The continuity of7, on P, implies thatl,(A°) = 1,(A°). Since by hypothesis
A° = A, we conclude that the extreme terms in this display are eduiaé
desired limit follows. &

The next corollary of Theorem 3.4 allows one to conclude #hiatrge class
of probabilities involvingL,, converge to 0. The general version of this corollary
given in Proposition 6.4 is extremely useful in applicasoror example, we
will use it in section 9 to analyze the Curie-Weiss model ofdemagnetism and
in section 10 to motivate the definitions of the sets of efuilim macrostates
for the canonical ensemble and the microcanonical ensefhibtas. 10.2(c),
10.5(c)].

Corollary 3.6. Let A be any Borel subset @, such that4d does not containp.

ThenI,(A) > 0, and for some&' < oo

P{L, € A} < C exp[-nl,(A)/2] — 0 asn — cc.
Proof. Sincel,(y) > I,(p) = 0 for any~y # p, the positivity of/,(A ) follows
from the continuity of/, on P,. The second assertion is an immediate con-
sequence of the large deviation upper bound applied é&md the positivity of
I(A). &

Take any= > 0. Applying Corollary 3.6 to the complement of the open ball
B(p,e) yieldsP,{L, ¢ B(p,c)} — 0 or equivalently

lim P.{L, € B(p,e)} = 1.

Although this rederives the weak law of large numbersfigras already ex-
pressed in (3.1), this second derivation relates the drdemnit for L, to the
pointp € P, at which the rate functior, attains its infimum. In this context
we call p the equilibrium value of,, with respect to the measuré%. This
limit is the simplest example, and the first of several monmglkcated but re-
lated formulations to be encountered in this paper, of whabmmonly called a
maximum entropy principle. Following the usual conventiothe physical lit-
erature, we will continue to use this terminology in refegrto such principles
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even though we are minimizing the relative entropy — eqeinty, maximiz-
ing —1,(y) — rather than maximizing the physical entropy. When= 1/«
for eachk, the two quantities differ by a minus sign and an additivestant.

Maximum Entropy Principle 3.7. v, € P, is an equilibrium value of.,, with
respect toP, if and only if+, minimizes/, () overP,; this occurs if and only

if 79 = p.

In the next section we will present a limit theorem by whose proof is
based on the precise, exponential-order estimates givéinebharge deviation
principle in Theorem 3.4.
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4 The Most Likely Way for an Unlikely Event To Happen

You participate in a crooked gambling game being played witbaded die.
How can you determine the actual probabilities of each fa@e...,6? This
guestion uncovers a basic issue in many areas of applicatfbat is the most
likely way for an unlikely event to happen?

We use the notation of the preceding section. Thua let 2 be an integer,
1 < Yo < ... < y, a set ofa real numberspy, po, ..., p, @ set ofa posi-
tive real numbers summing to A the set{y,y2, ..., y}, andP, the product
measure orf2, = A" with one dimensional marginaljs = >_;_, p0,,. For
w = (w1, ws,...,w,) €y, welet{X,,j =1,...,n} be the coordinate func-
tions defined byX ;(w) = w;. TheX, form a sequence of i.i.d. random variables
with common distribution. Forw € €2, andy € A we also define

Ln(y) = Lu(w,y) = %Z 0x;w){y}

and the empirical vector

n

LTL = Ln(W) = (Ln(w7 y1)7 tU Ln(w7 ya)) = %Z (5Xj(w){y1}7 o 75Xj(w){yoz}) :

J=1

L,, takes values in the set of probability vectors

Pa = {’Y: (71,72,...,’Ya) c R“: Yk > O,Z’yk = 1}
k=1

In this section we prove a conditioned limit theorem foy that gives an
answer to the apparently ambiguous question concerningaked gambling
game posed in the first paragraph. This limit theorem hasddedbonus of
giving insight into a basic construction in statistical rhagics. As we will
see in section 5, it motivates the form of the Gibbs stateHerdiscrete ideal
gas and, by extension, for any statistical mechanical systearacterized by
conservation of energy. These unexpected theorems areghandlication of
the power of Boltzmann'’s discovery, which gives preciseoggntial-order es-
timates for probabilities of the form®,{ L, € A}.
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The conditioned limit theorem that we will consider has tbkofving form.
Suppose that one is given a particular dednd wants to determine a sBt
belonging to a certain class (e.g., open balls) such thatdhditioned limit

1

Plnc Al

lim P{L, € B|L, € A} = lim P,{L, € BN A}-

n—oo

Is valid. Since to exponential order

1
P{L, € A}

one should obtain the conditioned limit# satisfies/,(B N A) = I,(A). If
one can determine the point ihwhere the infimum of , is attained, then one
picks B to contain this point. In the examples involving the loadésl ahd
the discrete ideal gas, such a minimizing point can be deteah It will lead
to a second maximum entropy principle tby with respect to the conditional
probabilitiesP,{-| L, € A}.

We return to the question concerning the loaded die, usiadp#isic proba-
bilistic model introduced in Example 2.1(b). Upon enterihg crooked gam-
bling game, one assigns the equal probabilities- 1/6 to each of the 6 faces
because one has no additional information. One then obséneegame for
n tosses; probabilistically this corresponds to knowing afigurationw €
{1,...,6}". Based on the value of

Sulw) = 3 X;(w) = 2wy

one desires to recalculate the probabilities of the 6 faesg a mathematician
rather than a professional gambler, | will carry this outha timitn — oc.

If the die were fair, then the sample meé&pw)/n should equal approxi-
mately the theoretical mean

P{L,€ BNA}- ~ exp[—n(l,(BNA)—1,(A))],

6
Y= Z kpp = 3.5.
k=1

Hence let us assume théit/n € [z — a, 2], wherea is a small positive number
andl < z —a < z < g; a similar result would hold if we assumed that
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Sn/n € |z, z+al, wherey < z < z4+a < 6. We can now formulate the question
concerning the loaded die as the following conditionedttimetermine positive
numbers{p;, k= 1,...,6} summing to 1 such that

pp = lim P{X1=Fk|S,/n € [z —a,z]}.

This will be seen to follow from the following more easily avered ques-
tion: conditioned on the evertt,/n € [z — a, z|, determine the most likely
configuratiorp* = (p7, ..., pg) of L, in the limitn — oo. In other words, we
wantp* € P, such that for any > 0

lim P.{L, € B(p*,¢)|S, € [z —a,z|} =1

The form ofp* is given in the following theorem; it depends only ennot on
a.

We formulate the theorem for a general state spaee {y;,...,y,} and a
given positive vectop = (py, ..., pa) € P,. As above, define

(0%

Sn:ZXj and?jzzywk

j=1 k=1

and fora > 0 fix a closed intervalz — a, 2] C [y1, 7). In the definition ofp(?)
we write—/ instead of3 in order to be consistent with conventions in statistical
mechanics.

Theorem 4.1.(a) There existe?) € P, such that for every > 0

lim P,{L, € B(p"W,e)|S,/n €[z —a,z]} =1. (4.1)

The quantityp® = (p\”, ..., o)) has the form

(8) 1
Py = <=a - exp|—Oyx] pk,
i S P
wheref = 3(z) € Ris the unique value ¢f satisfyingd ;_, ykp;@ = z.

(b) For any continuous functiofi mappingP, into R

lim E™{f(Ly)|Su/n € [z —a,2]} = f(p'7).

n—oo
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(c)Foreachj € {1,...,a}
lim P{Xi=y;|Su/n€lz—az]}=p.

We first show thap'? is well defined. For- € R simple calculus gives the

following properties of

c(r) = log (Z exp(ryy] Pk) :

k=1
c¢"(r) > 0,c¢'(r) — y1 asr — —oo, ¢’(0) = g, andc'(r) — y, asr — oo.
Hence there exists a unique= ((z) satisfying

1 «
'(— = . Xp|— 4.2
c'(=5) ST ;yke p[—Byr] pr (4.2)

=Y ) ==,
k=1

as claimed. Sinceg, < z < y, 8 = [(z) is positive.
In order to prove the limit

lim P{L, € B(p"W,e)|S,/ne[z—a,z}=1.

n—oo

in part (a), we express the conditional probability in (4rilderms of the empir-
ical vectorL,,. Define the closed convex set

I(z) = {767% > uen € [za,z]},

k=1

which containg?). Since for eachw € €,

n

8u(w) = Sk Ll ),

n
j=1

it follows that{w € Q,, : S, (w)/n € [z —a,z]} ={w e Q, : L,(w) € ['(2)}.
Hence using the formal notation [see (3.4)]

P.{L, € A} = exp[—nl,(A)] asn — oo,



Richard S. Ellis: Lectures on the Theory of Large Deviations 23

we have for largex

P{L, € B(p"” 5)|S/n€[z—az]}
= P{L, € B(p\"!,&)| L, € T(2)}

= P,{L, € B(p\?, )ﬂF(Z)}'Pn{LnleF(z)}

~ exp[—n(L,(B(p"”,e) NT(2)) — I,(I'(2)))].

The last expression, and thus the probability in the firg bhthe display, are
of order 1 provided

~/~

P

1B ,£) NT(2)) = I,(T(2)). (4.3)

The next proposition shows that attains its infimum over'(z) at the unique
point p(¥, This gives (4.3) and motivates the fact that for lange

P AL, c B(pW e)|S,/n€lz—a,z}~1.
It is not difficult to convert these formal calculations irg@roof of the limit

lim P,{L, € B(p"W,e)|S,/n €[z —a,z]} =1

n—oo

The details are omitted.

Proposition 4.2. I, attains its infimum ovel'(z) = {y € P, : > i, Uk €
[z — a, 2]} at the unique poinp® = (p\7, ... o) defined in part(a) of
Theoremd.1: foreachk =1,...,«

(9) 1

Py = P - exp[—Byr] pr,

wheref = 3(z) € Ris the unique value ¢f satisfyingd ;_, ykp;@ =z

Proof. We recall that? = 3(z) > 0 and that for eack € {1,...,a}

péﬁ) = Ta ! -exp|—Byr] = ; - exp[—LYi],
Pe - 2oj—1 exp[=Py;] p; explc(—p)]
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where forr € R, ¢(r) = log(>_5_, exp[ryk] pr). Hence for anyy € T'(z)

IL(y) = Z%log— Z%log +Z%log%

Lo(y) -8 Z Yk — ¢(

Sincel o (p) = 0 and by (4.2)%;_, ypl” = z, it follows that

p(P(ﬁ)) pw) — 0 Z ykpk —c(=0) = =Pz — c(-P).

Now consider anyy € I'(z), v # p(?). Sincel i (7) > 0 with equality if and
only if v = p¥ [Lemma 3.2], we obtain

L(y) = Lon() =8 v —c(=0)

=8> ym — e(=0) = =Bz — o(=5) = L,(p)").
k=1

We conclude that for any € I'(z2), I,(y) > 1,(p"?) with equality if and only
if v = pl?). Thusl, attains its infimum oveF'(z) at the unique poing”). W

Combining this proposition with part (a) of Theorem 4.1 githe second
maximum entropy principle in these lectures.

Maximum Entropy Principle 4.3. Conditioned on the evelst, /n € [z —a, 2],
the asymptotically most likely configuration bf is p?, which is the unique
v € P, that minimized ,(y) subject to the constraint that € I'(z). In sta-
tistical mechanical terminology;” is the equilibrium macrostate df,, with
respect to the conditional probabilitig3,{- | S,,/n € [z — a, z]}.

Part (b) of Theorem 4.1 states that for any continuous fonctimapping
P, intoR
lim EP{f(Ln)|Su/n € [z = a,2]} = f(17).

n—oo
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This is an immediate consequence of part (a) and the cotttialiif. Part (b)
of Theorem 4.1 is another expression of the Maximum Entropyciple 4.3.
Lety, be any pointinA. As in [20, p. 87], we prove part (c) of Theorem 4.1
by relating the conditional probabilit#,{ X; = yi. | S,./n € [z — a, 2|} to the
conditional expectatio®’{ f(L,) | S,/n € [z — a, 2]} considered in part (b).
Givenyp any function mapping into R, we define a continuous function @,

by
F) = elue)

Sincef(L,) = >y ¢(yr) Lu(yr) = 7 >7—; ©(X;), by symmetry and part (b)
lim Ef{p(X))|S,/n € [z —a, 2]}

1 n
= lim — Y E"{p(X;)|S, - a,
ig@”z {e(X5) [ Snfn € [z = a,2]}

:ALIEOEPH{f(LnHSn/nE [z — a, 2]}

= F(0) =" oty ).
k=1

Settingy = 1,, yields the limitin part (c) of Theorem 4.1:

lim P, {X; = y;| Su/n € [z —a,z]} = p\”.
With some additional work one can generalize part (a) of Téeod.1 by
proving that with respect to the conditional probabilities{- | S,/n € [z —

a,a)}, L, satisfies the large deviation principle & with rate function

_ ) L(y) = 1,(T(2)) if vy eT(z)
1) = { o0 if v € P, \T(2).

This large deviation principle is closely related to thegadeviation principle
for statistical mechanical models with respect to the nmarmnical ensemble,
which will be considered in Theorem 10.5.

In the next section we will show how calculations analogausibse used to
motivate Theorem 4.1 can be used to derive the form of the<3hbdtte for the
discrete ideal gas.
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5 Gibbs States for Models in Statistical Mechanics

The discussion in the preceding section concerning a lodaedpplies with
minor changes to the discrete ideal gas, introduced in padf(Examples 2.1.
We continue to use the notation of the preceding sectionsis Téta > 2 be
an integery; < y» < ... < y, a set ofa real numberspy, p, ..., p, a set of
a positive real numbers summing to A,the set{y1, v, ...,v.}, and P, the
product measure o}, = A" with one dimensional marginats= > _;_; pi0y, -
Forw = (wi,ws,...,w,) € Q,, we let{X,,j = 1,...,n} be the coordinate
functions defined byX,(w) = w;. The X; form a sequence of i.i.d. random
variables with common distribution

The discrete ideal gas consistsrofdentical, noninteracting particles, each
havinga possible energy levels, v, . . ., y,. Forw € €, we write H,,(w) in
place ofS, (w) = > 7, wj; Ha(w) denotes the total energy in the configuration
w. In the absence of further information, one assigns the lgoubabilities
pr = 1/a to each of they,’s. Definingy = > i_; yxpr, SUppPOSe that the energy
per particle,H,, /n, is conditioned to lie in an intervat — «a, 2], wherea is a
small positive number angh < z —a < z < y. According to part (c) of
Theorem 4.1, foreache {1,...,a}

lim P, {X1 =y | H,/n € [z — a,z|}

S
> i1 exp[—0y;] p;
where = 3(z) € Ris the unique value of satisfying) _;,_, ykp;@ = 2.

Lett > 2 be a positive integer. The limitin the last display leads t@tural
question. Conditioned oH,,/n € [z — a, z|, asn — oo what is the limiting
conditional distribution of the random variablés, ..., X;, which represent
the energy levels of the firgtparticles? AlthoughX,, ..., X; are independent
with respect to the original product measuig this independence is lost when
P, is replaced by the conditional distributidh{- | H,/n € [z — a, z]}. Hence
the answer given in the next theorem is somewhat surprisamidx respect to
P.{-| H,/n € [z —a, 2|}, the limiting distribution is the product measure©n
with one-dimensional marginaj$”. In other words, in the limit. — oo the

: eXp[_ﬁyk] Pk
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independence ok, ..., X; is regained. The theorem leads to, and in a sense
motivates, the concept of the Gibbs state of the discretd gkes. We will end

the section by discussing Gibbs states for this and othéststal mechanical
models. As in Theorem 4.1, a theorem analogous to the fatigwiould hold

if [z —a,z] C[y1,y) werereplaced bi, = + a] C (7, ya]-

Theorem 5.1.Givent € N, y;,,...,yx, € A, and[z —a, 2] C [y1,7),

lim Po{X1=uyp,....,X; =y | Ho/n € [z —a,z]} Hpk. (5.1)

Comments on the Proof.We consider = 2; arbitraryt € N can be handled
similarly. Forw € Q, andi,j € {1,...,«} define

Lno({yi,yi}) = Lnp(w, {yi,4})
= (Z 5X Xjp1(w yl7y7} +5X 1(w){yi7yj}) .

This counts the relative frequency with which the pgjr, y;} appears in the

configurationwy, . . . ,w,,w ). We then define the empirical pair vector
Ln,2 — {Ln,Q({yi7 y]})7 Z7j = 17 s ,Oé}.
This takes values in the s&, » consisting of allr = {r,;,i,7 = 1,...,a}

satlsfylngn, > 0and) i,
{pi P; ),Z,j = 1,...,a} has the property that for evety> 0

7,; = 1. Suppose one can show thet =

lim P,{L,2 € B(t",¢)| Hy/n € [z — a, 2]} = 1. (5.2)

n—oo

Then as in Theorem 4.1, it will follow that

lim P {X) =y, Xo = y; | Hu/n € [z — a, 2]} = pi” p}.

n—oo

Like the analogous limit in part (a) of Theorem 4.1, (5.2) denproved by
showing that the sequen{é,, ., n € N} satisfies the large deviation principle
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on P, 2 [33, §1.5] and that the rate function attains its infimum over anrapp
priately defined, closed convex subsefRaf; at the unique point* [cf. (4.3)].
The details are omittedll

The quantity appearing on the right side of (5.1) defines aadvdity mea-
surep; 3 on (2, that equals the product measure with one-dimensional malsi
p\?. In the notation of Theorem 5.1,

t
Poo{X1 =Yg, . Xe = yp} = Hpg).
J=1

P, 3 can be written in terms of the total enerfy(w) = 2321 wj: forw e

P = 1o ™Mo} = 5 - expl—BH: )] P},

whereP{w} = [];_, p{w;} = 1/,

Z(B) = Y exp[-BH,(w)] P{w} = (Z exp|—[yi] pk) :

well

andi = (z) € Ris the unique value of satisfying>_;_; W;P = 2.

