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Our Lives Are Large Deviations

Statistically, the probability of any one of us being here isso small
that you’d think the mere fact of existing would keep us all ina con-
tented dazzlement of surprise. We are alive against the stupendous
odds of genetics, infinitely outnumbered by all the alternates who
might, except for luck, be in our places.

Even more astounding is our statistical improbability in physical
terms. The normal, predictable state of matter throughout the uni-
verse is randomness, a relaxed sort of equilibrium, with atoms and
their particles scattered around in an amorphous muddle. We, in bril-
liant contrast, are completely organized structures, squirming with
information at every covalent bond. We make our living by catching
electrons at the moment of their excitement by solar photons, swip-
ing the energy released at the instant of each jump and storing it up
in intricate loops for ourselves. We violate probability, by our na-
ture. To be able to do this systemically, and in such wild varieties of
form, from viruses to whales, is extremely unlikely; to havesustained
the effort successfully for the several billion years of ourexistence,
without drifting back into randomness, was nearly a mathematical
impossibility.

Lewis Thomas,The Lives of a Cell
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1 Introduction

The theory of large deviations studies the exponential decay of probabilities in
certain random systems. It has been applied to a wide range ofproblems in
which detailed information on rare events is required. One is often interested
not only in the probability of rare events but also in the characteristic behavior
of the system as the rare event occurs. For example, in applications to queueing
theory and communication systems, the rare event could represent an overload
or breakdown of the system. In this case, large deviation methodology can lead
to an efficient redesign of the system so that the overload or breakdown does
not occur. In applications to statistical mechanics the theory of large deviations
gives precise, exponential-order estimates that are perfectly suited for asymp-
totic analysis.

These lectures will present a number of topics in the theory of large devia-
tions and several applications to statistical mechanics, all united by the concept
of relative entropy. This concept entered human culture through the first large
deviation calculation in science, carried out by Ludwig Boltzmann. Stated in a
modern terminology, his discovery was that the relative entropy expresses the
asymptotic behavior of certain multinomial probabilities. This statistical inter-
pretation of entropy has the following crucial physical implication [33,§1.1].

Entropy is a bridge between a microscopic level, on which physical
systems are defined in terms of the complicated interactionsamong
the individual constituent particles, and a macroscopic level, on which
the laws describing the behavior of the system are formulated.

Building on the work of Boltzmann, Gibbs asked a fundamentalquestion.
How can one use probability theory to study equilibrium properties of physical
systems such as an ideal gas, a ferromagnet, or a fluid? These properties include
such phenomena as phase transitions; e.g., the liquid-gas transition or sponta-
neous magnetization in a ferromagnet. Another example arises in the study of
freely evolving, inviscid fluids, for which one wants to describe coherent states.
These are steady, stable mean flows comprised of one or more vortices that
persist amidst the turbulent fluctuations of the vorticity field. Gibbs’s answer,
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which led to the development of classical equilibrium statistical mechanics, is
that one studies equilibrium properties via probability measures on configura-
tion space known today as Gibbs canonical ensembles or Gibbsstates. For
background in statistical mechanics, I recommend [33, 55, 79], which cover a
number of topics relevant to these lectures.

One of my main purposes is to show the utility of the theory of large devia-
tions by applying it to a number of statistical mechanical models. Our applica-
tions of the theory include the following.

• A derivation of the form of the Gibbs state for a discrete ideal gas (section
5).

• A probabilistic description of the phase transition in the Curie-Weiss model
of a ferromagnet in terms of the breakdown of the law of large numbers
for the spin per site (section 9).

• An analysis of equivalence and nonequivalence of ensemblesfor a general
class of models, including spin models and models of coherent structures
in turbulence (section 10).

• A derivationof variational formulas that describe the equilibrium macrostates
in models of two-dimensional turbulence (section 11). In terms of these
macrostates, coherent vortices of two-dimensional turbulence can be stud-
ied.

Like many areas of mathematics, the theory of large deviations has both a
left hand and a right hand; the left hand provides heuristic insight while the
right hand provides formal proofs. Although the theory is applicable in many
diverse settings, the right-hand technicalities can be formidable. Recognizing
this, I would like to supplement the rigorous, right-hand formulation of the
theory with a number of basic results presented in a left-hand format useful to
the applied researcher.