Theorem 5.1 can be motivated by a non-large deviation catiounl that we
present using a formal notation [64]. Singe= > 7_, ykpr = E{X1}, by
the weak law of large numbe3,{H,,/n ~ y} = 1 for largen. Since the
conditioning is on a set of probability close to 1, one expduat

lim P {X1=1yk, -, Xe =y, | H/n ~ 3}

n—oo

- gl—gplopn{Xl = Yk Xt = ykt}

t
:Hpkj :Pt{Xl :yklv“‘7Xt:ykt}’

J=1

Now takez # y and for any3 > 0 let P, s denote the product measure on
Q,, with one-dimensional marginats”) . A short calculation shows that for any



Richard S. Ellis: Lectures on the Theory of Large Deviations 29

6>0

Pn{Xl = yk17~-~7Xt :ykt|Hn/n~ Z}
= n,ﬁ{Xl:yk17"'7Xt:y/€t|Hn/nN’Z}‘

If one picksg = 3(z) suchthat = >} _, ykp,iﬁ(z)) = EPns={ X}, then by the
weak law of large numberB, ;.\{H,/n ~ z} ~ 1, and since the conditioning
Is on a set of probability close to 1, again one expects that

hmP{X1 Ykys -+ X¢ =Yg, | Hp/n ~ 2}
= lim P, g {X1 = Yry» - Xi = Y, | Ho/n ~ 2}

n—oo

= lim P, 5. {X1 Ykys - Xt = Yk,

n—oo

:leif(z Ptﬁ {Xl ykl"“?‘Xt:y/{t}*
=1

This is consistent with Theorem 5.1.
For any subseB of ), (5.1) implies that
lim P{(Xy,...,X;) € B|Hy,/n € [z —a,z]} = P,s{B}. (5.3)

Since) | o, [Hi(w)/t] Pig{w} =D i ykp,iﬁ), the constraint o = ((z) can
be expressed as a constraintion:

choose3 = 3(z) so that » _ [H,(w)/t] P s{w} = =. (5.4)
well

The conditional probability on the left side of (5.3) is knoas the microcanon-
ical ensemble, and the probability on the right side of (a8)the canonical
ensemble or Gibbs state. This limit expresses the equivalefithe two en-
sembles provided is chosen in accordance with (5.4). Since the canonical
ensemble has a much simpler form than the microcanonicahdnle, one usu-
ally prefers to work with the former. One can interpfeds a parameter that is
proportional to the inverse temperature. In section 10 wiedigicuss related is-
sues involving the equivalence of ensembles in a much breadeng, showing
that for models in which interactions are present, in gdriteeamicrocanonical
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formulation gives rise to a richer set of equilibrium prajpes than the canonical
formulation.

This discussion motivates the definition of the Gibbs stadea wide class
of statistical mechanical models that are defined in terma@noénergy func-
tion. We will write the energy function, or Hamiltonian, atiee corresponding
Gibbs state a#l,, and P, 3 rather than a#/; andF; g, as we did in the preceding
paragraph. The notation of section 2 is used. THus$s the product measure
on the set of subsets 6f, = A" with one-dimensional marginals Nonin-
teracting systems such as the discrete ideal gas have ldarails of the form
Hy(w) = > i Hyj(wy), where eachi,, ; is a function only ofu;. In the next
definition we do not restrict to this case.

Definition 5.2. Let H,, be a function mapping, into R; H,(w) defines the
energy of the configuration and is known as a Hamiltonian. Létbe a pa-
rameter proportional to the inverse temperature. Then t@onical ensemble,
or the Gibbs state, is the probability measure

1
Zn(P)

whereZ,, (3) is the normalization factor that make3 ; a probability measure.
That is,

P, s{w} = -exp|—0H, (w)] P,{w} forw € Q,,

Zn(B) = Z exp|—[H, (w)] Po{w}

wed,

We callZ,(/3) the partition function. FoB C €2, we define

P.s{B} =) Pus{w}.

weB

One can also characterize Gibbs states in terms of a maximtropg prin-
ciple [67, p. 6]. Givem: € N and a Hamiltoniar,,, let B, C R denote the
smallest closed interval containing the rangd &f,(w) /n,w € €, }. For each
z € By, the interior ofB,,, defineC,,(z) to be the set of probability measur@s
on (2, satisfying the energy constraipt ., [H,(w)/n] Q{w} = z.



Richard S. Ellis: Lectures on the Theory of Large Deviations 31

Maximum Entropy Principle 5.3. Letn € N and a HamiltonianH,, : 2, —
R be given. The following conclusions hold.

(a) For eachz € By, there exists a uniqu@ = ((z) € R such thatP, 5 €
Cn(2).

(b) The relative entropyp_attains its infimum ove€’,(z) at the unique
measure’, 5, andIp, (P, 5) = nl,(p”).

Part (a) can be proved by a calculation similar to that givieer ghe statement
of Theorem 4.1 while part (b) can be proved like Propositicdh ¥Ve leave the
details to the reader.

In the next section we formulate the general concepts ofgeldeviation
principle and a Laplace principle. Subsequent sectionsapply the theory of
large deviations to study interacting systems in statibtitechanics.



Richard S. Ellis: Lectures on the Theory of Large Deviations 32

6 Generalities: Large Deviation Principle and Laplace Prin
ciple

In Theorem 3.4 we formulated Sanov’s Theorem, which is thgelaeviation
principle for the empirical vectorg,, on the spacé,, of probability vectors
in R*. Applications of the theory of large deviations to modelsstatistical
mechanics require large deviation principles in much mereegal settings. As
we will see in section 9, analyzing the Curie-Weiss modelesfdmagnetism
involves a large deviation principle on the closed intefval, 1] for the sample
means of i.i.d. random variables. Analyzing the Ising madetlimensions
d > 2 is much more complicated. It involves a large deviation @pte on
the space of translation invariant probability measure$-en 1}Zd [35, §11].
In section 11, our analysis of models of two-dimensionddtilgnce involves a
large deviation principle on the space of probability meason’™ x ), where
T? is the unit torus iR? and) is a compact subset &.

In order to define the general concept of a large deviatiarcyple, we need
some notation. First, for each € N let (Q2,,, F,,, P,) be a probability space.
Thus (2, is a set of points,F, is a c-algebra of subsets d2,, and P, is a
probability measure orf,,. An example is given by the basic model in section
2, whereQ,, = A" = {y1,v9,...,ya}", Fn is the set of all subsets 6f,, and
P, is the product measure with one-dimensional margipals

Second, leit be a complete, separable metric space or, as it is ofterdgalle
a Polish space. Elementary examples &re= R? for d € N; X = P,, the
set of probability vectors ifR*; and in the notation of the basic probabilistic
model in section 2X equal to the closed bounded interyal, y,]. A class
of Polish spaces arising naturally in applications is algdiby taking a Polish
space€) and considering the spag¥)’) of probability measures oyi. We say
that a sequencéll,,n € N} in P()) converges weakly tdl € P()), and
write IT,, = I1, if [},fdIl, — [, fdII for all bounded, continuous functiorfs
mapping) into R. A fundamental fact is that there exists a metrion P()))
such thatll, = II if and only if m(II,11,,) — 0 andP()) is a Polish space
with respect ton [45, §3.1].
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Third, for eachn € N letY,, be a random variable mappify, into X'. For
example, withY = P, letY,, = L,, orwith X = [y;,y.] letY, = Z;‘Zl X;/n,
whereX;(w) = w; forw € Q,, = A™.

Finally, let I be a function mapping the complete, separable metric space
X into [0, 00]. I is called a rate function if has compact level sets; i.e., for
all M < oo {z € X : I(x) < M} is compact. This technical regularity
condition implies that/ has closed level sets or equivalently thais lower
semicontinuous. Hence, X is compact, then the lower semicontinuity bf
implies that/ has compact level sets. For any subsetf X we definel(A) =
inf,c4 I(z). WhenX = P,, an example of a rate function is the relative entropy
I, with respect top; whenX’ = [y;,y,], any continuous functiod mapping
[y1, o) INtO [0, c0) is a rate function.

We next define the concept of a large deviation principlé,|&atisfies the
large deviation principle with rate functioh then we summarize this by the
formal notation

P{Y, € dx} < exp|—nl(x)]dz.

Definition 6.1 (Large Deviation Principle). Let {(Q2,, F,, P,),n € N} be a
sequence of probability space®,a complete, separable metric spa¢¥,,, n €
N} a sequence of random variables such thamaps(2,, into X', and/ a rate
function onX. ThenY,, satisfies the large deviation principle oYl with rate
function! if the following two limits hold.

Large deviation upper bound. For any closed subsét of X

1
limsup —log P,{Y,, € F'} < —I(F).

n—oo N
Large deviation lower bound. For any open subse&t of X

lim inf 1 log P{Y, € G} > —I(G).

n—oo N

We next explore several consequences of this definitios.réassuring that
a large deviation principle has a unigue rate function. Tdieing result is
proved in Theorem 11.3.2 in [33].
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Theorem 6.2.If Y,, satisfies the large deviation principle ovi with rate func-
tion I and with rate functiory/, then/(z) = J(x) forall z € X.

The next theorem gives a condition that guarantees theeexistof large
deviation limits. The proof is analogous to the proof of GQlany 3.5.

Theorem 6.3.Assume that), satisfies the large deviation principle ot with
rate function/. Let A be a Borel subset ot having closured and interior A°
and satisfying (A) = 1(A°). Then

lim = log P{Y, € A} = —I(A).

n—oo 1

Proof. We evaluate the large deviation upper boundfoe= A and the large
deviation lower bound fof; = A°. Sinced > A D A°, it follows that

— 1 — 1
I(A) > limsup—log P{Y,, € A} > limsup —log P{Y,, € A}
n n

n—oo n—oo

1 1
> liminf —log P{Y, € A} > liminf —log P{Y,, € A°} > I(A°).

n—oo N n—oo N

By hypothesis the two extreme terms are equal, and so thestingfollows. Il

The next proposition states useful facts concerning thenunfi of a rate
function over the entire space and the use of the large deniatinciple to show
the convergence of a class of probabilities to 0. Part (begdizes Corollary
3.6.

Proposition 6.4. Suppose that,, satisfies the large deviation principle oti
with rate function/. The following conclusions hold.

(@) The infimum ofl over X equals 0, and the set af € A for which
I(x) = 0is nonempty and compact.

(b) Define€ to be the nonempty, compact setcof X’ for whichI(x) = 0
and letA be a Borel subset ot such thatd N & = (. ThenI(A) > 0, and for
someC' < oo

P {Y, € A} < C exp[-nI(A)/2] — 0 asn — oo.
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Proof. (a) We evaluate the large deviation upper bounddfet X and the large
deviation lower bound fo€&; = X, obtaining/ (X') = 0. Sincel has compact
level sets, the set af € X for which I(z) = 0 is nonempty and compact. This
gives part (a).

(b) If I(4) > 0, then the desired upper bound follows immediately from
the large deviation upper bound. We prove thé#l) > 0 by contradiction.
If I(A) = 0, then there exists a sequencg such thatlim,, .., I(z,) = 0.
Sincel has compact level sets andis closed, there exists a subsequenge
converging to an element € A. Sincel is lower semicontinuous, it follows
that/(x) = 0 and thus that € £. This contradicts the assumption theh & =

(). The proof of the proposition is completll

In the next section we will prove Crameér’s Theorem, whicthislarge devi-
ation principle for the sample means of i.i.d. random vdaabHere is a state-
ment of the theorem. The rate function is defined by a vanatiiormula that
in general cannot be evaluated explicitly. We denoteg-by the inner product
onR?,

Theorem 6.5 (Cramér’s Theorem). Let {X;, 7 € N} be a sequence of i.i.d.
random vectors taking values R’ and satisfyingZ{exp(t, X;)} < oo for all
t € R’. We define the sample meafig/n = >, X;/n and the cumulant
generating functior(t) = log F{exp(t, X1)}. The following conclusions hold.
(a) The sequence of sample me&hgn satisfies the large deviation princi-
ple onR? with rate function/ (z) = sup,cga{(t, z) — c(t)}.
(b) I is a convex, lower semicontinuous function®f and it attains its
infimum of0 at the unique pointy = E{X;}.

For application in section 9, we next state a special caseam€r’s Theo-
rem, for which the rate function can be given explicitly.

Corollary 6.6. In the basic probability model of secti@nlet A = {—1,1} and
p = (3,1), which corresponds to the probability measiyre= 16_; + 14, on
A. Forw € Q, defineS,(w) = >, w;. Then the sequence of sample means
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S,/n satisfies the large deviation principle on the closed iniéfv-1, 1] with
rate function

I(z) = (1 — z)log(1 — z) + (1 + x) log(1 + z). (6.1)

Proof. In this case(t) = log(i[e' + e~']. The functionc(¢) satisfies:"(¢) > 0

for all ¢, and the range of’ equals(—1,1). Hence for anyr € (—1,1) the
supremum in the definition of is attained at the unique = ¢(z) satisfying
¢'(t(z)) = z. One easily verifies that{z) = 3log[(1 + z)/(1 — z)] and that
I(x) = t(x) -z — c(t(x)) is given by (6.1). Wherr = 1 orx = —1, the
supremum in the definition df(z) is not attained but equalsg 2. B

Corollary 6.6 is easy to motivate using the formal notatibfitneorem” 3.3.
For anyz € [-1,1] S,(w)/n ~ z if and only if approximately; (1 — =) of the
w;’'s equal—1 and approximatel$ (1 + =) of thew;’s equall. Hence

Bo{Sufn~ap = Po{ln(=1) = 3(1 =), Ly(1) = 5(1 + 2)}
~ expl—nly(3(1 = 2),5(1 +2))] = exp[-nl(z)].

For applicationin section 11, we state a general versiomob®'s Theorem,
which gives the large deviation principle for the sequerf@apirical measures
of i.i.d. random variables. L&), 7, P) be a probability spacé; a complete,
separable metric space.a probability measure o, and{X,,j € N} a se-
guence of i.i.d. random variables mappiignto ) and having the common
distributionp. Forn € N, w € 2, andA any Borel subset 0} we define the
empirical measure

1 n
La(A) = Lu(w, 4) = = 3" 6w, {A},
Jj=1

where fory € Y, §,{A} equals 1 ify ¢ Aand 0ify ¢ A. For eachv,
L,(w,-) is a probability measure oll. Hence the sequendg, takes values in
the complete, separable metric sp&ig’).

Theorem 6.7 (Sanov’s Theorem).The sequencé,, satisfies the large devia-
tion principle on’P()) with rate function given by the relative entropy with
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respect top. For v € P()) this quantity is defined by

d’y> :
log— | dv ifv<p
Iy(v) = /y ( dp

00 otherwise.

This theorem is proved, for example, in [3®.2] and in [31, Ch. 2]. As we will
see in the next section, if the supportois a finite setA C R, then Theorem
6.7 reduces to Theorem 3.4.

The concept of a Laplace principle will be useful in the asepf statistical
mechanical models.

Definition 6.8 (Laplace Principle). Let {(2,,, F,,, P,),n € N} be a sequence
of probability spacest a complete, separable metric spa¢#,,, n € N} a se-
guence of random variables such thgtmaps(2,, into X', and/ a rate function
on X. ThenY,, satisfies the Laplace principle oki with rate function/ if for
all bounded, continuous functiorfsmappingX into R

i 1og | explnf (¥;)]dF, = sup{f(z) ~ I(2)}.
n—00 Q, zeX

Suppose that, satisfies the large deviation principle Ahwith rate function
I. Then substituting®,{Y,, € dz} < exp[—nl(z)]dx gives

lim llog/Q expnf(Y,)]dP, = %log/)(exp[nf(x)] P{Y, € dx}

R~ %log/)(exp[nf(x)] exp|—nl(z)] dx.

By analogy with Laplace’s method d&, the main contribution to the last inte-
gral should come from the largest value of the integrandtlnslthe following
limit should hold:

i 1og | explnf (¥,)]dF, = sup{f(z) ~ I(2)}.
n—00 Q, zeX

Hence it is plausible that, satisfies the Laplace principle with rate functibn
In fact, we have the following stronger result [31, Thms.1,2.2.3].
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Theorem 6.9.Y), satisfies the large deviation principle anwith rate function
I if and only ifY], satisfies the Laplace principle oti with rate function/.

As we will see in section 10, where a general class of stadilstnechanical
models are studied, the Laplace principle gives a variatiformula for the
canonical free energy [Thm. 10.2(a)].

We next introduce the concept of exponential tightnesschwhiill be used
in the proof of Theorem 6.11.

Definition 6.10. The sequenck, is said to be exponentially tight if for every
M < oo there exists a compact subg€t; such that

lim sup % log P,{Y; € K{;} < —M. (6.2)

The next theorem shows thatlf, is exponentially tight, then the large de-
viation upper bound for all compact sets implies the boumdafoclosed sets.
This is a useful observation because one can often proveotheddor compact
sets by covering them with a finite class of sets such as bahaléspaces for
which the proof is easier to obtain. We will see an examplésfin the proof
of Cramér’s Theorem in the next section.

Theorem 6.11.Assume that one can prove the large deviation upper bound for
any compact subset &f. Then the large deviation upper bound is valid for any
closed subset ot'.

Proof. We give the proof under the assumption thais a closed set for which
I(F) < oo, omitting the minor modifications necessary to handle treeéa
which I(F) = co. ChooseM < oo such thatV/ > I(F') and letK,, be the
compact set satisfying (6.2) in the definition of expondrtghtness. Since
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F C (FnKy)UK§, andF N K, is compact, it follows that

1
limsup — log P, {Y,, € F'}
n

n—oo

1
< limsup —log P, {Y,, € (F N Ky)UK§,}
n

n—oo

1
< limsup —log(P.{Y, € FN Ky} + PAY, € Kj})
n

n—oo

1 1
= max{lim sup — log P,{Y,, € FFN Ky}, limsup —log P,{Y,, € K]CV[}}
n

n—oo n—oo

<max{—I(FNKy),—-M}
< max{—I(F),-M} =—I(F).

This completes the prool

We end this section by presenting three ways to obtain laeg@ton prin-
ciples from existing large deviation principles. In the tfilseorem we show
that a large deviation principle is preserved under cowtisunappings. An ap-
plication involving the relative entropy is given after tstatement of Theorem
6.14.