Boltzmann’s calculation of the asymptotic behavior of multinomial probabil-
ities in terms of relative entropy was carried out in 1877 as akey component of
his paper that gave a probabilistic interpretation of the Second Law of Thermo-
dynamics [4]. This momentous calculation represents a revolutionary moment
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in human culture during which both statistical mechanics and the theory of large
deviations were born. Boltzmann based his work on the hypothesis that atoms
exist. Although this hypothesis is universally accepted today, one might be sur-
prised to learn that it was highly controversial during Boltzmann’s time [57, pp.
vii–x].

Boltzmann’s work is put in historical context by W. R. Everdell in his book
The First Moderns, which traces the development of the modern consciousness
in nineteenth and twentieth century thought [46]. Chapter 3focuses on the
mathematicians of Germany in the 1870’s — namely, Cantor, Dedekind, and
Frege — who “would become the first creative thinkers in any field to look at the
world in a fully twentieth-century manner” [p. 31]. Boltzmann is then presented
as the man whose investigations in stochastics and statistics made possible the
work of the two other great founders of twentieth-century theoretical physics,
Planck and Einstein. As Everdell writes, “he was at the center of the change”
[p. 48].

Although the topic of these lectures is the theory of large deviations and not
the history of science, it is important to appreciate the radical nature of Boltz-
mann’s ideas. His belief in the existence of atoms and his useof probabilistic
laws at the microscopic level of atoms and molecules to derive macroscopic
properties of matter profoundly challenged the conventional wisdom of 19th

century physics: physical laws express absolute truths based not on probabilis-
tic assumptions, but on Newtons laws of motion and precise measurements of
observable phenomena.

For his subsersive attack on the temple of conventional wisdom, Boltzmann
would eventually pay the ultimate price [8, p. 34].

Boltzmann had never worried about his health, but had sacrificed it to
his scientific activity. When however even that vacation in Duino did
not bring any relief from his illness, in a moment of deep depression
he committed suicide by hanging on 5 September 1906. The nextday
he should have gone to Vienna to start his lectures.

The irony is that in 1905, the year before Boltzmanns suicide, Einstein ap-
plied Boltzmanns insights with great success [57, ch. 11]. In one paper he used



Richard S. Ellis: Lectures on the Theory of Large Deviations 7

Boltzmanns idea to partition the energy of a gas into discrete units in order
to explain a phenomenon known as the photoelectric effect. This work would
mark the beginning of quantum mechanics and would eventually win him the
Nobel Prize. In two other papers also written in 1905 Einstein gave a statis-
tical mechanical explanation based directly on Boltzmannstheory to explain
the random motion of a particle suspended in a fluid, a phenomenon known
as Brownian motion. This work strongly corroborated the existence of atoms,
putting statistical mechanics on a firm theoretical basis. From these papers and
two additional 1905 papers on special relativity, the second of which contains
the famous formulaE = mc2, modern physics was born.

Boltzmann’s insights are now part of the canon, but he paid for this with
his life. Without his insights, modern physics might never have been born, and
unborn, it would not have become our civilization’s main conceptual lens for
interpreting the universe and our place in it.

Here is an overview of the contents of each section of these lectures.

• Section 2.A basic probabilistic model is introduced.

• Section 3.Boltzmann’s discovery of the asymptotic behavior of multino-
mial probabilities in terms of relative entropy is described.

• Section 4.The probabilities of a loaded die are calculated as an illustration
of a general principle expressed in the following question.What is the
most likely way for an unlikely event to happen?

• Section 5.The probabilities of the energy states of a discrete ideal gas are
calculated, generalizing the calculation in section 3.

The solutions of the problems in sections 4 and 5 motivate theform of the
Gibbs canonical ensemble. This is a probability distribution used to determine
the equilibrium properties of statistical mechanical systems; it is discussed in
section 9 for a specific model and in section 10 for a general class of models.

• Section 6.We introduce the general concepts of a large deviation principle
and a Laplace principle, together with related results.
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• Section 7.We prove Cramér’s Theorem, which is the large deviation prin-
ciple for the sample means of i.i.d. random variables.