Theorem 6.12 (Contraction Principle). Assume that), satisfies the large de-
viation principle onX’ with rate function/ and thaty is a continuous function
mappingt’ into a complete, separable metric spaZeThemy(Y,,) satisfies the
large deviation principle o)) with rate function

J(y)=inf{l(z):x € X, Y(x) =y}.

Proof. Sincel mapsY into [0, oo], J maps) into [0, co]. Itis leftas an exercise
to show that sincd has compact level sets i, J has compact level sets in
Y. If Fis a closed subset @f, then since) is continuousy)~!(F) is a closed
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subset ofY'. Hence by the large deviation upper bound¥or

1 1
limsup — log P,{¢(Y;) € F} = limsup —log P,{Y, € v *(F)}
n—oo n—oo n
— inf I(x
reY~1(F) (@)

— inf{inf{I(z) : v € X, Y(x) = y}

~ inf J(y) = —J(F).

IA

Similarly, if G is an open subset @f, then

lim inf = log P, {(Y,)) € G} > —J(G).

n—oo N

This completes the prooll

In the next theorem we show that a large deviation principlereserved if
the probability measureB, are multiplied by suitable exponential factors and
then normalized. This result will be applied in section 10ewhve prove the
large deviation principle for statistical mechanical misdeith respect to the
canonical ensemble [Thm. 10.2].

Theorem 6.13. Assume that with respect to the probability measurgsyY,,
satisfies the large deviation principle oti with rate function/. Lety be a
bounded, continuous function mappiAginto R. For A € F,, we define new
probability measures

1
[ exp[—ny(Y,)] dP, '

Then with respect t&’, ,, Y,, satisfies the large deviation principle oxi with
rate function

P yp{A} =

/ exp|—n (Y, )] dP,.
A

Ly(x) = I(x) + ¢(z) - yig)f({f(y) +4(y)}

Proof. Clearly I, maps&’ into [0, cc], and it is easily checked thdf, has
compact level sets. We prove the theorem by showing thatregpect taP, .,
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Y,, satisfies the Laplace principle with rate functigrand then invoke Theorem
6.9. Letf be any bounded, continuous function mappitgqtoR. Sincef + v

Is bounded and continuous and since with respek}, {4, satisfies the Laplace
principle with rate function, it follows that

1
lim — log / exp[n f(Yn)] dP,.y
2,

n—oo 1

— lim ~log | expln( f(¥2) = w(¥,))]dP,

n—oo 1
1

— lim —log/ exp|—n(Y,)] dP,
Qy

n—oo N,

= sup{f(z) — ¢ (x) — [(x)} — sup{—(y) — I(y)}

reX yekX

= igg{f(x) — Iy(z)}

Thus with respect t@”, ,, Y;, satisfies the Laplace principle with rate function
I, as claimed. This completes the prod

According to our next result, if random variabl&s are superexponentially
close to random variablas, that satisfy the large deviation principle, th&n
satisfies the large deviation principle with the same ratetion. A proof based
on the equivalent Laplace principle is given in Theorem3lid [31].

Theorem 6.14.Assume thaY, satisfies the large deviation principle anwith
rate function/ and denote by (-, -) the metric onX (e.g.,m(z,y) = |z —y| if
X = R). Assume also that, is superexponentially close 16, in the following
sense: for each > 0

1
lim sup — log P,{m(Y,, X,,) > 6} = —o0. (6.3)
n—oo N

ThenX,, satisfies the large deviation principle anwith the same rate function
I. The condition(6.3)is satisfied if

lim sup m(X,(w),Y,(w)) = 0.

=0 e,
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A standard application of the contraction principle statefiheorem 6.12 is
to relate the rate functions in Sanov’s Theorem and in Crati&eorem. For
simplicity, we restrict to the case of a nondegenerate fibameasure orR,;
much more general versions are available. For example ZinTlBm. 5.2] it is
shown to hold in the case of random variables taking valuasBanach space.
Let p be a nondegenerate probability Brhaving compact suppo&” andY,,
an i.i.d. sequence of random variables having common bligian p. SinceK
is compact, the functiogh mappingy € P(K) to [, zy(dx) is bounded and
continuous, and

¢(Ln):/Kan(daz):%/Kx5X (dz) ZX

SinceL,, satisfies the large deviation principle Bx/C) with rate function given
by the relative entropy, [Thm. 6.7], the contraction principle implies th&t/n
satisfies the large deviation édhwith rate function

Iy) = inf{fpw) P, [ (o) - y}

Since a rate function in a large deviation principle is uei¢ilhm. 6.2],J must
equal the rate functioh in Cramér’s Theorem. We conclude that for@ak R

I(y) = sup{ty — c(t)} = inf{lp(’y) :y € P(K), /K:U’y(d:z:) = :z:} . (6.4)

teR

We emphasize that in order to apply the contraction prieciphe needs the
hypothesis that has compact support. It is satisfying to know that (6.4) igiva
without this extra hypothesis [33, Thm. VIII.3.1].

This completes our discussion of the large deviation ppilegithe Laplace
principle, and related general results. In the next seatierprove Cramér’s
Theorem.
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7 Cramer's Theorem

Cramér’'s Theorem is the large deviation principle for sushs.i.d. random
vectors taking values ilR?. In this section Cramér’s Theorem will be proved
and several applications will be given.

Let {X;,7 € N} be a sequence of i.i.d. random vectors defined on a prob-
ability space((2, F, P) and taking values ifR?. We are interested in the large
deviation principle for the sample measig/n, whereS, = ', X;. The ba-
sic assumption is that the moment generating functignxp(t, X;)} is finite
for all t € R?. We define fort € R? the cumulant generating function

c(t) = log E{exp(t, X1)},

which is finite, convex, and differentiable, and foe R? we define the Legendre-
Fenchel transform

I(@) = sup{ (£, z) — c(t)}.

teRd

The basic theory of convex functions and the Legendre-Fatic@nsform is
developed in chapter VI of [33]. Here are some relevant dedims. A function
f mappingR into R U {oc} is said to be convex if for alt andy in R? and all
A€ (0,1)

fOz+ (1= Ny) < Af(x) + (1= N)f(y).
Such a function is said to be lower semicontinuous if wheneye— = € R,
we haveliminf, .. f(z,) > f(z). The convexity ofc(t) is an immediate
consequence of Holder’s inequality with= 1/X andg = 1/(1 — X) [33, Prop.
VIIL.1.1].

We consider Cramér’s Theorem first the cdse 1. Leta be a real number
exceeding the mean valué{ X;}. Assuming thatp has an absolutely con-
tinuous component and that certain other conditions hotdm@r obtained in
his 1938 paper [17] an asymptotic expansion for the prolgh#t{S,,/n €
[, 00) }, which implies the large deviation limit

lim = log P{S,/n € [, 00)} = —I(a) = —I([a, 00)).

n—oo 1
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In the modern theory of large deviations the following geafieation of this
limit is known as Cramér’s Theorem.

Theorem 7.1 (Cranér’'s Theorem). Let {X,.; € N} be a sequence of i.i.d.
random vectors taking values R’ and satisfyingZ{exp(t, X;)} < oo for all
t € RY. The following conclusions hold.

(a) The sequence of sample me&hgn satisfies the large deviation princi-
ple onR? with rate function/ (z) = sup,cga{ (t, z) — c(t)}.

(b) I is a convex, lower semicontinuous function®f and it attains its
infimum of 0 at the unique point = E{X;}.

Infinite-dimensional generalizations of Cramér’s Theoteave been proved
by many authors, including [1] and [2¥5]. The book [20] presents Crameér’s
Theorem first in the setting &“ and then in the setting of a complete, separable
metric space. At the end of this section we will derive frona@ér’'s Theorem
the large deviation principle for the empirical vectorstesthin Theorem 3.4.
This is a special case of Sanov’s Theorem 6.7. We will alsccatd how to
prove a general version of Sanov’s Theorem from an infinibeedsional ver-
sion of Cramér’s Theorem.

The properties of stated in part (b) of Theorem 7.1 as well as other prop-
erties of this function related to Legendre-Fenchel dualie proved in [33,
Thm. VII.5.5]. Before proving Cramér’s Theorem, it is wanthile to motivate
the form of the rate functiod. Assuming that the sequensg/n satisfies the
large deviation principle ofR? with some convex, lower semicontinuous rate
function.J, we will prove that/ = 1.

Since for each € R?

ot) = log E{exp(t, X))} = %log E{expl(t, S, /n)}
= llog /Rd exp[n(t, )] P{S,/n € dz},

n

it follows that

c(t) = lim llog/ exp(t, z) P{S,/n € dz}.
Rd

n—oo N
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We now use the hypothesis thét/n satisfies the large deviation principle on
R? with some convex, lower semicontinuous rate functibn Although the
function mappingr — (t,z) is not bounded, a straightforward extension of
Theorem 6.9 allows us to apply the Laplace principle to eat@the last limit,
yielding

c(t) = sup{(t,x) — J(x)}.

reR4
The assumed convexity and lower semicontinuity agbmbined with Legendre-
Fenchel duality now yields the desired formula; namelygiach: € R?

J(x) = sup{(t,z) — c(t)} = I(z).

teRd

Legendre-Fenchel duality is explained, for example, in [38.5]. This com-
pletes the motivation of the form of the rate function in Ceaim Theorem.

We now turn to the proof of Cramér’s Theorem. The main to@dus the
proof of the large deviation upper bound is Chebyshev’suadty, introduced
by Chernoffin [10], while the main tool used in the proof oétlarge deviation
lower bound is a change of measure, introduced by Cramésih988 paper
[17]. These same tools for proving the large deviation beurwhtinue to be
used in modern developments of the theory.

Proof of Theoren7.1l We first show thaf is a rate function, then prove part (b)
followed by the proofs of the large deviation upper bound lameer bound.

I is a rate function.Since! is defined as a Legendre-Fenchel transform, it
Is automatically convex and lower semicontinuous. By paytof Proposition
6.4, the infimum ofl overR? equals 0, and sé mapsR? into the extended
nonnegative real numbejg oo]. We now consider a level séf;, = {x € R? :
I(x) < L}, whereL is any nonnegative real number. This set is closed since
is lower semicontinuous. I is in K, then for anyt € R?

(t,x) <e(t)+ I(x) <c(t)+ L.

Fix any positive numbeiz. The finite, convex, continuous functianis
bounded on the ball of radiuB with center 0, and so there exists a number
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I' < oo such that

sup (t,z) = R||z|| < sup ¢(t) + L <T < oc.
[tlI<R [tlI<R

This implies that/(;, is bounded and thus that the level setd @fre compact.
The sketch of the proof thdtis a rate function is complete.

Part (b). We have already remarked that convex and lower semicontinu-
ous. Sincd is a rate function/ attains its infimum of 0 at some poing € R?
[Prop. 6.4(a)]. It is easy to show thatif = F{X;}, thenl(xy) = 0. Indeed,
sincec(t) is convex and differentiable, the infimum in the definition of

I (o) = sup{(t, o) — c(t)}

teRd
is attained when satisfiesVc(t) = xg = E{X;}. SinceVc(0) = E{X}, it
follows ¢ = 0. For this choice of, we havel(z,) = (0,z9) — ¢(0) = 0, as
claimed. The proof that, = F{X;} is the unique minimum point af requires
some additional ideas from convex analysis, which we ondit Jhm. VII.5.5].

Large deviation upper boundie first prove this bound in the cage= 1.
Our aim is to prove that for any nonempty closed sulfsef R

1
limsup — log P{S,/n € F'} < —I(F).
n

n—oo

Let zp = E{X;}. We first show this for the closed intervdls, o), where
a > xg. For anyt > 0 Chebyshev’s inequality implies

P{S,/n € [a,00)} = P{tS, > nta}

< exp[—nta] E{exp[tS,]}
exp[—nta] H E{exp[X;]}
exp[—nta] (E{exp[Xi]})"
— exp[—ntOé + nlog E{eXp[X1]}]
= exp[—n(ta — c(t))].
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It follows that for anyt > 0

lim sup%log P{S,/n € [a,00)} < —(ta — ¢(t)),

n—oo

and thus that
1
limsup —log P{S,,/n € [a,00)} < —sup{ta — c(t)}. (7.1)
n—00 t>0

The next lemma will allow us to rewrite the right-hand sideto$ inequality
as in the statement of Cramér’s Theorem.

Lemma 7.2.1f o > xg, then

sup{ta — c(t)} = I(a) = I([a, 00).

t>0

Proof. Sincec(t) is continuous at = 0,

I(a) = iglg{toz —c(t)} = St%){toz —c(t)}.

Sincec(t) is differentiable and convex, we hav§0) > ¢(t)/t for anyt < 0.
Therefore, forany < 0

ta — c(t) = t(a —c(t)/t) < tla—c'(0)) <0=0-a—c(0).

The second inequality holds sinae> xy = E{X;} = ¢'(0) andt < 0. From
this display we see that the supremum in the formula far) cannot occur for
t < 0. It follows that

I(«r) = sup{ta — c(t)}.

>0
I(x) is nonnegative, convex function satisfyiifiry) = 0. ThusI(x) is non-
increasing forx < x, and is nonincreasing far > x,. This means that
I(a) = inf{I(z) : * > a} = I([a,00). The proof of the lemma is complete.
H

Inequality (7.1) and the lemma imply thatif is the closed interval, oo),
then the large deviation upper bound holds:

limsupllogP{Sn/n € '} <—I(a)=—I(F).
n

n—oo



Richard S. Ellis: Lectures on the Theory of Large Deviations 48

A similar proof yields the large deviation upper boundfif= (—o0, o] and
o < x.

Now let F' be an arbitrary nonempty closed setz¢fc F', thenl(F') equals
0 and the large deviation upper bound holds automaticailyedog P{.S,,/n €
F'} is always nonpositive. Ity ¢ F', then let(aq,ay) be the largest open
interval containingr, and having empty intersection with. ' is a subset of
(—o0, a1] U [ag, o0), and by the first part of the proof

1
lim sup — log P{S,,/n € F}
n

n—oo

1
< lim sup — log P{S,,/n € (—o0,a1] U [ag,00)}

n—oo n

< lim sup % log(P{Sn/n € [—o0, ]} + P{S,/n € [az,00)})

n—oo

1 1
= max{lim sup — log P{S,,/n € [—00, 1]}, limsup — log P{S,/n € [ozg,oo)}}
n n

n—oo n—oo

< max{—1I (1), =1 ()}
= —min{(/(aq), ()} .

If oy = —oo or ay = o0, then the corresponding term is missing. From
the monotonicity properties of (x) on (—oo, xy] and onlzy, 00), I(F) =
min{(/(aq), I (a2)}. Hence from the last display we conclude that

limsup%log P{S,/n € F} < —I(F).
This completes the proof of the large deviation upper boond £ 1.

We now prove the large deviation upper bound dor- 1. Using the hy-
pothesis that(t) < oo for all t € R, it is straightforward to prove that, /n is
exponentially tight and that the compact 8&f; appearing in the definition 6.10
of exponential tightness can be taken to be the hyperégpe= [—M, M]“.
The details are left to the reader. By Theorem 6.11 the upmend will follow
for any closed set if we can prove it for any compactisetlf /(K) = 0, then
the upper bound holds automatically sidog P,.{S,/n € K} is always non-
positive. Details will now be given under the assumptior #{#&’) < co. The
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minor modifications necessary to prove the upper bound Wh&n = oo are
omitted.

The technique of the proof exhibits a remarkable interplapiag analysis,
geometry, and probability and readily extends to the muclergeneral setting
of the Gartner-Ellis Theorem, which we will consider in tiext section [Thm.
8.1]. We start by picking > 0 to satisfye < I(K) and by defining fot € R?
the open halfspace

Hy={x € R?: (t,x) —c(t) > [(K) —&};

if t = 0, thenH, = 0 sincel(K) — ¢ > 0. Since for allz € K we have
I(xz) > I(K) — ¢, it follows that

K C {zeR?: I(z)>I(K)—¢}
= {xERdzsup{<t,a:>—c(t)}>I(K)—E}

teRd
= J{zeR?: {t,x) — c(t) > I(K) — &}
teRd
= |J &
teRd
SinceK is compact, there exisisc N and nonzerd, ..., ¢, € R¢ such that

K C Ul_,H,,. Thus by Chebyshev’s inequality

P{S,/ne K} < iP{Sn/n € H.} (7.2)
i=1

- ZP{(@-, Sy > nle(t;) + 1(K) — €]}

Z exp[—n(c(t;) + I(K) — )] E{expl[(ti, Sn)|}
= Z exp|—n(c(t;) + I(K) — €)] expln c(t;)]

= rexp|—nl[l(K) — ¢,

IA
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from which it follows that
1

limsup —log P{S,/n € K} < —I(K) +e¢.
mn

Sendinge — 0 completes the proof of the large deviation upper bound for
d > 1. This argument generalizes the proof fo+ 1, in which we covered an
arbitrary closed sek’ by the intervalg —oo, o] U [, 00).

Proof of large deviation lower boundin contrast to the large deviation upper
bound, which is proved by a global estimate involving Chéleys inequality,
the large deviation lower bound is proved by a local estinthgsheart of which
involves a change of measure. The proof is somewhat moraitadtihan the
proof of the large deviation upper bound. We denote the comadngtribution
of the random vectorX'; by

pldz) = P{X; € dx}.

In general
c(t) = log E{exp(t, X1)} = log /d exp(t, x) p(dx)
R

is a finite, convex, differentiable function &f. We first prove the lower bound
under the highly restrictive assumption that the suppogtiefall of R? or more
generally that the smallest convex set containing the stippp is all of RZ. In
this case, for each € R? there exist¢ € R? such thatVe(t) = 2 [33, Thms.
VIIIL.3.3, VIII.4.3].