• Section 8.The generalization of Cramér’s Theorem known as the Gärtner-
Ellis Theorem is presented.

In the remainder of the sections the theory of large deviations is applied to a
number of questions in statistical mechanics.

• Section 9. The theory of large deviations is used to study equilibrium
properties of a basic model of ferromagnetism known as the Curie-Weiss
model, which is a mean-field approximation to the much more complicated
Ising model.

• Section 10. Our work in the preceding section leads to the formulation
of a general procedure for applying the theory of large deviations to the
analysis of an extensive class of statistical mechanical models, an analysis
that will allow us to address the fundamental problem of equivalence and
and nonequivalence of ensembles.

• Section 11. The general procedure developed in the preceding section
is used along with Sanov’s Theorem to derive variational formulas that
describe the equilibrium macrostates in two models of coherent states in
two-dimensional turbulence; namely, the Miller-Robert theory and a mod-
ification of that theory proposed by Turkington.

Sanov’s Theorem, which is used in section 11 to analyze two models of
coherent states in two-dimensional turbulence, generalizes Boltzmann’s 1877
calculation. Because this theorem plays a vital role in the derivation, this final
application of the theory of large deviations brings our focus back home to
Boltzmann, through whose research in the foundations of statistical mechanics
the theory began to blossom.

Acknowledgement. The research of Richard S. Ellis is supported by a grant
from the National Science Foundation (NSF-DMS-0604071).
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2 A Basic Probabilistic Model

In later sections we will investigate a number of questions in the theory of large
deviations in the context of a basic probabilistic model, which we now intro-
duce. Letα ≥ 2 be an integer,y1 < y2 < . . . < yα a set ofα real numbers,
andρ1, ρ2, . . . , ρα a set ofα positive real numbers summing to 1. We think of
Λ = {y1, y2, . . . , yα} as the set of possible outcomes of a random experiment
in which each individual outcomeyk has the probabilityρk of occurring. The
vectorρ = (ρ1, ρ2, . . . , ρα) is an element of the set of probability vectors

Pα =

{

γ = (γ1, γ2, . . . , γα) ∈ R
α : γk ≥ 0,

α
∑

k=1

γk = 1

}

.

Any vectorγ ∈ Pα also defines a probability measure on the set of subsets ofΛ

via the formula

γ = γ(dy) =
α
∑

k=1

γk δyk
(dy),

where fory ∈ Λ, δyk
{y} = 1 if y = yk and equals 0 otherwise. Thus forB ⊂ Λ,

γ{B} =
∑

yk∈B γk.
For each positive integern, the configuration space forn independent repe-

titions of the experiment isΩn = Λn, a typical element of which is denoted by
ω = (ω1, ω2, . . . , ωn). For eachω ∈ Ωn we define

Pn{ω} =

n
∏

j=1

ρ{ωj}

and extend this to a probability measure on the set of subsetsof Ωn by defining

Pn{B} =
∑

ω∈B
Pn{ω} for B ⊂ Ωn.

Pn is called the product measure with one dimensional marginals ρ. With re-
spect toPn the coordinate functionsXj(ω) = ωj , j = 1, 2, . . . , n, are indepen-
dent, identically distributed (i.i.d.) random variables with common distribution
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ρ; that is, for any subsetsB1, B2, . . . , Bn of Λ

Pn{ω ∈ Ωn : Xj(ω) ∈ Bj for j = 1, 2, . . . , n}

=

n
∏

j=1

Pn{ω ∈ Ωn : Xj(ω) ∈ Bj} =

n
∏

j=1

ρ{Bj}.

Example 2.1. Random phenomena that can be studied via this basic model
include standard examples such as coin tossing and die tossing and also include
a discrete ideal gas.

(a)Coin tossing.In this caseΛ = {1, 2} andρ1 = ρ2 = 1/2.
(b) Die tossing.In this caseΛ = {1, 2, . . . , 6} and eachρk = 1/6.
(c) Discrete ideal gas.Consider a discrete ideal gas consisting ofn identical,

noninteracting particles, each havingα equally likely energy levelsy1, y2, . . . , yα;
in this case eachρk equals1/α. The coordinate functionsXj represent the ran-
dom energy levels of the molecules of the gas. The statistical independence
of these random variables reflects the fact that the molecules of the gas do not
interact.

We will return to the discrete ideal gas in section 5 after introducing some
basic concepts in theory of large deviations.
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3 Boltzmann’s Discovery and Relative Entropy

In its original form Boltzmann’s discovery concerns the asymptotic behavior
of certain multinomial coefficients. For the purpose of applications in these
lectures, it is advantageous to formulate it in terms of a probabilistic quantity
known as the empirical vector. We use the notation of the preceding section.
Thus letα ≥ 2 be an integer,y1 < y2 < . . . < yα a set ofα real num-
bers,ρ1, ρ2, . . . , ρα a set ofα positive real numbers summing to 1,Λ the set
{y1, y2, . . . , yα}, andPn the product measure onΩn = Λn with one dimen-
sional marginalsρ =

∑α
k=1 ρkδyk

. For ω = (ω1, ω2, . . . , ωn) ∈ Ωn, we let
{Xj, j = 1, . . . , n} be the coordinate functions defined byXj(ω) = ωj. The
Xj form a sequence of i.i.d. random variables with common distributionρ.

We now turn to the object under study in the present section. For ω ∈ Ωn

andy ∈ Λ define

Ln(y) = Ln(ω, y) =
1

n

n
∑

j=1

δXj(ω){y}.

ThusLn(ω, y) counts the relative frequency with whichy appears in the config-
urationω; in symbols,Ln(ω, y) = n−1 · #{j ∈ {1, . . . , n} : ωj = y}. We then
define the empirical vector

Ln = Ln(ω) = (Ln(ω, y1), . . . , Ln(ω, yα))

=
1

n

n
∑

j=1

(

δXj(ω){y1}, . . . , δXj(ω){yα}
)

.

Ln equals the sample mean of the i.i.d. random vectors(δXj(ω){y1}, . . . , δXj(ω){yα}).
It takes values in the set of probability vectors

Pα =

{

γ = (γ1, γ2, . . . , γα) ∈ R
α : γk ≥ 0,

α
∑

k=1

γk = 1

}

.

The limiting behavior ofLn is straightforward to determine. Let‖ · ‖ denote
the Euclidean norm onRα. For anyγ ∈ Pα andε > 0, we define the open ball

B(γ, ε) = {ν ∈ Pα : ‖γ − ν‖ < ε}.
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Since theXj have the common distributionρ, for eachyk ∈ Λ

EPn{Ln(yk)} = EPn

{

1

n

n
∑

j=1

δXj
{yk}

}

=
1

n

n
∑

j=1

Pn{Xj = yk} = ρk,

whereEPn denotes expectation with respect toPn. Hence by the weak law of
large numbers for the sample means of i.i.d. random variables, for anyε > 0

lim
n→∞

Pn{Ln ∈ B(ρ, ε)} = 1. (3.1)

It follows that for anyγ ∈ Pα not equal toρ and for anyε > 0 satisfying
0 < ε < ‖ρ− γ‖

lim
n→∞

Pn{Ln ∈ B(γ, ε)} = 0. (3.2)

As we will see, Boltzmann’s discovery implies that these probabilities converge
to 0 exponentially fast inn. The exponential decay rate is given in terms of the
relative entropy, which we now define.

Definition 3.1 (Relative Entropy). Letρ = (ρ1, . . . , ρα) denote the probability

vector inPα in terms of which the basic probabilistic model is defined. The
relative entropy ofγ ∈ Pα with respect toρ is defined by

Iρ(γ) =

α
∑

k=1

γk log
γk
ρk
.

Several properties of the relative entropy are given in the next lemma.

Lemma 3.2. For γ ∈ Pα, Iρ(γ) measures the discrepancy betweenγ andρ in
the sense thatIγ(ρ) ≥ 0 andIγ(ρ) = 0 if and only ifγ = ρ. ThusIρ(γ) attains
its infimum of0 overPα at the unique measureγ = ρ. In addition,Iρ is strictly
convex onPα.