For z € R? ande > 0, we denote byB(z, <) the open ball with center and
radiuss. Let G be an open subset &f. Then for any point, € G there exists
e > 0 such thatB(zp,¢) C G, and so

n

P{S,/n € G} > P{Sy/n € B(z0,€)} = / T] oldz,).
{>7j—1 zj/neB(20,6)} =1
We first assume thaf contains the poin{,, zp(dz) = E{X;} and letz;, =
Jra zp(dz). Inthis case the weak law of large numbers implies that

lim [ otdzy) =1
n—00 {Z;?:lxj/neB(Zoaf)}j:I
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Sincel(z;) = 0, we obtain the large deviation lower bound:

hmmf—logP{S /ne Gt >0=—I(z)=—1(G).

n—oo

Of course, in general does not contain the poirft,, zp(dz), and the ar-
gument in the preceding paragraph breaks down. In this cadetw, be an
arbitrary point inG and introduce a change of measure, replagitoy a new
measurep;,, whose mean equals. The exponential price that must be paid
for introducing this new measure is of the orderegp[—nl(zy)]. Putting the
various estimates together will yield the desired largaaten lower bound.

Givenz, € G, we choosé, € R? such thatVc(ty) = z,. We then introduce
the change of measure given by the exponential family

1 1
Jou T pld) Zo
Similar exponential families arise in Theorems 4.1 and Byithe definition of
c(to), pt, is a probability measure, and the meampgfis 2. Indeed
1
/ z pry(d) = — - / el p(da) = Ve(ty) =
R4 ec\to R4

Furthermore, since(t) is convex,

I(z0) = sup{(t, z0) — c(t)} = (to, z0) — c(to).

teRd

eltor) p(dz).

pio(d) = el p(dr) =
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We thus obtain the lower bound

P.{S,/n € G}
> P,{Sn/n € B(z,¢)}

n

/ I o(dz;)
{51 2/n€B20.0)} j

= /{Z?_lxj/neB(zo,g)} (71_[ dPtO( 7)) jl_[Pto(d i)
— /{Z" ; exp[—n (<to, > i xj/n> - C(to))} Epto(dx,j)

i=1%/n€B(20,¢

n

> expl—n({to, ) — e(to)) — nlltoll] / I] (dz,)
{3 xj/n€B(20,2)} j=1

n

— expl-nl(z0) = nlfal] | [T iay)
{2?21 zj/n€B(z0,)} j=1
Since the mean of the probability measuyre equalsz,, the weak law of
large numbers for i.i.d. random vectors with common disifitm p;, implies
that

lim [T ooty =1
n—00 {Z}Ll xj/neB(z0,€)} j=1

Hence it follows that

1
liminf —log P{S,/n € G} > —1(z) — |[to]le.

n—oo N

We now senct — 0, and sincez, is an arbitrary point iz, we can replace
—1(29) by —inf, cc I(29) = —I(G). This completes the proof of the large
deviation lower bound when the support @fs all of R? or more generally
when the smallest convex set containing the suppostisfll of R,

When this hypothesis does not hold, then the randédt) is no longer all
of R¢, and the argument just given breaks down. To handle the é¢gsmeral,
we find a setd with the properties that(G) = (G N A) and thatA is a subset
of the range oV ¢(t). If we can do this, then the proof just given, specialized
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to arbitraryzy, € G N A, yields

1
liminf —log P{S,/n € G} > —1(z).

n—oo N

Sincez is an arbitrary pointitzN A, we canreplace I (zy) by —inf, cona I (z0) =
—I(GNA)=-I(G), and we are done.

By definition, the domain off, domlI, is the set ofr € R? for which
I(x) < oo. The relative interior of dom, denoted by ri(don), is defined
as the interior of dondi when considered as a subset of the smallest affine set
that contains dom. Clearly, if the smallest affine set that contains doisiR?,
then the relative interior of dorhequals the interior of dorh This is the case
if, for example,d = 1 and donY is a nonempty interval.

Using several properties of convex sets and convex fungtiee will show
that the desired set equals ri(donT). In order to see this, we first note that
sincel(x) equalsx for x ¢ doml, I(G) equalsx if G N domI is empty. In
this case the large deviation lower bound is validGIfh domI is nonempty,
then/(G) equals/ (G NndomI). The setG Nri(domI) is also nonempty [71, p,
46], and by the continuity property dfexpressed in [33, Thm. VI.3.2]

I(G) =I(Gndoml) = I(GNri(domI)).

This is the first required property of = ri(dom/). The second desired prop-
erty of this set— namely, that ri(dof) is a subset of the range ®fc(t) —is a
consequence of [33, Thm. VI.5.7], which is based on dualibpprties involv-
ing ¢(t) and its Legendre-Fenchel transfofiix) [71]. This completes the proof
of the large deviation lower bound and thus the proof of Grasil heorem .l

We now apply Cramér’s Theorem to derive the special cas@ndBs The-
orem given in Theorem 3.4; the latter states the large dewigirinciple for
the empirical vectors of i.i.d. random variables having @distate space. Let
a > 2 be anintegen; <y, < ... < y, aset ofa real numbersyy, ps, ..., pa
a set ofa positive real numbers summing to 1, api;, ; € N} a sequence of
i.i.d. random variables defined on a probability spéeeF, P), taking values
in A = {y1,v2,...,ya}, and having distributiop = >";"_, prd,,. In Theorem
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3.4 we take{X;,j = 1,...,n} to be the coordinate functions ox* and im-
pose on this space the product meastravith one dimensional marginals
but there is no need to restrict to this case. &aF €2 andy € A we consider

Ln(y) = Ly(w,y) = %Z 0x;w){y}

and the empirical vector

n

LTL = Ln(W) = (Ln(wv yl)v tU Ln(wv ya)) = %Z (5Xj(w){y1}7 to 75Xj(w){yoz}) :

J=1

L,, takes values in the set of probability vectors

P, = {’y ERY:v=(1,%,-%) > O,Z’yk = 1}.
k=1
Sincel,, equals the sample mean of the i.i.d. random variables

Vi(w) = (0x,{vts- - 0x,){val),

the large deviation principle fok,, follows from Cramér’'s Theorem. For €
R the rate function is given by

I(y) = sup{(7,t) — c(t)}, wherec(t) = E{exp(t, Y1)} = log (Z et’“pk) :

teR™ —1

In the next proposition we show that ferc P, I () equals the relative entropy
I,(y) and that fory € R* \ P, I,(v) equalsx.

Proposition 7.3.For v € P, we define the relative entropy

I,(v) = E v, log —.
k=1 Pk
Then

I() = sup {(v,t) —log(3_y_, e pp)} =

teR™

I,(y) foryeP,
oo fory e R\ P,.
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Sketch of Proof. Let G be any open set having empty intersection With
SinceP{L, € G} = 0, the large deviation lower bound implies that
1
—oo = liminf —log P{L, € G} > —I(G).
n—oo N
It follows that/(+y) = oo for v € R* \ P,. The exercise of proving this directly
from the definition of/ (y) as a Legendre-Fenchel transform is left to the reader.
DefiningP;, to be the set of € P, having all positive components, we next
prove that/(y) = 1,(~) for v € P;. LetR¢ denote the positive orthant &f.
Since—log is strictly convex on0, co), Jensen’s inequality implies that for any
vePq

sup {Z Vi log s — IOgZ’YkSk} <0

SERT k=1 k=1
with equality if and only ifs; = const. Fory € P2, ast runs throughiR®, the
vectors having components, = e’ p /v, runs througR?. Hence

I(y) = sup {(% t) —log (Z et’m) }

teR™ —1

« kSk «
= sup {Z’m logL — log (nyksk)}
k=1 Pk k=1

seRY

k
= Y log X+ sup {Z i log s, — log Z%sk}
k=1 Pk k=1 k=1

sERi
= E Vi log —
k=1 Pk

= Ip(7)~

This completes the proof thdfy) = I,(v) for v € P;. In order to prove this
equality for ally € P,, we use the continuity of, on P, and the continuity
property of/ onP, stated in [33, Thm. VI.3.2]. The proof of the proposition is
complete.ll

In Theorem 5.2 in [27] the following infinite dimensional geon of Cramér’s
Theorem is proved.
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Theorem 7.4.Let X’ be a Banach space with dual spagé and{X;,; € N}
a sequence of i.i.d. random vectores taking valueg’iand having common
distribution p. Assume that’{exp(t||X1||)} < oo for everyt > 0. Then the
sequence of sample meafis/n satisfies the large deviation principle ot
with rate function

I(z) = sup {(«97:@ - log/XeXp<9,y> p(dy)}~

e X

The rate functior is convex and lower semicontinuous and attains its infimum
of 0 at the unique pointy = E{X,} = [, zp(dz).

We now return to the setting of Sanov’s Theorem, consideghegmpirical
measureg,, of a sequencéX;, j € N} of i.i.d. random variables taking values
in R? [Thm. 6.7] and more generally in a complete, separable mspaceY .
Let p denote the common distribution &f;. Then

1 n
L,= E;axj

takes values in the complete, separable metric spaéé) of probability mea-
sures ont’. SinceL,, is the sample mean of the i.i.d. random variablgs it is
reasonable to conjecture that Sanov’s Theorem can be dexrs/@ consequence
of a suitable infinite-dimensional version of Cramér’s drem. While Theo-
rem 7.4 cannot be applied becai®geY) is not a Banach space, the derivation
of Sanov’s Theorem from a suitable infinite-dimensionaki@ar of Cramér’s
Theorem is carried out in [21, Thm. 3.2.17]. This referencs firoves that.,,
satisfies the large deviation principle &{X') with rate function/ () given by
the Legendre-Fenchel transform

I(y) = sup {/ fdfy—log/efdp},
feC(x) X X

whereC(X') denotes the set of bounded, continuous functions mappingo
R. The proof of Sanov’'s Theorem is completed by showing fiial equals
the relative entropy,(). A special case of this identification of the relative
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entropy with a Legendre-Fenchel transform is given in Pstmm 7.3. An in-
dependentderivation of Sanov’s Theorem for i.i.d. randestoers taking values
In a complete, separable space is given in [31, Ch. 2], whigli@s ideas from
stochastic optimal control theory.

In the next section we present a generalization of CranTdngorem that
does not require the underlying random variables to be iewégnt. Both in
Cramér’s Theorem and in this generalization the rate fanstare defined by
Legendre-Fenchel transforms and so are always convexcohigxity is not a
general feature. Indeed, at the end of the next section veeptéwvo examples
of large deviation principles in which the rate function & nonvex.



Richard S. Ellis: Lectures on the Theory of Large Deviations 58

8 Gartner-Ellis Theorem

For eachm € N let (2, F,,, P,) be a probability space and [&}, be a random
vector mapping,, intoR?. In 1977 Gartner proved an important generalization
of Cramer’s Theorem, assuming only that the limit
1
c(t) = lim —log EX*{exp[n(t,Y,)]} (8.1)

n—oo M,
exists and is finite for every € R? and thate(¢) is a differentiable function of
t € RY[50]. Gartner’s result is that,, satisfies the large deviation principle on
R? with rate function equal to the Legendre-Fenchel transform
I(x) = sup{(t,z) — c(t)}.

teRd

Using ideas from convex analysis, | generalized Gartmesslt by relaxing the
condition that:(t) exist and be finite for everyc R [34]. The theorem is now
known in the literature as the Gartner-Ellis Theorem 203,52.5].

Gartner’s result contains Cramér’'s Theorem as a speasal.dn order to see
this, letY, equal} i, X;/n, whereX; is a sequence of i.i.d. random vectors
satisfying E{exp(t, X1)} < oo for everyt € R?. In this case the limit(¢) in
(8.1) equaldog E{exp(t, X;)}, which is a differentiable function of € R¢.
The corresponding rate function is the same as in CramegsiEm.

We next state the Gartner-Ellis Theorem under the hypethes[50] and
in a form that is different from but equivalent to Gartneesult in that paper.
This is followed by comments on the generalization proved3#]. In this
theorem the differentiability of(¢) for all t € R? is a sufficient condition for the
large deviation lower bound; the large deviation upper lobisralways valid.
However, as we mention just before Example 8.3 in the cordgéxhe Ising
model in statistical mechanics, the differentiability@f) is not a necessary
condition for the validity of the lower bound.

Theorem 8.1. For eachn € N let (12, F,,, P,,) be a probability space and let
Y,, be a random vector mappir{g, into R?. We assume that the limit

o(t) = Tim ~log EP {expln(t, V,)|}

n—oo M
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exists and is finite for evetye R?. For z € R? we define

I(x) = sup{{t,z) — c(t)}.

teRd

The following conclusions hold.
(a) I is arate function. Furthermord, is convex and lower semicontinuous.
(b) The large deviation upper bound is valid. Namely, for evérged subset
F of R¢

1
limsup —log P,{Y,, € F'} < —I(F).

n—oo n

(c) Assume in addition that(t) is differentiable for allt € R?. Then the
large deviation lower bound is valid. Namely, for every opahset; of R?

1
liminf —log P, {Y,, € G} < —I(G).
n—oo (A
Hence, ifc(t) is differentiable for alt € RY, theny,, satisfies the large deviation
principle onR? with rate function/.

The theorem is proved by suitably generalizing the proof i@dn@er’s The-
orem (see [33, Ch. 7]). In the case of the large deviation uppend, the
generalization is easy to see. As in the proof of Cramérsorém, the as-
sumption that the limit function(t) is finite for everyt € R? implies thaty,,
Is exponentially tight. Hence by Theorem 6.11, the uppenidowill follow for
any closed set if we can prove it for any compact&etIf /(K) = 0, then
the upper bound holds automatically sifeg P,.{Y,, € K} is always nonposi-
tive. In order to handle the case whéf¥) < oo, we argue as in the proof of
Cramér’s Theorem. Given > 0 satisfyinge < I(K), there exists € N and
nonzeroty,....t, € R? such thatk’ c Ul_,H,,, whereH,, denotes the open
halfspace

H, = {z e R: (t;,x) — c(t;) > [(K) — ¢}
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As in the display (7.2), Chebyshev’s inequality yields

P{Y,e K} < > P{Y,€H,}
i=1

— ZP{n(ti,Yn> > nle(t;) + I(K) — €]}

Z exp[—n(c(t;) + I(K) — ¢)] E{exp[n(t;, Yn)]}

_ Zexp[—n(e(ti) + I(K) — ¢)] exp[nca(ts)],

IA

where ]
cn(t) = =log E"{exp[n(t, Y,,)]}.
mn

Sincec,(t;) — c(t;), there existsV € N such that,(¢;) < c(t;) + ¢ for all
n> Nandalli=1,...,r. Thusforalln > N

PAY, € K} <rexp[-n(I(K) — 2¢],
from which it follows that

1
limsup —log P{Y,, € K} < —I(K) + 2.

n—oo n

Sending: — 0, we complete the proof of the large deviation upper bountden t
Gartner-Ellis Theorem wheh(K) < oco. The minor modifications necessary
to prove the upper bound whdifiK') = oo are omitted.

The proof of the large deviation lower bound requires a nesaid\Ve recall
that the proof of the lower bound in Cramér’s Theorem inwbitee weak law
of large numbers with respect to the change of measure giy¢hedproduct
measure with one-dimensional marginals In the proof of the lower bound
in the Gartner-Ellis Theorem again one uses a change ofuredsit the weak
law of large numbers with respect to a product measure isvailadle. The
Innovation is to replace the weak law of large numbers by aemt estimate
based on the large deviation upper bound in the Gartnes-Eieorem.
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In the extension of Gartner’s result proved in [34], it isa®ed that for all
t € RY, ¢(t) exists as an extended real number o, oo]. Then the large
deviation upper bound as stated in part (b) of Theorem 8.A&lisl with rate
function

I(@) = sup{ (£, 7) — c(t)}.

teRd

We denote byD the set oft € R? for whichc(t) is finite. If c is differentiable
on the interior ofD, thenc is called steep iff Ve(t,)|| — oo for any sequence
t,, in the interior of D that converges to a boundary point®f For example,
If ¢ is lower semicontinuousy is open, anda is differentiable orD, thenc is
steep. In the extension of Gartner’s result, it is provet the is differentiable
on the interior ofD and is steep, then the large deviation lower bound as stated
in part (c) of Theorem 8.1 is valid with rate function

() = sup{(t,z) — c(t)}.

teRd

We next give an application of the Gartner-Ellis Theorelffirtibe-state Markov
chains. Letx > 2 be anintegeny; < 1 < ... < y, be a set otx real numbers,
and{X,,j € N} a Markov chain taking values in = {y1,v2,...,y.}. We
denote byp € R the initial distributionp; = P{X; = y;} and by=(i, j) the
transition probabilities?{ X, = y;|X; = y;} for 1 <4, j < . Under the
assumption that the matrix = {= (4, 7)} is irreducible and aperiodic, we have
the following two-part theorem. Part (a) is the large dawiaprinciple for the
sample means,, = Z;.)‘Zl X;/n, and part (b) is the large deviation principle for
the empirical vectord,,, = Zj?‘zl dx,/n. The hypothesis that is irreducible
holds if, for exampler is a positive matrix. Part (b) is a special case of a result
proved in [26].

Theorem 8.2.We assume that the transition probability matriof the Markov
chain X is aperiodic and irreducible. The following conclusionddo

(a)Fort € R let B(t) be the matrix with entrieg3(t)]; ; = exp(tz;) (4, j).
Then for allt € R, B(t) has a unique largest positive eigenvali@) which is
differentiable for allt € R. Furthermore, for any choice of the initial distribu-
tion p, the sample means, satisfy the large deviation principle dR with rate
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function
I(x) = sup{tz — log \(t)}.

teR
(b) We denote by, the set of probability vectors IR“. Then for any choice

of the initial distributionp, the empirical vectorg.,, satisfy the large deviation
principle onP,, with rate function

o - (7u);
I+(7) = — inf z; ilog ==

In this formulau is any positive vector iiR*, and (mu); = > 5 m(i.j)u;.