Proof. For x ≥ 0 the graph of the strictly convex functionx log x has the
tangent liney = x − 1 at x = 1. Hencex log x ≥ x − 1 with equality if and
only if x = 1. It follows that for anyγ ∈ Pα

γk
ρk

log
γk
ρk

≥ γk
ρk

− 1 (3.3)
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with equality if and only ifγk = ρk. Multiplying this inequality byρk and
summing overk yields

Iρ(γ) =

α
∑

k=1

γk log
γk
ρk

≥
α
∑

k=1

(γk − ρk) = 0.

Iρ(γ) = 0 if and only if equality holds in (3.3) for eachk; i.e., if and only if
γ = ρ. This yields the first assertion in the proposition. This proof is typical of
proofs of analogous results involving relative entropy [e.g., Prop. 4.2] in that we
use a global convexity inequality — in this case,x log x ≥ x− 1 with equality
if and only if x = 1 — rather than calculus to determine whereIρ attains its
infimum overPα. Since

Iρ(γ) =

α
∑

k=1

ρk
γk
ρk

log
γk
ρk
,

the strict convexity ofIρ is a consequence of the strict convexity ofx log x for
x ≥ 0.

We are now ready to give the first formulation of Boltzmann’s discovery,
which we state using a heuristic notation and which we label,in recognition of
its formal status, as a “theorem.” However, the formal calculations used to mo-
tivate the “theorem” can easily be turned into a rigorous proof of an asymptotic
theorem. That theorem is stated in Theorem 3.4. From Boltzmann’s momen-
tous discovery both the theory of large deviations and the Gibbsian formulation
of equilibrium statistical mechanics grew.

“Theorem” 3.3 (Boltzmann’s Discovery–Formulation 1). For any γ ∈ Pα

and all sufficiently smallε > 0

Pn{Ln ∈ B(γ, ε)} ≈ exp[−nIρ(γ)] asn → ∞.
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Heuristic Proof. By elementary combinatorics

Pn{Ln ∈ B(γ, ε)} = Pn

{

ω ∈ Ωn : Ln(ω) ∼ 1

n
(nγ1, nγ2, . . . , nγα)

}

≈ Pn{#{ωj’s = y1} ∼ nγ1, . . . ,#{ωj ’s = yα} ∼ nγα}

≈ n!

(nγ1)!(nγ2)! · · · (nγα)!
ρnγ1

1 ρnγ2

2 · · · ρnγα

α .

Stirling’s formula in the weak formlog(n!) = n log n− n+ O(log n) yields

1

n
logPn{Ln ∈ B(γ, ε)}

≈ 1

n
log

(

n!

(nγ1)!(nγ2)! · · · (nγα)!

)

+
α
∑

k=1

γk log ρk

= −
α
∑

k=1

γk log γk + O

(

log n

n

)

+
α
∑

k=1

γk log ρk

= −
α
∑

k=1

γk log
γk
ρk

+ O

(

log n

n

)

= −Iρ(γ) + O

(

log n

n

)

.

“Theorem” 3.3 has the following interesting consequence. Letγ be any vec-
tor in Pα which differs fromρ. SinceIρ(γ) > 0 [Lemma 3.2], it follows that
for all sufficiently smallε > 0

Pn{Ln ∈ B(γ, ε)} ≈ exp[−nIρ(γ)] → 0 asn→ ∞,

a limit which, if rigorous, would imply (3.2).
LetA be a Borel subset ofPα; the class of Borel subsets includes all closed

sets and all open sets. Ifρ is not contained in the closure ofA, then by the weak
law of large numbers

lim
n→∞

Pn{Ln ∈ A} = 0,

and by analogy with the heuristic asymptotic result given in“Theorem” 3.3 we
expect that these probabilities converge to 0 exponentially fast withn. This is in
fact the case. In order to express the exponential decay rateof such probabilities
in terms of the relative entropy, we introduce the notationIρ(A) = infγ∈A Iρ(γ).
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The range ofLn(ω) for ω ∈ Ωn is the set of probability vectors having the form
k/n, wherek ∈ Rα has nonnegative integer coordinates summing ton; hence
the cardinality of the range does not exceednα. Since

Pn{Ln ∈ A} =
∑

γ∈A
Pn{Ln ∼ γ} ≈

∑

γ∈A
exp[−nIρ(γ)]

and
exp[−nIρ(A)] ≤

∑

γ∈A
exp[−nIρ(γ)] ≤ nα exp[−nIρ(A)],

one expects that at least to exponential order

Pn{Ln ∈ A} ≈ exp[−nIρ(A)] asn → ∞. (3.4)

As formulated in Corollary 3.5, this asymptotic result is indeed valid. It is a
consequence of the following rigorous reformulation of Boltzmann’s discovery,
known as Sanov’s Theorem, which expresses the large deviation principle for
the empirical vectorsLn. That concept is defined in general in Definition 6.1,
and a general form of Sanov’s Theorem is stated in Theorem 6.7.

Theorem 3.4 (Boltzmann’s Discovery–Formulation 2).The sequence of em-
pirical vectorsLn satisfies the large deviation principle onPα with rate function
Iρ in the following sense.

(a)Large deviation upper bound. For any closed subsetF ofPα

lim sup
n→∞

1

n
log Pn{Ln ∈ F} ≤ −Iρ(F ).

(b) Large deviation lower bound. For any open subsetG of Pα

lim inf
n→∞

1

n
logPn{Ln ∈ G} ≥ −Iρ(G).

Comments on the Proof.For γ ∈ Pα andε > 0 B(γ, ε) denotes the open ball
with centerγ and radiusε andB(γ, ε) denotes the corresponding closed ball.
SincePα is a compact subset ofR

α, any closed subsetF of Pα is automatically
compact. By a standard covering argument it is not hard to show that the large
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deviation upper bound holds for any closed setF provided that one obtains the
large deviation upper bound for any closed ballB(γ, ε):

lim sup
n→∞

1

n
log Pn{Ln ∈ B(γ, ε)} ≤ −Iρ(B(γ, ε)).

Likewise, the large deviation lower bound holds for any opensetG provided
one obtains the large deviation lower bound for any open ballB(γ, ε):

lim inf
n→∞

1

n
log Pn{Ln ∈ B(γ, ε)} ≥ −Iρ(B(γ, ε)).

The bounds in the last two displays can be proved via combinatorics and Stir-
ling’s formula as in the heuristic proof of “Theorem” 3.3; one can easily adapt
the calculations given in [33,§I.4]. The details are omitted.

GivenA a Borel subset ofPα, we denote byA◦ the interior ofA relative to
Pα and byA the closure ofA. For a class of Borel subsetsA we can now derive
a rigorous version of the asymptotic formula (3.4). This class consists of sets
A such thatA◦ equalsA. Any open ballB(γ, ε) or closed ballB(γ, ε) satisfies
this condition.

Corollary 3.5. LetA be any Borel subset ofPα such thatA◦ = A. Then

lim
n→∞

1

n
log Pn{Ln ∈ A} = −Iρ(A).

Proof. We apply the large deviation upper bound toA and the large deviation
lower bound toA◦. SinceA ⊃ A ⊃ A◦, it follows that

−Iρ(A ) ≥ lim sup
n→∞

1

n
log Pn{Ln ∈ A }

≥ lim sup
n→∞

1

n
log Pn{Ln ∈ A}

≥ lim inf
n→∞

1

n
log Pn{Ln ∈ A}

≥ lim inf
n→∞

1

n
log Pn{Ln ∈ A◦}

≥ −Iρ(A◦).
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The continuity ofIρ onPα implies thatIρ(A◦) = Iρ(A◦). Since by hypothesis
A◦ = A, we conclude that the extreme terms in this display are equal. The
desired limit follows.

The next corollary of Theorem 3.4 allows one to conclude thata large class
of probabilities involvingLn converge to 0. The general version of this corollary
given in Proposition 6.4 is extremely useful in applications. For example, we
will use it in section 9 to analyze the Curie-Weiss model of ferromagnetism and
in section 10 to motivate the definitions of the sets of equilibrium macrostates
for the canonical ensemble and the microcanonical ensemble[Thms. 10.2(c),
10.5(c)].