Sketch of Proof. (a) ThatB(¢) has a unigue largest positive eigenvalfe) is

a consequence of the Perron-Frobenius Theorem [72, Thin.Thé differen-
tiability of A(¢) is a consequence of the implicit function theorem and the fac
that\(¢) is a simple root of the characteristic equation (). Fort € R we
calculate

c(t) = lim llogE{eXp[ntYn]}

n—oo n,
1
= lim —log E{exp(t>_ 7 X;)}
n—oo M, . )
= gl_{goglog E exp(? 2,721 i;) piy (i1, ) m(i2, 13) T(in—1,%n)

i1402,enin=1
«

.1 .
= lim —~log > i (B)ivay (BE))iiy (B())i, i, €

i1402,enin=1

log > pi[BE)" Y, €.

i1,ip=1

1
= lim —
n—oo M,
Using a standard limit theorem for irreducible, aperiodiarkbv chains [48, p.
356], one proves that for eadh< 7, j < «
1

n—oo N
Details are givenin [33, Lem. IX.4.1]. It follows thaft) = log A(t). SinceA(t)
and thus:(t) are differentiable for alt, the Gartner-Ellis Theorem implies that
Y, satisfies the large deviation principle Brwith the indicated rate functioh
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(b) We refer the reader to [34, Thm. Ill.1], where this largidtion prin-
ciple for the empirical vectorg,, is proved. The basic idea is that as in part
(a) the rate function is given by a Legendre-Fenchel transfa R®. One then
shows that this Legendre-Fenchel transform eqiiaten P, and equalsc on
R*\ P,. N

We end this section by examining several features of th&n@agllis Theo-
rem. Since in that theorem the rate function is always corave@atural question
Is whether there exist large deviation principles havingaumvex rate func-
tions. Two such examples are given next. Additional exasapgear in [24].

One of the hypotheses of the Gartner-Ellis Theorem is tHerdntiability
of the limit functionc(t). An interesting problem is to investigate the existence
of large deviation principles when this condition is vi@dt Unfortunately, the
situation is complicated and a general theory does not.drigixample 8.3, the
differentiability of the limit functionc(¢) does not hold and the rate function is
not given by a Legendre-Fenchel transform. In another elaansing in the
Ising model in statistical mechanics, the same hypothddiseoGartner-Ellis
Theorem is not valid for all sufficiently large values of tmeerse temperature
defining the model. However, the rate function in the largeiaen princi-
ple for the spin per site is defined by the identical Legertekaehel transform
appearing in the statement of the Gartner-Ellis TheorésnTBm. 11.1].

The first example involves an extreme case of dependent namdoables.

Example 8.3. We define a random varibl&; by the probability distribution
P{X, =1} = P{X, = —1} = 4. For each integef > 2 we define random
variablesX; = X, and forn € N we set

1 n
Y, = E;Xj.

Let us first try to apply the Gartner-Ellis Theorem to thelsstrey,,. For each
t € Randz € R we calculate

1 1. (1
c(t) = lim —log E{exp(ntY,)} = lim —log (—[e”t+ e—nt]> — |t

n—oo N n—oo 1 2
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and

0 if|z|] <1
I — — —
)= smptes ety = £ 0, 4

Sincec(t) = [t| is not differentiable at t = 0, the Gartner-Ellis Theorerms
applicable. In facty,, satisfies the large deviation principle &nwith the rate

function
if 1, -1
J(z) = 0 I el -l
oo ifzeR\{l,—1}.
This is easily checked sind&,, has the distributiolP{W,, = 1} = P{W,, =
—1} = 1. The function/ is the largest convex function less than or equal to the
rate function/. This completes the first examplill

The second example generalizes Cramer’s Theorem to thegsetta ran-
dom walk with an interface.

Example 8.4.We define the sets
AV ={zeR!: 2, <0}, AP ={zeR? 2, >0}, 0={zeR?:z =0},

wherez; denotes the first component of ¢ R?. We define a random walk
model for which the distribution of the next step dependshentalfspace\ ()

or A® in which the random walk is currently located. To this enddét and

p'?) be two distinct probability measures &{. Although it is not necessary,
for simplicity we assume that the support of each measurdl of R?. Let
{X;l),j € N} and {X]@),j € N} be independent sequences of i.i.d. random
vectors with probability distributions{X " € dz} = p)(dz) and P{X " €

dz} = p®(dx). We consider the stochastic procéss, n € N U {0}}, where

Sy = 0 andsS,,;, is defined recursively fron§,, by the formula

Sn+1 - Sn + 1{Sn€A(1)} : X;Ll) + 1{Sn€A(2)} : Xéz)

Fori = 1,2, 11 -, denotes the indicator function of the sef, € A}
Because of the abrupt change in distribution across thasewf we call this
random walk a model with discontinuous statistics. In [2€] show thatS,, /n
satisfies the large deviation principle &f. The rate function is given by an
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explicit formula that takes a complicated form along theifaceo. We will
not give the definition of the rate function here, but meradjerthat in general
it is @ nonconvex function oR¢ which is convex in each of the halfspace$)
andA®. If the measures”) andp® coincide, then the main theorem of [29]
reduces to Cramér’s Theorem.

The large deviation phenomena investigated in [29] are amgke of the
fascinating problems that arise in the study of other Magkmcesses with dis-
continuous statistics. The main theorem of [29] is geneedlin [31, Ch. 6] to
a large deviation principle for the entire path of the randeaik. In [32] a large
deviation upper bound is proved for a general class of Mafkozesses with
discontinuous statistics. An important group of procesg#ls discontinuous
statistics arises in the study of queueing systems. The Bagiation principle
for a general class of such systems is proved in [30]. Thigxetas the second
example.ll

In the next section we begin our study of statistical meatenmodels by
considering the Curie-Weiss spin model.
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9 The Curie-Weiss Model of Ferromagnetism

The Curie-Weiss model of ferromagnetismis one of the sist@eamples of an
interacting system in statistical mechanics. As we will sethe next section,
using the theory of large deviations to analyze this modgfjssts how one can
apply the theory to analyze much more complicated models.

The Curie-Weiss model is a spin system on the configuratianes), =
{—1,1}"; the value—1 represents “spin-down” and the value 1 “spin-up.” Let
p = 16_1+10; and letP, denote the product measure@pnwith one-dimensional
marginalsp. ThusP,{w} = 1/2" for each configuration or microstate =
{wi,i=1,...,n} € Q,. The Hamiltonian, or energy, aof is defined by

2
1 © n (1
H,(w) = “5 Z wiwj = =5 (EZQ}]) : (9.1)
j=1

i,j=1
and the probability ofv corresponding to inverse temperatgre- 0 is defined
by the canonical ensemble
1
Z,(B)

whereZ, (/3) is the partition function

P plw}t = exp|—GH, (W)] P{w}, (9.2)

2,(3) = [ expl-H, @) Pafde) = 3 expl-BH. (o)) 3
U we,
P, 3 models a ferromagnet in the sense that the maximurk,of{w} over
w € (), occurs at the two microstates having all coordinatesqual to—1
or all coordinates equal to 1. Furthermore,as— oo all the mass off, 5
concentrates on these two microstates. The Curie-WeiseIn®dised as a
mean-field approximation to the much more complicated Ismaglel and re-
lated short-range, ferromagnetic models [3&9].

A distinguishing feature of the Curie-Weiss model is its gharansition.
Namely, the alignment effects incorporated in the GibbgestR, 5 persist in
the limitn — oo. This is most easily seen by evaluating the— oo limit
of the distributionsP, s{S,/n € dz}, whereS,, (w)/n equals the spin per site



Richard S. Ellis: Lectures on the Theory of Large Deviations 67

> i wj/n. We will see that foy3 < 1 this limit acts like the classical weak law
of large numbers, concentrating on the value 0. Howevey; forl the analogy
with the classical law of large numbers breaks down; thenatignt effects are
so strong that the limiting’, s-distribution of S,,/n concentrates on the two
pointstm () for somem(3) € (0,1). The analysis of the Curie-Weiss model
to be presented below can be easily modified to handle annexteragnetic
field h. The resulting probabilistic description of the phasedraon yields the
predictions of mean field theory [38Y.9], [67, §3.2].

We calculate thes — oo limit of P, 5{S,/n € dx} by establishing a large
deviation principle for the spin per site with respectg;. For eachn, S, /n
takes values if—1, 1]. By the equivalence between the Laplace principle and
the large deviation principle asserted in Theorem 6.9, fiicas to find a rate
function; on [—1, 1] such that for any continuous functignmapping[—1, 1]
into R
lim > log / {explnf(Su/m)] dPoy = sup {f(z) — Is(x)}.

n—oon re[—1,1]

In order to prove this Laplace principle, we definér) = —%ﬁxz for x €
[—1,1] and appeal to a number of results established earlier ire teesures.
Since

n Sp(w))?
Hn _§< ZW7> :__< n )7
we can write

1

Poe) = T s ap, SV S ] Bio)

In addition, by the version of Cramér’'s Theorem given in @iary 6.6, with
respect taP,, S, /n satisfies the Laplace principle with rate function

I(z) = 3(1 — z)log(l — z) + 3(1 + z) log(1 + ).

We can thus apply Theorem 6.13 with = [—1,1]. We restate the theorem
here for easy reference.
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Theorem 9.1. Assume that with respect to the probability measuresY,,
satisfies the large deviation principle oti with rate function/. Lety be a
bounded, continuous function mappiAginto R. For A € F, we define new
probability measures

1
f;( exp[—n(Y,)] dP, |

Then with respect t&’, ,, Y,, satisfies the large deviation principle oxi with
rate function

P yplA} =

/ exp|—n (Y, )] dP,.
A

Iy(x) = I{z) + () — nf I (y) + P(y)}-

This gives the following large deviation principle f&}, /n with respect to
the Curie-Weiss model. We write the rate functior/asather than as,,.

Theorem 9.2.With respect to the canonical ensemblg; defined in(9.2), the
spin per siteS, /n satisfies the large deviation principle dn 1, 1] with rate
function

Iofa) = I(e) =422 = int {I(y) = $60°).

The limiting behavior of the distributions,, s{S,/n € dx} is now deter-
mined by examining wheré; attains its infimum of) [33, §IV.4]. Infimizing
pointsz* satisfy

Iﬁ/(:z:*) =0 or I(z%) = pa".
The second equation is equivalent to the mean field equatien(I') ™' (5z*) =
tanh(Gx*) [33, §V.9], [67, §3.2]. The next theorem is a consequence of the fol-
lowing easily verified properties df

e I'(0) = 1.
e I'is convex o0, 1] andlim,_.; I (z) = oo.

e I'is concave ofi—1,0] andlim,_,_; I '(z) = —oc.
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Theorem 9.3.For eachs > 0 we defin€€s = {z € [-1,1] : I3(z) = 0}. The
following conclusions hold.

(@For0<p<1,E& ={0}.

(b) For 5 > 1 there existsn (/) > 0 such thats = {£m(()}. The function
m(/3) is monotonically increasing ofil, oo) and satisfiesn(5) — 0 asf —
17, m(B) — 1lasfs — .

According to Proposition 6.4, ifl is any closed subset ¢ 1, 1] such that
AUEz; =0, thenI(A) > 0 and for some&”' < oo

P, s{Sn/n € A} < C exp|—nl(A)/2] — 0asn — .

In combination with Theorem 9.3, we are led to the followingak limits:

1 5 if 0<p<1
P, 33 — i € dr p = _ 9.3
’6{” ;w x} { 30m(e) + 30-mp 1 5>1. &3

We call m () the spontaneous magnetization for the Curie-Weiss modgl an
B. = 1 the critical inverse temperature [33V.4].

The limit (9.3) justifies callings the set of equilibrium macrostates for the
spin per siteS,,/n in the Curie-Weiss model. Becausds) — 0 asff — 17
and 0 is the unique equilibrium macrostatefor. 5 < 1, the phase transition at
0. Is said to be continuous or second order. It is not difficutliow that points
z* € &£z have an equivalent characterization in terms of a maximutropy
principle. Because of the relatively simple nature of thedelpthis maximum
entropy principle takes a rather trivial form. The detars amitted.

Before leaving the Curie-Weiss model, there are severatpthat should be
emphasized. The first is to emphasize what makes possiblartieedeviation
analysis of the phase transition in the model. In (9.1) wdenthie Hamilto-
nian as a quadratic function of the spin per sitgn, which by the version of
Cramér’s Theorem given in Corollary 6.6 satisfies the lalg@ation principle
on [—1, 1] with respect to the product measurBs The equivalent Laplace
principle allows us to convert this large deviation prirleimto a large devi-
ation principle with respect to the canonical ensem)]g. The form of the
rate function/; allows us to complete the analysis. In the next section we wil
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generalize these steps to formulate a large deviation apprio a wide class of
models in statistical mechanics.

Our large deviation analysis of the phase transition in theec\Weiss model
has the attractive feature that it directly motivates thgspdal importance of s.
This setis the support of the— oo limit of the distributionsP, 3{.5,,/n € dz}.
As we will see in the next section, an analogous fact is truaflarge class of
statistical mechanical models [Thm. 10.3].

The large deviation analysis of the Curie-Weiss model wielte limiting
behavior of theP, s-distributions ofS,, /n. For0 < # < 1this limit corresponds
to the classical weak law of large numbers for the sample sefin.d. random
variables and suggests examining the analogues of otresicdh limit results
such as the central limit theorem. We end this section by samamg these
limit results for the Curie-Wiess, referring the reader38,[5V.9] for proofs.
If 6 € (0,1) andf is a nonnegative integrable function &y then the notation
P,3{S,/n’ € dx} = fdx means that the distributions &f,/n’ converge
weakly to the probability measure dhhaving a density proportional tbwith
respect to Lebesgue measure.

In the Curie-Weiss model fai < § < 1, the interactions among the spins
are relatively weak, and the analogue of the central lingbtem holds [33,
Thm. V.9.4]:

P, {S,/n'? € dz} = exp|—3z%/0%(B)] dx,

wherec?(3) = 1/(1 — 3). However, wher3 = 3, = 1, the limiting variance
o%(3) diverges, and the central limit scalind’? must be replaced by?/*,
which reflects the onset of long-range ordersat In this case we have [33,
Thm. V.9.5]
P ASn/n** € da} = exp[—5z!] dz.

Finally, for 3 > 3., (S, — nZ)/n'/? satisfies a central-limit-type theorem when
Sy,/n is conditioned to lie in a sufficiently small neighborhoodtof m(3) or
z = —m(B); see Theorem 2.4 in [41] with = 1.

The results discussed in this section have been extengjealgralized to a
number of models, including the Curie-Weiss-Potts modg| fi4], the mean-
field Blume-Emery-Griffiths model [12, 42], and the Ising arethted models
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[25, 49, 65]. For the latter models, refined large deviatiatnte surface level
have been studied; see [20, p. 339] for references.
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10 Equivalence of Ensembles for a General Class of Models
in Statistical Mechanics

Equilibrium statistical mechanics specifies two ensentbiaisdescribe the prob-
ability distribution of microstates in statistical mecleal models. These are
the microcanonical ensemble and the canonical ensembiéc®arly in the
case of models of coherent structures in turbulence, theocatconical ensem-
ble is physically more fundamental because it expressdacthéhat the Hamil-
tonian is a constant of the Euler dynamics underlying theehod

The introduction of two separate ensembles raises the pestem of en-
semble equivalence. As we will see in this section, the theblarge deviations
and the theory of convex functions provide the perfect tbmisanalyzing this
problem, which forces us to re-evaluate a number of deeptignsghat have
often been dismissed in the past as being physically obvibbhese questions
include the following. Is the temperature of a statisticaamanical system
always related to its energy in a one-to-one fashion? Arartleeocanonical
equilibrium properties of a system calculated as a funatidhe energy always
equivalent to its canonical equilibrium properties cadtatl as a function of
the temperature? |Is the microcanonical entropy always aas@nfunction of
the energy? Is the heat capacity always a positive quan8wyprisingly, the
answer to each of these questions is in general no.

Starting with the work of Lynden-Belland Wood [58] and thertwof Thirring
[75], physicists have come to realize in recent decadessisi¢matic incom-
patibilities between the microcanonical and canonicaéserides can arise in
the thermodynamic limit if the microcanonical entropy ftioo of the system
under study is nonconcave. The reason for this nonequivalean be ex-
plained mathematically by the fact that when applied to acnaoave function
the Legendre-Fenchel transform is non-involutive; i.erf@rming it twice does
not give back the original function but gives back its corecamvelope [42, 76].
As a consequence of this property, the Legendre-Fenchelste of statistical
mechanics, traditionally used to establish a one-to-olatioaship between the
entropy and the free energy and between the energy and tipetatare, ceases
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to be valid when the entropy is nonconcave.

From a more physical perspective, the explanation is evaplsr. When
the entropy is nonconcave, the microcanonical and canlbersembles are
nonequivalent because the nonconcavity of the entropyi@shie existence of
a nondifferentiable point of the free energy, and this, mtmarks the presence
of a first-order phase transition in the canonical ensen@gg1]. Accordingly,
the ensembles are nonequivalent because the canonicall@degamps over a
range of energy values at a critical value of the temperauackis therefore
prevented from entering a subset of energy values that eayalbe accessed
by the microcanonical ensemble [36, 51, 75]. This phenomédi®s at the
root of ensemble nonequivalence, which is observed in systes diverse as
lattice spin models, including the Curie-Weiss-Potts ni¢t& 14], the mean-
field Blume-Emery-Griffiths model [2, 3, 42, 43], mean-fieldrsions of the
Hamiltonian model [19, 56], and the XY model [18]; in gravitanal systems
[51, 52, 58, 75]; in models of coherent structures in turbo&e[9, 36, 37, 47,
53, 70]; in models of plasmas [54, 73]; and in a model of therlagd-Jones
gas [5], to mention only a few. Many of these models can beyaedl by the
methods to be introduced in this section, which summarieedikults in [36].
Further developments in the theory are given in [15]. Theleeas referred
to these two paper for additional references to the largedlitire on ensemble
equivalence for classical lattice systems and other models

In the examples cited in the preceding paragraph as well@tar cases, the
microcanonical formulation gives rise to a richer set ofiklgium macrostates
than the canonical formulation, a phenomenon that occpescgally in the neg-
ative temperature regimes of the vorticity dynamics mo[#1s23, 47, 53]. For
example, it has been shown computationally that the styoreylersing zonal-
jet structures on Jupiter as well as the Great Red Spot faltie nonequivalent
range of the microcanonical ensemble with respect to theggmad circulation
invariants [78].