Corollary 3.6. LetA be any Borel subset ofPα such thatA does not containρ.
ThenIρ(A) > 0, and for someC <∞

Pn{Ln ∈ A} ≤ C exp[−nIρ(A)/2] → 0 asn→ ∞.

Proof. SinceIρ(γ) > Iρ(ρ) = 0 for anyγ 6= ρ, the positivity ofIρ(A ) follows
from the continuity ofIρ on Pα. The second assertion is an immediate con-
sequence of the large deviation upper bound applied toA and the positivity of
Iρ(A ).

Take anyε > 0. Applying Corollary 3.6 to the complement of the open ball
B(ρ, ε) yieldsPn{Ln 6∈ B(ρ, ε)} → 0 or equivalently

lim
n→∞

Pn{Ln ∈ B(ρ, ε)} = 1.

Although this rederives the weak law of large numbers forLn as already ex-
pressed in (3.1), this second derivation relates the order-1 limit for Ln to the
point ρ ∈ Pα at which the rate functionIρ attains its infimum. In this context
we call ρ the equilibrium value ofLn with respect to the measuresPn. This
limit is the simplest example, and the first of several more complicated but re-
lated formulations to be encountered in this paper, of what is commonly called a
maximum entropy principle. Following the usual conventionin the physical lit-
erature, we will continue to use this terminology in referring to such principles
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even though we are minimizing the relative entropy — equivalently, maximiz-
ing −Iρ(γ) — rather than maximizing the physical entropy. Whenρk = 1/α

for eachk, the two quantities differ by a minus sign and an additive constant.

Maximum Entropy Principle 3.7. γ0 ∈ Pα is an equilibrium value ofLn with
respect toPn if and only ifγ0 minimizesIρ(γ) overPα; this occurs if and only
if γ0 = ρ.

In the next section we will present a limit theorem forLn whose proof is
based on the precise, exponential-order estimates given bythe large deviation
principle in Theorem 3.4.
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4 The Most Likely Way for an Unlikely Event To Happen

You participate in a crooked gambling game being played witha loaded die.
How can you determine the actual probabilities of each face1, 2, . . . , 6? This
question uncovers a basic issue in many areas of application. What is the most
likely way for an unlikely event to happen?

We use the notation of the preceding section. Thus letα ≥ 2 be an integer,
y1 < y2 < . . . < yα a set ofα real numbers,ρ1, ρ2, . . . , ρα a set ofα posi-
tive real numbers summing to 1,Λ the set{y1, y2, . . . , yα}, andPn the product
measure onΩn = Λn with one dimensional marginalsρ =

∑α
k=1 ρkδyk

. For
ω = (ω1, ω2, . . . , ωn) ∈ Ωn, we let{Xj, j = 1, . . . , n} be the coordinate func-
tions defined byXj(ω) = ωj. TheXj form a sequence of i.i.d. random variables
with common distributionρ. Forω ∈ Ωn andy ∈ Λ we also define

Ln(y) = Ln(ω, y) =
1

n

n
∑

j=1

δXj(ω){y}

and the empirical vector

Ln = Ln(ω) = (Ln(ω, y1), . . . , Ln(ω, yα)) =
1

n

n
∑

j=1

(

δXj(ω){y1}, . . . , δXj(ω){yα}
)

.

Ln takes values in the set of probability vectors

Pα =

{

γ = (γ1, γ2, . . . , γα) ∈ R
α : γk ≥ 0,

α
∑

k=1

γk = 1

}

.

In this section we prove a conditioned limit theorem forLn that gives an
answer to the apparently ambiguous question concerning a crooked gambling
game posed in the first paragraph. This limit theorem has the added bonus of
giving insight into a basic construction in statistical mechanics. As we will
see in section 5, it motivates the form of the Gibbs state for the discrete ideal
gas and, by extension, for any statistical mechanical system characterized by
conservation of energy. These unexpected theorems are the first indication of
the power of Boltzmann’s discovery, which gives precise exponential-order es-
timates for probabilities of the formPn{Ln ∈ A}.
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The conditioned limit theorem that we will consider has the following form.
Suppose that one is given a particular setA and wants to determine a setB
belonging to a certain class (e.g., open balls) such that theconditioned limit