The general class of models to be considered include bothnspdels and
models of coherent structures in turbulence, and for thesesets of models
several of the definitions take slightly different forms. elimodels to be con-
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sidered are defined in terms of the following quantities.eAfiresenting the
general setup, we will verify that it applies to the Curiei®$amodel. The large
deviation analysis of that model, summarized in the prewgsection, inspired
the general approach presented here.

e A sequence of probability spacé€s,,, F,,, P,) indexed byn € N, which
typically represents a sequence of finite dimensional systd he(2,, are
the configuration spaces, € (1,, are the microstates, and tii¢ are the
prior measures.

e For eachn € N the HamiltonianX,,, a bounded, measurable function
mappings?2,, into R.

e A sequence of positive scaling constamis— oo asn — oo. In general
a, equals the total number of degrees of freedom in the modehadny
cases:,, equals the number of particles.

Models of coherent structures in turbulence often incaoother dynam-
ical invariants besides the Hamiltonian; we will see suchaaehin the next
section. In this case one replacds in the second bullet by the vector of dy-
namical invariants and makes other corresponding changhas theory, which
are all purely notational. For simplicity we work only withé Hamiltonian in
this section.

A large deviation analysis of the general model is possitdeiged that there
exist, as specified in the next four items, a space of madessta sequence of
macroscopic variables, and an interaction representatrartion and provided
that the macroscopic variables satisfy the large devigtrorciple on the space
of macrostates. Item 3 takes one form for spin models anderelift form for
models of coherent structures in turbulence. Items 1, 2 4aaek the same for
these two sets of models.

1. Space of macrostates This is a complete, separable metric space
which represents the set of all possible macrostates.
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2. Macroscopic variables. These are a sequence of random variables
mapping(?, into X. These functions associate a macrostat&’imith
each microstate < (2,,.

3. Hamiltonian representation function. This is a bounded, continuous
function A that mapsY into R and enables us to writH,,, either exactly
or asymptotically, as a function of the macrostate via thenzscopic vari-
ableY,,. The precise description for the two sets of models is asvid!

Spin models.As n — oo

H,(w) = a,H(Y,(w)) 4+ 0o(a,) uniformly forw € Q,;

le.,
lim sup |—H, (w) — H(Y,(w))| = 0. (10.1)
n—00 weQ, | On
Models of coherent structures in turbulenc&s n — oo
H,(w) = H(Y,(w)) + 0o(1) uniformly forw € Q,;
le.,

lim susg) |H,(w) — H(Y,(w))| = 0. (10.2)
n—0%0 Leq
4. Large deviation principle for the macroscopic variables. There exists
a function/ mappingX into [0, oc] and having compact level sets such
that with respect td’, the sequencé,, satisfies the LDP o’ with rate
function/ and scaling constants,. In other words, for any closed subset
FofXx !
limsup — log P, {Y,, € F'} < —inf I(z),

n—oo an reF

and for any open subsét of X

1
liminf —log P, {Y,, € G} > — inf I(x).

n—oo  (y r€G

We now verify that this general setup applies to the Curiesgvmodel.
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Example 10.1.

n spinsw; € {—1,1}.
Microstatesw = (wy,wo, ..., wy) € Q, = {-1,1}".

Prior measures: !
P,(w) = o for eachw € 2,,.

Scaling constantsi,, = n.

Hamiltonians:

Y,, maps(2,, into [—1, 1], which is the space of macrostates.

Energy representation function:

Hy(w) = —3(Yo(w))? = H(Y,(w)), whereH (z) = —1a?forz € [-1,1].
Thus (10.1) holds with equality for all without the error term @,,).
Large deviation principle with respect 1),

PAY, € dx} =< e M@,

The version of Cramér’s Theorem given in Corollary 6.6 givke rate
function

I(z) = 3(1 — z)log(l — z) + 3(1 + z) log(1 + ).

No[—

This completes the exampl@
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Here is a partial list of statistical mechanical models tacktlthe large devi-
ation formalism has been applied. Further details are givgtb, Ex. 2.1].

e The Miller-Robert model of fluid turbulence based on the twoehsional
Euler equations [6]. This will be discussed in section 11.

e A model of geophysical flows based on equations describingtimgpic,
quasi-geostrophic turbulence [37].

e A model of soliton turbulence based on a class of generahoadinear
Schrodinger equations [38]

e Lattice spin models including the Curie-Weis model [3%.4], the Curie-
Weiss-Potts model [13], the mean-field Blume-Emery-Gh#gpin model
[42], and the Ising model [49, 65]. The large deviation aseyf these
models illustrate the three levels of the Donsker-Varadhaory of large
deviations, which are explained in Chapter 1 of [33].

— Level 1. As we have seen, for the Curie-Weiss model the maopis
variables are the sample means of i.i.d. random variabteldjee large
deviation principle with respect to the prior measureseswviarsion of
Cramér’s Theorem given in Corollary 6.6.

— Level 2. For the Curie-Weiss-Potts model [13] and the megld-fi
Blume-Emery-Giriffiths spin model [42] the macroscopic aates are
empirical vectors of i.i.d. random variables, and the ladggiation
principle with respect to the prior measures is the versidhamov’'s
Theorem given in Theorem 3.4,

— Level 3. For the Ising model the macroscopic variables arefante-
dimensional generalization of the empirical measure knawsrthe
empirical field, and the large deviation principle with respto the
prior measures is derived in [49, 65]. This is related to ll@vef the
Donsker-Varadhan theory, which is formulated for a genelasds of
Markov chains and Markov processes [28]. A special caseadd
in [33, Ch. IX], which proves the large deviation principte the em-
pirical process of i.i.d. random variables taking valuea finite state



Richard S. Ellis: Lectures on the Theory of Large Deviations 78

space. The complicated large deviation analysis of theg Isindel is
outlined in [35,511].

Returning now to the general theory, we introduce the mamoaical en-
semble, the canonical ensemble, and the basic thermodgrfanations as-
sociated with each ensemble: the microcanonical entropytla® canonical
free energy. We then sketch the proofs of the large devigtimtiples for the
macroscopic variables, with respect to the two ensembles. As in the case of
the Curie-Weiss model, the zeroes of the correspondingfuatgions define
the corresponding sets of equilibrium macrostates, ongh®microcanoni-
cal ensemble and one for the canonical ensemble. The profiemsemble
equivalence investigates the relationship between thessdts of equilibrium
macrostates.

In general terms, the main result is that a necessary andisutfcondition
for equivalence of ensembles to hold at the level of equiliormacrostates is
that it holds at the level of thermodynamic functions, whishhe case if and
only if the microcanonical entropy is concave. The necgsdithis condition
has the following striking formulation. If the microcancal entropy is not
concave at some value of its argument, then the ensemblasaeguivalent in
the sense that the corresponding set of microcanonicdllegumn macrostates
Is disjoint from any set of canonical equilibrium macrostat The reader is
referred to [3651.4] for a detailed discussion of models of coherent stmastu
in turbulence in which nonconcave microcanonical entropigse.

We start by introducing the function whose support and caibgcproperties
completely determine all aspects of ensemble equivalemt@anequivalence.
This function is the microcanonical entropy, defineddof R by

s(u) = —inf{I(z) :z € X, H(z) = u}. (10.3)

Sincel mapsX into [0, oo, s mapsR into [—oo, 0]. Moreover, sincd is lower
semicontinuous and is continuous o', s is upper semicontinuous d We
define doms to be the set ofi € R for which s(u) > —oo. In general, dom

IS nonempty since-s is a rate function [36, Prop. 3.1(a)]. The microcanonical
ensemble takes two different forms depending on whether amsider spin
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models or models of coherent structures in turbulence. Bohe € doms,
r > 0,n € N, andA € F, the microcanonical ensemble for spin models is
defined to be the conditioned measure

PY"{A} = P,{A| H,/a, € [u —r,u+r7]}.
For models of coherent structures in turbulence we work with
PY"{A}=P{A| H, €lu—r,u+r]}.

As shown in [36, p. 1027], if. € doms, then for all sufficiently large: the
conditioned measurdd’" are well defined.

A mathematically more tractable probability measure isdhronical en-
semble. Foreach € N, § € R, andA € F,, we define the partition function

Zn(ﬁ) = /Q eXp[_ﬁHn] dPn:
which is well defined and finite; the canonical free energy

o(8) = — lim —log Z,(8);

n—o0 Ay,

and the probability measure

P p{A} =

7 1(5) -/Aexp[—ﬁHn] dP,. (10.4)

The measure#), 3 are Gibbs states that define the canonical ensemble for the
given model. Although for spin models one usually takes- 0, in general

6 € R is allowed; for example, negative valuesmérise naturally in the study

of coherent structures in two-dimensional turbulence.

Among other reasons, the canonical ensemble was introduyc&lbbs in
the hope that in the limit — oo the two ensembles are equivalent; all macro-
scopic properties of the model obtained via the microcara@nsemble could
be realized as macroscopic properties obtained via thentzadoensemble.
However, as we will see, this in general is not the case.

The large deviation analysis of the canonical ensemblegdor shodels is
summarized in the next theorem, Theorem 10.2. Additiorfafmationis given
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in Theorem 10.3. The modifications in these two theoremsssacg for ana-
lyzing the canonical ensemble for models of coherent atrastin turbulence
are indicated in Theorem 10.4.

Part (a) of Theorem 10.2 shows that the limit definipg’) exists and is
given by the variational formula

o(B) = wf {BH (x) + I(x)}.

If in the definition of Z,(/3) one could replacél, by a, H, then this limitis a
direct consequence of the Laplace principle¥pmwith respect taP,, which is
equivalent to the assumed large deviation principle¥pmwith respect taP,.
As we will see in the proof, the approximation property (3L A allows us
to make this replacement. Part (b) of Theorem 10.2 statekatbe deviation
principle for the macroscopic variables with respect tooracal ensemble. This
large deviation principle is easy to see. If in the definitodi?, s one replaces
H, by a,H, then it follows immediately from Theorem 6.13. Part (b)lig t
analogue of Theorem 9.2 for the Curie-Weiss model. In parivie consider
the setf; consisting of points at which the rate function in part (dpais its
infimum of 0. The second property 6f given in part (c) justifies calling this the
set of canonical equilibrium macrostates. Part (c) is aigpease of Proposition
6.4.

Theorem 10.2 (Canonical ensemble for spin models)For the general spin
model we assume that there exists a space of macrostatescroscopic vari-
ablesY,, and a Hamiltonian representation functidh satisfying

lim sup |- H, (w) — H(Y,(w)| =0, (10.5)
n—=0 4eqN, ap
where H,, is the Hamiltonian. We also assume that with respect to tiar pr
measuresP,, Y, satisfies the large deviation principle oli with some rate
function/ and scaling constanis,. For eachi € R the following conclusions
hold.
(a) The canonical free energy(3) = — lim, i log Z,,(03) exists and is
given by

p(B) = inf {BH (x) + I(x)}.

reX
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(b) With respect to the canonical ensemblg; defined in(10.4) Y, satisfies
the large deviation principle o with scaling constants,, and rate function

Iy(x) = I(x) + BH(z) — ¢(9).
(c) We define the set of canonical equilibrium macrostates
Es={xr e X : Is(x) =0}.

Then&g is a nonempty, compact subset¥f In addition, if A is a Borel subset
of X such thatd N &; = 0, thenl(A) > 0 and for some&>' < oo

Pos{Y, € A} < Cexpl—nlz(A)/2] — 0 asn — oc.

Proof. Once we take into account the error betwégranda, H (Y, expressed
in (10.5), the proofs of (a) and (b) follow from the Laplacepiple. Here are
the details.

(a) By (10.5)
1 1 ~
L 10g 2,(8) — L 1og /Q exp[—fa, A (Y,)] dP,

a‘TL n

1 3
ilog/ exp|—0H,|dP, — —log/ exp[—fa,H(Y,)] dP,

1
< |B8]— sup |H,(w) — a,H(Y,(w))| — 0 asn — oo.

n wel,

SinceH is a bounded continuous function mappitignto R, the Laplace prin-
ciple satisfied by, with respect taP, yields part (a):

P9) = - lim ~log Z, ()
= — lim ilog/ exp[—ﬁanﬁ(Yn)] dp,
a8y
= —igg{—ﬁﬁ(x)—l(x)}

— inf{BH(z)+ I(x)}.

reX
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(b) Rather than derive this from Theorem 6.13, we proceed teeiproof of
part (a), but now withP, 5 replacingP,. For any bounded continuous function
f mappingX’ into R, again (10.5) and the Laplace principle satisfiedpyvith
respect taP, yield

1
lim —log/ explanf(Yn)] dPn s
Q,

n—o0 Ay,

1 1
~ lim —log / explanf(V,) — BH,] dPy — lim —log Zn(8)
Q,

n—00 Ay, n—0o0 Uy,

— tim L log /Q explan( F(Ya) — BE(Y,)] dPy — Tim —log Zy(8)

n—oo A, n—o0 Ay,

= sup{ f(z) — BH(z) — I(z)} + ¢(p)

zeX
= sup{ f(z) — Is(z)}.

reX
By hypothesis] has compact level sets afiis bounded and continuous. Thus
I3 has compact level sets. Sinfemapsa’ into [0, oo], I3 is a rate function.
We conclude that with respect 19, 3, Y,, satisfies the Laplace principle, and
thus the equivalent large deviation principle, with scgltonstants,, and rate
function /.

(c) This is proved in Proposition 6.4. The display in partiéchased on the

large deviation upper bound fdf, with respect taP, g, which was proved in
part (b). The proof of the theorem is complelh.

The second property é¥; given in part (c) of the theorem can be regarded as
a concentration property of th¢, s-distributions ofY;, which justifies calling’;
the set of canonical equilibrium macrostates. With resfueittese distributions,
the probability of any Borel set whose closure has empty intersection with
goes to 0 exponentially fast with),. This large deviation characterization of the
equilibrium macrostates is an attractive feature of ouraggh.

The concentration property of the, s-distributions ofY;, as expressed in
part (c) of the theorem has a refinement that arises in ouy sitithe Curie-
Weiss model. From Theorem 9.3 we recall thgt= {0} for 0 < 5 < 1
and&z = {£m(pH)} for 3 > 1, wherem(p) is the spontaneous magnetiza-
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tion. According to (9.3), for all > 0 the weak limit of P, 3{S,/n € dx}

is concentrated od&s. While in the case of the general model treated in the
present section one should not expect such a precise faionylthe next the-
orem gives considerable information, relating weak linotsubsequences of
P, 3{Y, € dx} to the set of equilibrium macrostat€s. For example, if one
knows that€s consists of a unique point, then it follows that the entire se-
quencepP, 3{Y,, € dx} converges weakly t6;. This situation corresponds to
the absence of a phase transition. The proof of the theoréechmical and is
omitted.

Theorem 10.3 (Canonical ensemble for spin systemsjVe fixg € R and use

the notation of Theorerh0.2 If £5 consists of a unique point thenP, z{Y,, €

dr} = d;. If £; does not consist of a unique point, then any subsequence
of P, 3{Y, € dz} has a subsubsequence converging weakly to a probability
measurdlz on X' that is concentrated ofig; i.e., I13{(€3)} = 0.

In order to carry out the large deviation analysis of the céced ensemble
for models of coherent structures in turbulence, in Thesrg#th2 and 10.3 one
must make two changes: replace the limit (10.5) by

lim sup |H,(w) — H(Y,(w))| =0, (10.6)
n—00 ,yeQ,

where H,, is the Hamiltonian, and replacg,(5) and P, g by Z,(a,3) and
P,..,5- For easy reference, this is summarized in the next theorem.

Theorem 10.4 (Canonical ensemble for models of coherent sictures in
turbulence). For the general model of coherent structures in turbuleneeag+
sume that there exists a space of macrostatesacroscopic variables,,, and

a Hamiltonian representation functidi satisfying(10.6) We also assume that
with respect to the prior measurés, Y, satisfies the large deviation principle
on X with some rate function and scaling constants,. Then for eacl € R
all the conclusions of Theoreni®.2 and 10.3 are valid provided thatZ, ()
and P, s are replaced byZ,,(a,,3) and P, , 3.
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In order to carry out the large deviation analysis of the mganonical en-
semble, we recall the relevant definitions. koE R the microcanonical en-
tropy is defined by

s(u) = —inf{I(z) : 2z € X, H(z) = u}.

For eachu € doms, » > 0, n € N, and setd € F, the microcanonical
ensemble for spin models is defined by

Pv"{A} = P,{A| H,/a, € [u —r,u+ r|}, (10.7)

while the microcanonical ensemble for models of coherextestin turbulence
Is defined by
Pir{A} = PA| Hy € u—ru+1l}, (10.8)

In order to simplify the discussion we will work with the memranonical
ensemble for models of coherent states in turbulence. Hanent of the
microcanonical ensemble for spin models is analogous. sveair analysis of
the microcanonical ensemble by pointing out thatis the rate function in the
large deviation principles, with respect to the prior meas#,,, of bothf[(Yn)
andH,. In order to see this, we recall that with respecig Y,, satisfies the
large deviation principle with rate functiah SinceH is a continuous function
mappingX into R, the large deviation principle fal (Y,) is a consequence of
the contraction principle [Thm. 6.12]. Fare R the rate function is given by

inf{I(z):x € X, H(z)=u} = —s(u).
In addition, since

lim sup |H,(w) — H(Y,(w))| =0,

=00 LeQ,
H, inherits fromH (Y;,) the large deviation principle with the same rate func-
tion. This follows from Theorem 6.14 or can be derived as ia pinoof of
Theorem 10.2 by using the equivalent Laplace principle. Warsarize this
large deviation principle by the notation

P.{H, € du} < expla,s(u)]. (10.9)
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Forx € X anda > 0, B(z, a) denotes the open ball with centeand radius
«. We next motivate the large deviation principle fgr with respect to the
microcanonical ensemblg’" by estimating the exponential order contribution
to the probabilityP*"{Y,, € B(x,a)} asn — oo. Specifically we seek a
function I* such that for alk: € doms, all z € X', and alla. > 0 sufficiently
small

PY"{Y, € B(x,a)} =~ exp|—a,["(z)] asn — oco,7 — 0,a — 0. (10.10)

The calculation that we present shows both the interpretveer of the large
deviation notation and the value of left-handed thinkinggh8ugh the calcula-
tion is a bit complicated, it is much more straightforwardritthe actual proof,
which is given in [3633] (see Thm. 3.20).
We first work withz € X for which I(z) < oo andH(z) = u. Such an:

exists since, € doms and thuss(u) > —oo. Because

lim susg) |H,(w) — H(Y,(w))| =0,

n=—00 Leq)
for all sufficiently largen depending o the set ofv for which bothY,,(w) €
B(z,a) and H,(w) € [u — r,u + r] is approximately equal to the set of
for which bothY,,(w) € B(z,«) and H(Y,(w)) € [u — r,u + r]. SinceH
is continuous and?(z) = u, for all sufficiently smalla compared ta- this
set reduces tdw : Y, (w) € B(z,«)}. Hence for all sufficiently smalt, all
sufficiently largen depending om, and all sufficiently smallk compared tor,
the assumed large deviation principle gy with respect toP, and the large
deviation principle forH,, summarized in (10.9) yield

P.{{Y, € B(z,a)} N{H, € [u—7r,u+r]}}
PAH, €u—ru+r]}
P{Y, € B(x,a)}
P{H, € u—ru+r]}
~ exp[—a,(I(x)+ s(u))].

PY"{Y, € B(x,a)} =

On the other hand, if7(z) # u, then a similar calculation shows that for
all sufficiently smallr, all sufficiently smalla, and all sufficiently largen
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P»™{Y, € B(z,a)} = 0. Comparing these approximate calculations with
the desired asymptotic form (10.10) motivates the correchitila for the rate
function [36, Thm. 3.2]:

" I(z) + s(u) if H(z)=u,
I(z) = { o0 if H(x) # u. (10.11)

We record the facts in the next theorem, which takes the samelfoth for
spin models and for models of coherent structures in tunmdeAn additional
complication occurs in the statement of the large devigtramciple in part (b)
because it involves the double limit— 0 followed byr — 0. In part (¢c) we
introduce the set of microcanonical equilibrium macrast&t and state a con-
centration property of this set with respect to the micracacal ensemble that
is analogous to the concentration satisfied by th€ sef canonical equilibrium
macrostates with respect to the canonical ensemble. Tiod igrsimilar to the
proof of the analogous property 6f given in part (c) of Theorem 10.2, and it
Is therefore omitted.

Theorem 10.5 (Microcanonical ensemble) Both for the general spin model
and for the general model of coherent structures in turboéewe assume that
there exists a space of macrostafésmacroscopic variables,,, and a Hamil-
tonian representation functioAl satisfying(10.1)in the case of spin models
and(10.2)in the case of models of coherent structures in turbulenc=alb
assume that with respect to the prior measuiesY,, satisfies the large devi-
ation principle onX” with scaling constants,, and some rate functioh. For
eachu € doms and anyr € (0, 1) the following conclusions hold.

(a) With respect taP,, H (Y,,) and H,, both satisfy the large deviation prin-
ciple with scaling constants, and rate function-s.

(b) We consider the microcanonical ensemblg” defined in(10.7)for spin
models and defined i(10.8) for models of coherent structures in turbulence.
With respect ta?!" and in the double limit. — co andr — 0, Y,, satisfies the
large deviation principle onX’ with scaling constants,, and rate function/*
defined in(10.11) That is, for any closed subsketof X

lim lim sup 1 log P“"{Y, € F} < —I"(F)

=0 pnoco Gp
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and for any open subsét of X

1
lim liminf —log P""{Y,, € G} > —I"(G).

r—0 n—oo a,

(c) We define the set of equilibrium macrostates
E'={z e X :I"z) =0}

Then&" is a nonempty, compact subsetof In addition, if A is a Borel subset
of X such thatd N £* = (), thenI*(A) > 0 and there exists, > 0 and for all
r € (0,ry] there exist®, < oo

Pos{Y, € A} < Crexp|-nlz(A)/2] — 0 asn — oo.

In the remainder of this section we investigate issueseadlad the equiv-
alence and nonequivalence of the canonical and microceamloensembles,
which involves studying the relationships between the tets sf equilibrium
macrostates

Eg={re X :Isx)=0} and " ={zr € X : ["(x) =0}.
The following questions will be considered.

1. Giveng € R andx € &g, does there exists € R such thatr € £? In
other words, is any canonical equilibrium macrostate realmicrocanon-
ically?

2. Givenu € Randz € £, does there exigt € R such thatr € £53? In other
words, is any microcanonical equilibrium macrostate esalicanonically?

As we will see in Theorem 10.6, the answer to question 1 isydwas, but
the answer to question 2 is much more complicated, involthinge possibili-
ties.

2a. Full equivalence.There exist$3 € R such that™® = &;.

2b. Partial equivalence.There exist$} € R such that® C £z but&" # &;s.
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2c. Nonequivalence £* is disjoint from&j for all 5 € R.

One of the big surprises of the theory to be presented hehaisme are able
to decide on which of these three possibilities occur by erarg support and
concavity properties of the microcanonical entrogy). This is remarkable
because the sets and&" are in general infinite dimensional while the micro-
canonical entropy is a function d&.

In order to begin our study of ensemble equivalence and nownglence, we
first recall the definitions of the corresponding rate fumas:

Iy(x) = I(x) + BH(x) — (B),

wherey(3) denotes the canonical free energy
P(8) = it {BH(2) + ()},
and

00 if H(x)# u,
wheres(u) denotes the microcanonical entropy

Ii(z) = { I(z) + s(u) if H(z)=u,

s(u) = —inf{I(z) : 2z € X, H(z) = u}.

Using these definitions, we see that the two sets of equihibmacrostates have
the alternate characterizations

£y ={x € X : I(z) + BH(z) is minimized

and
£" = {z € X : I(x) is minimized subject td (z) = u}.

Thus&® is defined by the following constrained minimization prahléor v €
R:

minimize () over X’ subject to the constraii () = w. (10.12)

By contrast£; is defined by the following related, unconstrained miniricra
problem forg € R:

minimizel(z) + 3H(z) overz € X. (10.13)
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In this formulation3 is a Lagrange multiplier dual to the constrakfifz) =
u. The theory of Lagrange multipliers outlines suitable abads under which
the solutions of the constrained problem (10.12) lie ambegctitical points of
I + BH. However, it does not give, as we will do in Theorems 10.6e8sary
and sufficient conditions for the solutions of (10.12) tormide with the solu-
tions of the unconstrained minimization problem (10.13)e3e necessary and
sufficient conditions are expressed in terms of support andavity properties
of the microcanonical entropy(u).

Before we explain this, we reiterate a number of properties 6) ands(u)
that emphasize the fundamental nature of these two themamaiy functions.
Properties 1, 2, and 3 show a complete symmetry between titencal and
microcanonical ensembles, a state of affairs that is spbyeproperty 4.

1. Bothy(3) ands(u) are given by limits and by variational formulas.

e () expresses the asymptotics of the partition function

2,3) = | ewl-5H,] P,
Q,
via the definition

o(B) = — Tim ~log Zy(8).

n—o0 Ay,

In addition,p(3) is given by the variational formula [Thm. 10.2(a)]
p(B8) = inf {BH () + I(x)}.

reX

e s(u) is defined by the variational formula
s(u) = —inf{I(z): 2z € X, H(z) = u}.

In additions(u) expresses the asymptotics Bf{ H,, € du}, which
satisfies the large deviation principle with rate functies(«) [Thm.
10.5(a)]; i.e.,P,{H, € du} = expla,s(u)]. Furthermore, for €
doms we have the limit [36, Prop. 3.1(c)]
1
s(u) = lim lim —log P,{H,, € [u — r,u + r]}.

r—0n—oo @,
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2. Bothy() ands(u) are respectively the normalization constants in the rate
functionsiz and/" in the large deviation principles faf, with respect to
the canonical ensemble and with respect to the microcaalemsemble:

Iy(z) = I(x) + BH(x) — ¢(B)
and

v ) I@) +s(u) i H(z) =,
I(x)_{oo if H(x)# u,

3. The sets of equilibrium macrostates have the alternaecterizations
£y ={x € X : I(z)+ BH(z) is minimized
and
£ = {x € X : I(x) is minimized subject td (z) = u}.
e Thus&; consists of all: € X at which the infimum is attained in
o(B) = wf {BH (x) + I(x)}.
e Thus&" consists of all: € A at which the infimum is attained in
s(u) = —inf{I(z): z € X, H(z) = u}.
4. p(B) ands(u) are related via the Legendre-Fenchel transform
P(8) = inf {Bu — s(u)}. (10.14)

As do the two formulas fop(g3) is item 1, this Legendre-Fenchel trans-
form shows thatp(3) is always concave, evendfu) is not. Unlesss(u)
is concave oiR, the dual formulas(u) = infser{Bu — ¢(8)} is not valid.

e Proof 1 of (10.14) using variational formulas:
o(B) = inf{BH(x)+I()}
- iglf&inf{ﬁﬂ(x) +I(z):x € X,H(x) =u}
= inf{fu+inf{l(z) : v € ¥, H(z) = u}
= inf{fu — s(w)}
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e Proof 2 of (10.14) using asymptotic properties:

o(B) = — lim —log Z,(5)

n—o0 Ay,

1
= — lim —log/ exp[—(H,|dP,
Qy

n—o0 Ay,

1
= — lim —log/ exp[—pu] P, {H, € du}
R

n—o0 Ay,

= —sup{—Pu+ s(u)}

uelR

= inf{Bu — s(u)}

To derive the next-to-last line we use the fact that with eespo P,,

H,, satisfies the large deviation principle, and therefore thevalent
Laplace principle, with rate functionrs(u) [Thm. 10.5(a)]. Invoking
the Laplace principle is a bit of cheating since the iderfiiyction
mappingu € R — w is not bounded.

The complete symmetry between the two ensembles as indibgteroper-
ties 1, 2, and 3 is spoiled by property 4. Although one caninhté3) from
s(u) via a Legendre-Fenchel transform, in general one cannatrofit.) from
¢() via the dual formula unlessis concave ofR. The concavity ofs on R
depends on the nature défand H. For example, iff is convex onX and H
Is affine, thens is concave oR. Because of the local mean-field, long-range
nature of the Hamiltonians arising in many models of cohiestanctures in tur-
bulence, the associated microcanonical entropies arealypinot concave on
subsets oR corresponding to a range of negative temperatures. Thiasison
indicates that of the two thermodynamic functions, the nganonical entropy
Is the more fundamental, a state of affairs that is reinfdtme the results on
ensemble equivalence and nonequivalence to be present@édanem 10.6.

In order to state this theorem, we need several definitionfindtion f on
R is said to be concave dR, or concave, it~ f is a proper convex function in
the sense of [71, p. 24]; thatig,mapsR intoRU {—oc}, f # —o0o, and for all
uwandvin Rand allx € (0,1)

fAu+ (1 =Mv) =2 Af(u) + (1= A)f(v).
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Given f # —oo a function mappin@ into R U {—o0}, we define donf to be
the set ofu € R for which f(u) > —oco. Let 3 be a point inR. The functionf
Is said to have a supporting lineatt domf with tangent3 if

f(v) < f(u) + B(v —u) forallv € R.

It follows from this inequality that: € domf. In addition,f is said to have a
strictly supporting line at: € domf with tangents if the inequality in the last
display is strict for alby # .

Let f £ —oco be a function mappin® into R U {—oco}. For§ andu in R
the Legendre-Fenchel transforrfisand f** are defined by [71, p. 308]

7(8) = inf{Bu — f(w)} and £ (u) = inf {Bu— *(8)}.

As in the case of convex functions [33, Thm. VI.5.8],is concave and upper
semicontinuous ofR, and for allu € R we havef**(u) = f(u) if and only
if fis concave and upper semicontinuousknlf f is not concave and upper
semicontinuous ofR, then f** is the smallest concave, upper semicontinuous
function onR that satisfiesf**(u) > f(u) for all u € R [15, Prop. A.2]. In
particular, if for someu, f(u) # f**(u), thenf(u) < f*(u).

Let f £ —oo be a function mappin® into R U {—oo}, v a point in domy,
andK a convex subset of doih The first three of the following four definitions
are reasonable becaufg is concave orR.

e fisconcave at if f(u) = f**(u).
e fisnotconcave at if f(u) < f**(u).
e fisconcave or if fisconcave atall € K.

e f is strictly concave otk if for all u # v in K and all\ € (0,1)

FOw+ (1= X)) > Af(u) + (1= X f(v).

We now state the main theorem concerning the equivalencaamedquiv-
alence of the microcanonical and canonical ensembles. rAoapto part (d),
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canonical equilibrium macrostates are always realizedonanonically. How-
ever, according to parts (a)—(c), the converse in genefalds. The three pos-
sibilities given in parts (a)—(c) depend on support and awitg properties of
the microcanonical entropy(u).

Theorem 10.6.In parts(a), (b), and(c), © denotes any point idoms.
(a) Full equivalence. There existg} € R such thatt" = &; if and only if s
has a strictly supporting line at with tangents; i.e.,

s(v) < s(u) + B(v — u) for all v # w.

(b) Partial equivalence. There existg$ € R such thatt™ C £z but&" # &3
if and only ifs has a nonstrictly supporting line atwith tangents; i.e.,

s(v) < s(u) + (v — u) for all v with equality for some # w.

(c) Nonequivalence. For all 5 € R, £“ N &z = () if and only if s has no
supporting line aty; i.e.,

for all § € R there exist® such thats(v) > s(u) + G(v — u).

Except possibly for boundary pointsadms, the latter condition is equivalent
to the nonconcavity of at u [Thm. A.5(c)].

(d) Canonical is always realized microcanonicallyWe defing? (€s) to be
the set ofu € R having the formu = H(z) for somez € £;. Then for any
3 € R we havell (£;) ¢ doms and

&= J &

uéfl(é‘g)

Here are two useful criteria for full or partial equivalerafeensembles.

e Full or partial equivalence. Except for boundary points of dom s has
a supporting line at. € doms if and only if s is concave at: [15, Thm.
A.5(c)], and thus according to parts (a) and (b) of the nexbtbm, full or
partial equivalence of ensembles holds.
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e Full equivalence.Assume that domis a nonempty interval and thats
strictly concave on the interior of dosnand continuous on dom Then
except for boundary points of dosns has a strictly supporting line at all
u € doms, and thus according to part (a) of the theorem, full equivede
of ensembles holds.

The reader is referred to [364] for the proof of Theorem 10.6. A partial
proof of the equality in part (d) is easily provided. Indeddy € &g, thenx
minimizes! + SH overX. Thereforer minimizesI + SH over the subset of
X consisting of alk: satisfyingﬁ[(x) = u. It follows thatz minimizes/ over
X subiject to the constrairif (z) = v and thus that: € g1 We conclude
that&s C U, (¢, €, Which is half of the assertion in part (d).

The various possibilities in parts (a), (b), and (c) arestitated in [43] for
the mean-field Blume-Emery-Griffiths spin model. In [37] timeory is ap-
plied to a model of coherent structures in two-dimensiomddulence. Numer-
ical computations implemented for geostrophic turbulemas topography in
a zonal channel demonstrate that nonequivalence of enssmbturs over a
wide range of the model parameters and that physicallyastarg equilibria
seen microcanonically are often omitted by the canonicsgeble. The coher-
ent structures observed in the model resemble the cohdreatises observed
in the mid-latitude, zone-belt domains on Jupiter.

In [15] we extend the theory developed in [36] and summariad&cteorem
10.6. In [15] it is shown that when the microcanonical ensengononequiv-
alent with the canonical ensemble on a subset of values oénleegy, it is
often possible to slightly modify the definition of the camnal ensemble so
as to recover equivalence with the microcanonical ensengpecifically, we
give natural conditions under which one can construct saded Gaussian en-
semble that is equivalent with the microcanonical ensenvhkn the canonical
ensemble is not. This is potentially useful if one wants tokvaut the equi-
librium properties of a system in the microcanonical endemd notoriously
difficult problem because of the equality constraint appggin the definition
of this ensemble. An overview of [15] is given in [16], and ¥ it is applied
to the Curie-Weiss-Potts model.
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The general large deviation procedure presented in thg@érsof the present
section is applied in the next section to the analysis of tvadl@hs of coherent
structures in two-dimensional turbulence, the Miller-Rdbmodel [61, 62, 69,
70] and a related model due to Turkington [77].



Richard S. Ellis: Lectures on the Theory of Large Deviations 96

11 Maximum Entropy Principles in Two-Dimensional Tur-
bulence

This section presents an overview of work in which Gibbsestate used to pre-
dict the large-scale, long-lived order of coherent vosit®at persist amid the
turbulent fluctuations of the vorticity field in two dimena®[6]. This is done
by applying a statistical equilibrium theory of the two-dinsional Euler equa-
tions, which govern the motion of an inviscid, incomprebsfhuid. As shown
in [11, 59], these equations are reducible to the vorticapsport equations

8_w+8w8¢_8w8¢
8t 81@49%2 81@<9x1

in whichw is the vorticity,) is the stream function, anfl = 9%/02? + 9/0x2
denotes the Laplacian operator &3. The two-dimensionality of the flow
means that these quantities are related to the velocity field (v, v9,0) ac-
cording to(0,0,w) = curlv andv = curl(0,0, ). All of these fields depend
upon the time variablé € [0, o) and the space variable= (z1, x2), which
runs through a bounded domain®3. Throughout this section we assume that
this domain equals the unit tord® = [0,1) x [0, 1), and we impose doubly
periodic boundary conditions on all the flow quantities.

The governing equations (11.1) can also be expressed agla smuation
for the scalar vorticity fieldv = w(x,t). The periodicity of the velocity field
implies that [, wdz = 0. With this restriction on its domain, the Green’s
operatorG = (—A)~! mappingw into ¢ with [, ¢ dz = 0 is well-defined.
More explicitly, G is the integral operator

=0 and —AY = w, (11.1)

$(z) = Gul(z) = / oz — 1) w(a') de,

X

whereg is the Green'’s function defined by the Fourier series

g(:lj . LE/) _ Z |27TZ|_2 627Ti<z,(x—x’)> .
0#£2€Z?

Consequently, (11.1) can be considered as an equatioalone.
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Even though the initial value problem for the equation (1isknown to be
well-posed for weak solutions whenever the initial data= w(-, 0) belongs to
L>(X) [59], it is well known that this deterministic evolution dorot provide
a useful description of the system over long time intervaien one seeks
to quantify the long-time behavior of solutions, therefaree is compelled to
shift from the microscopic, or fine-grained, descriptioherent inw to some
kind of macroscopic, or coarse-grained, description. Wé make this shift
by adopting the perspective of equilibrium statistical hmencs. That is, one
views the underlying deterministic dynamics as a means rmdomizing the
microstatev subject to the conditioning inherent in the conserved gtiasfor
the governing equations (11.1), and one takes the apptepniacrostates to be
the canonical Gibbs measures built from these conservedtitjga. In doing
so, of course, one accepts an ergodic hypothesis that eghatéme averages
with canonical ensemble averages. Given this hypothesehopes that these
macrostates capture the long-lived, large-scale, cohgogtex structures that
persist amid the small-scale vorticity fluctuations. Thareleterization of these
self-organized macrostates, which are observed in silbugand physical ex-
periments, is the ultimate goal of the theory.

The models that we will consider build on earlier and simptexories, the
first of which was due to Onsager [66]. Studying point voicee predicted
that the equilibrium states with high enough energy havegatng temperature
and represent large-scale, coherent vortices. This moakefuvther developed
in the 1970’s, notably by Montgomery and Joyce [63]. Howethex point vor-
tex model fails to incorporate all the conserved quantfiieswo-dimensional
ideal flow.

These conserved quantities are the energy, or Hamiltoniactibnal, and
the family of generalized enstrophies, or Casimir funcisr{59]. Expressed
as a functional of, the kinetic energy is

Hw) == /XXXg(:U — 2 w(z)w(a") dx da'. (11.2)
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The so-called generalized enstrophies are the globakugrtntegrals

whereq is an arbitrary continuous real function on the range of thrieity. In
terms of these conserved quantities, the canonical ensemdefined by the
formal Gibbs measure

Pya(dw) = Z(B.a)"" exp[~BH(w) — Aw)] TI(dw),

whereZ (3, a) is the associated partition function allddw) denotes some in-
variant product measure on some phase space of all admissitticity fields
w. Of course, this formal construction is not meaningful agtainds due to the
infinite dimensionality of such a phase space. We therefooeged to define
a sequence of lattice models @i in order to give a meaning to this formal
construction.

One lattice model that respects conservation of energy Bodlze general-
ized enstrophy constraints was developed by Miller et.&dl, 2] and Robert
et. al. [69, 70]; we will refer to it as the Miller-Robert mddé related model,
which discretizes the continuum dynamics in a different wags developed
by Turkington [77]. These authors use formal arguments tovelenaximum
entropy principles that are argued to be equivalent to tianal formulas for
the equilibrium macrostates. In terms of these macrostatd®rent vortices
of two-dimensional turbulence can be studied. The purpbd@osection is to
outline how the large deviation analysis presented in sadtd can be applied
to derive these variational formulas rigorously. Refee=&] and [77] discuss
in detail the physical background.

The variational formulas will be derived for the followingttice model that
includes both the Miller-Robert model and the Turkingtond®loas special
cases. Lef? denote the unit toru, 1) x [0, 1) with periodic boundary con-
ditions and letZ be a uniform lattice of. = 2>™ sitess in 72, wherem is a
positive integer. The intersite spacing in each coordidattion is27"". We
make this particular choice afto ensure that the lattices are refined dyadically
asm increases, a property that is needed later when we studyotiteraum
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limit obtained by sending — oo along the sequence = 2. In correspon-
dence with this lattice we have a dyadic partitionZ&finto n squares called
microcells, each having ardan. For eachs € £ we denote byl (s) the
unique microcell having the site in its lower left corner. AlthoughZ and
M (s) depend om, this is not indicated in the notation.

The configuration spaces for the lattice model are the piosheces), =
Y", where) is a compact set ifiR. Configurations in(2,, are denoted by
¢ = {C(s),s € L}, which represents the discretized vorticity field. lpetbe
a probability measure ol and letP, denote the product measure Qp with
one-dimensional marginats As discussed in [6], the Miller-Robert model and
the Turkington model differ in their choices of the compaatt)s and the prob-
ability measurey.

For ¢ € Q, the Hamiltonian for the lattice model is defined by

1
Hn(C) — 2_712 Z gn(s - S/) C(S) C(S/)7
s,s’el
whereg, is the lattice Green’s function defined by the finite Fourigns
gn(s _ S/) — Z |27TZ|_2 627Ti<z,s—s’>
0£zeL*

over the finite seL* = {z = (21,20) € Z? : =21 < 21,29 < 2™ 1}, Let
a be any continuous function mappigginto R. For( € (), we also define
functions known as the generalized enstrophies by

seLl

In terms of these quantities we define the partition function

Z.(B,a) = / exp|—BH(C) — Ana(O)] PaldC)

and the canonical ensemlite 5 ,, which is the probability measure that assigns
to a Borel subseB of (2, the probability

PosaB} =

1
Z.(8,a) /Bexp[—ﬁﬂn(é ) = Ana(CQ)] PaldC). (11.3)
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These probability measures are parametrized by the cdnstanR and the
functiona € C(Y). The dependence of Gibbs measures on the inverse tempera-
ture 3 is standard, while their dependence on the functitimat determines the
enstrophy functional is a novelty of this particular stitel equilibrium prob-
lem. The Miller-Robert model and the Turkington model alsited in their
choices of the parametgrand the function.

The main theorem in this section applies the theory of lamealions to
derive the continuum limit. — oo of the lattice model just introduced. Be-
cause the interactiong (s — s') in the lattice model are long-range, one must
replace anda by ng andna in order to obtain a nontrivial continuum limit
[6, 61, 62]. Replacings anda by n andna in the formulas for the partition
function and the Gibbs state is equivalent to repladilhagand A,, by nH,, and
nA, and leaving? anda unscaled. We carry out the large deviation analysis
of the lattice model by applying the general procedure $igekcin the pre-
ceding section, making the straightforward modificatioasassary to handle
both the Hamiltonian and the generalized enstrophy. Thusaee& a space of
macrostates, a sequence of macroscopic variadhleepresentation functions
H and A4, for the Hamiltonian and for the generalized enstrophy, atatge
deviation principle forY,, with respect to the product measurs The first
marginal of a probability measugeon T2 x ) is defined to be the probability
measure, {A} = u{A x Y} for Borel subsets! of T2,

e Space of macrostatesThis is the spac®,(1? x )) of probability mea-
sures onl? x Y with first marginald, whered(dz) = dx is Lebesgue
measure o>,

e Macroscopic variables.For eachm € N, Y, is the measure-valued func-
tion mapping. € Q,, to Y,,({,dx x dy) € Py(T?* x )) defined by

Yo(de x dy) = Y (¢, da x dy) = de @ Y Ly (x) O (dy).
seL

Thus for Borel subsetd of 72 x )

Y, {A} = Z/lM ) dx O¢ () (dy).

seLl
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Since} ", . 1us)(x) = 1forallz € T2, the first marginal ofY;, equals
dz.

e Hamiltonian representation function. H : P4(T? x )) — R is defined
by
~ 1

() = / gz — o)y ulde x dy) u(de’ x dy'),
2 (T2><y)2

g(z —2') = Z 12702| % exp[27i{z, x — 2')).
0#z€ 22

As proved in [6, Lem. 4.4]f is bounded and continuous and there exists
C' < oo such that

1/2
sup | Ho (C) — H(Y, (¢, )| < C <loi”> foralln € N.  (11.4)
Ce,

e Generalized enstrophy representation function .4, : Pp(T? x V) — R
Is defined by

A = [ atw)nldo x dy)
T2xYy
A, is bounded and continuous and

An.a(¢) = Au(Y(¢, ) forall¢ € Q. (11.5)

e Large deviation principle for Y,,. With respect to the product measures
P,, Y, satisfies the large deviation principle ®a(7? x )) with rate func-
tion the relative entropy

du :
| dup if 0
Iﬂxp(:u) = /TQxy (Og d(@ X P)) : | 8 < o r
00 otherwise.

We first comment on the last item. The large deviation prilecipr Y;, with
respect toP, is far from obvious and in fact is one of the main contribusion
of [6]. We will address this issue after specifying the ladgwiation behavior
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of the model in Theorem 11.1. Concerning (11.4), Sihg&/(s)} = 1/n, itis
plausible that

1 / / /
AGN =5 3 L 80 = ) )
is a good approximationtd,,(¢) = [1/(2n?)] 3=, e, gn(s—5")C(s)((s'). Con-
cerning (11.5), fot € 2, we have

LG = [ o) VilCode xdy) = 23 alC() = 4,0fC)

seLl

The proofs of the boundedness and continuitylpfare straightforward.

Part (a) of Theorem 11.1 gives the asymptotic behavior odtladed partition
functionsZ,,(n3,na), and part (b) states the large deviation principle ¥gr
with respect to the scaled canonical ensentbles ... The rate function has
the familiar form

Iﬁaa - pX9+6ﬁ+A_ Sp(ﬁva%

where (3, a) denotes the canonical free energy. In the formulalfgy the
relative entropy .4 arises from the large deviation principle fiGr with respect
to £,, and the other terms arise from (11.4), (11.5), and the fdrf, Qs ... Part
(c) of the theorem gives properties of the 8gt, of equilibrium macrostates.
&s.. consists of measurgsat which the rate functio; , in part (b) attains its
infimum of 0 overPy(T? x Y). The proof of the theorem is omitted since it is
similar to the proof of Theorem 10.4, which adapts Theoreth2 &nd 10.3 to
the setting of models of coherent structures in turbulence.

Theorem 11.1.For eachg € R anda € C()) the following conclusions hold.

(a) The canonical free energy(3,a) = — lim,_. 1 log Z,(nj3, na) exists
and is given by the variational formula
= inf o A, Lo(p)}.
(8, a) Mepj?wxy){ﬁ (1) + Aa(p) + Lpxo(p) }

(b) With respect to the scaled canonical ensenttles ., defined in(11.3)
Y, satisfies the large deviation principle @% (72 x ) with scaling constants



Richard S. Ellis: Lectures on the Theory of Large Deviations 103

n and rate function

I5.a(1) = Lpxo(11) + BH(p) + Aa(pr) — ¢(8,a).

(c) We define the set of equilibrium macrostates
Epa= {1 € Po(T?x V) : Ia(n) = 0}.

Then&;,, is a nonempty, compact subsetRf( 72 x ). In addition, if A is a
Borel subset ofy(7% x )) such thatd N &, = 0, thenlz,(A) > 0 and for
someC < oo

PosalYn € A} <exp[-nlg.(A)/2] — 0 asn — oo.

In section 3 of [6] we discuss the physical implications & theorem and the
relationship between the following concepts in the contéxhe Miller-Robert
model and the Turkington modek € P»(7? x V) is a canonical equilibrium
macrostate (i.ey € £3,) andp satisfies a corresponding maximum entropy
principle. In the Miller-Robert model, the maximum entrgpynciple takes the
form of minimizing the relative entrop§, (1) overu € Py(T? x ) subject
to the constraints
) = HW) and [ ulde )= [ (s

T2 T2

wherew is an initial vorticity field andH (w°) is defined in (11.2). By analogy
with our work in the preceding section, this constrainedimination problem
defines the set of equilibrium macrostates with respectéonitrocanonical
ensemble for the Miller-Robert model. The fact that each &, is also a
microcanonical equilibrium macrostate is a consequenpaitf(d) of Theorem
10.6 adapted to handle both the Hamiltonian and the gemedadinstrophy. In
the Turkington model, the maximum entropy principle takesmewhat related
form in which the second constraint appearing in the MiRerbert maximum
entropy principle is relaxed to a family of convex inequabtparametrized by
points in). Understanding for each model the relationship betweeiiequm
macrostates and the corresponding maximum entropy principle allowstone
identify a steady vortex flow with a given equilibrium madeate .. Through
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this identification, which is described in [6], one demotesahow the equi-
librium macrostates capture the long-lived, large-saagerent structures that
persist amid the small-scale vorticity fluctuations.

We spend the rest of this section outlining how the largeatew principle
Is proved for the macroscopic variables

Yo(de x dy) = dz ® > 1y (2) 5 (dy)
sel

with respect to the product measureés The proof is based on the innovative
technique of approximating, by a doubly indexed sequence of random mea-
suresWV,, ,. for which the large deviation principle is, at least forngafilmost
obvious. This doubly indexed sequence, obtained fignby averaging over
an intermediate scale, clarifies the physical basis of tlggeldeviation princi-
ple and reflects the multiscale nature of turbulence. A simidrge deviation
principle is derived in [60, 68] by an abstract approach tehés on a convex
analysis argument. That approach obscures the role ofa$patrse-graining
in the large deviation behavior.

In order to defind¥,,,., we recall thatC containsn = 2*" sitess. For
evenr < 2m we consider a regular dyadic partition ©f into 2" macrocells
{D,r, k =1,2,...,2"}. Each macrocell contains/2" lattice sites and is the
union ofn /2" microcells)M (s), whereM (s) contains the site in its lower left
corner. We now define

or
1

W (dz x dy) = W, (¢, dz x dy) = dz ® ; 1p, ,(2) T ;D: Se(s) (dy).

W, is obtained fromY,, by replacing, for each € D, ;, the point masg, )

by the averagén/2") ' 3", ., 0 over then/2" sites contained i, .

We need the key fact that with respect to a suitable métoia P, (T2 x V),
d(Y,,, W,,) < /2/2"/2 for all n = 2% and all evenr € N satisfyingr < 2m.
The proof of this approximation property uses the fact thatdiameter of each
macrocellD, ; equalsy2/2"/2 [6, Lem. 4.2]. The next theorem states the two-
parameter large deviation principle for,, , with respect to the product mea-
suresP,. The approximation property(Y,,, W, ) < v/2/2"/% implies that with
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respect tof,, Y, satisfies the Laplace principle, and thus the equivalegtlar
deviation principle, with the same rate functiéy, [6, Lem. 4.3]. Subtleties
involved in invoking the Laplace principle are discussedha proof of that
lemma.

Theorem 11.2. With respect to the product measutEs, the sequencéV,, ,
satisfies the following two-parameter large deviation pijile onP,(T? x V)
with rate function/y, ,: for any closed subsét of Py(T? x Y)

1
lim sup lim sup — log P, {W,,, € F'} < —Ip,(F)
n

T—00 n—oo

and for any open subsét of Py(T? x V)

1
lim inf lim inf —log P,{W,,, € G} > —Iy«,(G).

T—00 n—oo T

Our purpose in introducing the doubly indexed prodéss is the following.
The local averaging over the sdis ;, introduces a spatial scale that is interme-
diate between the macroscopic scale of the t@rftiand the microscopic scale
of the microcellsV/(s). As a result}V,, . can be written in the form

27’
Wp(de x dy) = dz @ Y " 1p, () Lnsi(dy), (11.6)
k=1

where 1
Ln,r,k(dy) = Ln,r,k(C: dy) = W Z 5((5)(dy)

SGan

Since eachD, ;, containsn /2" lattice sitess, with respect taP, the sequence
{Lyp,1k =1,...,2"} is a family of i.i.d. empirical measures. For eachnd
eachk € {1,...,2"} Sanov’'s Theorem 6.7 implies that as— oo, L,
satisfies the large deviation principle {)) with scaling constants /2" and
rate function/,,.

We next motivate the large deviation principle fiéf, . stated in Theorem
11.2. Suppose that € P,(T? x )) has finite relative entropy with respect to
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0 x p and has the special form
p(dr x dy) = dx @ 7(x,dy), where 7(z,dy) = Z Ip,,(x) 7(dy) (11.7)

andr,. .., - are probability measures gh The representation(11.6), Sanov’s
Theorem, and the independenceqf, ., ..., L, 2 suggest that

1
lim —log P, {W,,, ~ u}

n—oo 1

1
= lim —log P, {Lp,j~ 7, k=1,...,2"}

n—oo 1

1S
== lim
2 e o0 n/2

log Po{ L,k ~ T}

~ —izfpm) = - / Lyfr(r, ) dr

/T/ (1 og ITW&) )) (2, dy) da

— /T2><y (10 %(x y)) p(dx x dy)
= —loxp(1).

Because of this calculation, the two-parameter large dievigrinciple forlV,, ,
with rate function/y, , is certainly plausible, in view of the fact that any measure
€ Py(T? x V) can be well approximated, as — oo, by a sequence of
measures of the form (11.7) [7, Lem. 3.2]. The reader is refeto [6] for

an outline of the proof of this two-parameter large deviagwinciple. The
large deviation principle foll,, ,. is a special case of a large deviation principle
proved in [7] for an extensive class of random measuresticatdeslV,, , as a
special case.

This completes our application of the theory of large dewret to models of
two-dimensional turbulence. The asymptotic behavior esthmodels is stated
in Theorem 11.1. One of the main components of the proof iEtige deviation
principle for the macroscopic variabl&g, which in turn follows by approxi-
matingY;, by the doubly indexed sequenidé, , and proving the large deviation
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principle for this sequence. This proof relies on Sanov’edrem, which gener-
alizes Boltzmann’s 1877 calculation of the asymptotic batraof multinomial
probabilities. Earlier in the paper we used the elementaimy fof Sanov’s The-
orem stated in Theorem 3.4 to derive the form of the Gibbe $taitthe discrete
ideal gas and to motivate the version of Cramér’'s Theoreatdee to analyze
the Curie-Weiss model [Cor. 6.6]. It is hoped that both thpantance of Boltz-
mann’s 1877 calculation and the applicability of the theofijarge deviations
to problems in statistical mechanics have been amply detrated in these lec-
tures. Itis also hoped that these lectures will inspire dagler to discover new
applications.
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