lim
n→∞

Pn{Ln ∈ B |Ln ∈ A} = lim
n→∞

Pn{Ln ∈ B ∩A} · 1

Pn{Ln ∈ A} = 1

is valid. Since to exponential order

Pn{Ln ∈ B ∩A} · 1

Pn{Ln ∈ A} ≈ exp[−n(Iρ(B ∩ A)− Iρ(A))],

one should obtain the conditioned limit ifB satisfiesIρ(B ∩ A) = Iρ(A). If
one can determine the point inA where the infimum ofIρ is attained, then one
picksB to contain this point. In the examples involving the loaded die and
the discrete ideal gas, such a minimizing point can be determined. It will lead
to a second maximum entropy principle forLn with respect to the conditional
probabilitiesPn{·|Ln ∈ A}.

We return to the question concerning the loaded die, using the basic proba-
bilistic model introduced in Example 2.1(b). Upon enteringthe crooked gam-
bling game, one assigns the equal probabilitiesρk = 1/6 to each of the 6 faces
because one has no additional information. One then observes the game for
n tosses; probabilistically this corresponds to knowing a configurationω ∈
{1, . . . , 6}n. Based on the value of

Sn(ω) =

n
∑

j=1

Xj(ω) =

n
∑

j=1

ωj ,

one desires to recalculate the probabilities of the 6 faces.Being a mathematician
rather than a professional gambler, I will carry this out in the limitn → ∞.

If the die were fair, then the sample meanSn(ω)/n should equal approxi-
mately the theoretical mean

ȳ =

6
∑

k=1

kρk = 3.5.

Hence let us assume thatSn/n ∈ [z − a, z], wherea is a small positive number
and 1 ≤ z − a < z < ȳ; a similar result would hold if we assumed that
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Sn/n ∈ [z, z+a], whereȳ < z < z+a ≤ 6. We can now formulate the question
concerning the loaded die as the following conditioned limit: determine positive
numbers{ρ∗k, k = 1, . . . , 6} summing to 1 such that

ρ∗k = lim
n→∞

Pn{X1 = k |Sn/n ∈ [z − a, z]}.

This will be seen to follow from the following more easily answered ques-
tion: conditioned on the eventSn/n ∈ [z − a, z], determine the most likely
configurationρ∗ = (ρ∗1, . . . , ρ

∗
6) of Ln in the limit n → ∞. In other words, we

wantρ∗ ∈ Pα such that for anyε > 0

lim
n→∞

Pn{Ln ∈ B(ρ∗, ε) |Sn ∈ [z − a, z]} = 1.

The form ofρ∗ is given in the following theorem; it depends only onz, not on
a.

We formulate the theorem for a general state spaceΛ = {y1, . . . , yα} and a
given positive vectorρ = (ρ1, . . . , ρα) ∈ Pα. As above, define

Sn =
n
∑

j=1

Xj and ȳ =
α
∑

k=1

ykρk

and fora > 0 fix a closed interval[z − a, z] ⊂ [y1, ȳ). In the definition ofρ(β)

we write−β instead ofβ in order to be consistent with conventions in statistical
mechanics.

Theorem 4.1.(a) There existsρ(β) ∈ Pα such that for everyε > 0

lim
n→∞

Pn{Ln ∈ B(ρ(β), ε) |Sn/n ∈ [z − a, z]} = 1. (4.1)

The quantityρ(β) = (ρ
(β)
1 , . . . , ρ

(β)
α ) has the form

ρ
(β)
k =

1
∑α

j=1 exp[−βyj ] ρj
· exp[−βyk] ρk,

whereβ = β(z) ∈ R is the unique value ofβ satisfying
∑α

k=1 ykρ
(β)
k = z.

(b) For any continuous functionf mappingPα into R

lim
n→∞

EPn{f(Ln) |Sn/n ∈ [z − a, z]} = f(ρ(β)).
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(c) For eachj ∈ {1, . . . , α}

lim
n→∞

Pn{X1 = yj |Sn/n ∈ [z − a, z]} = ρ
(β)
j .

We first show thatρ(β) is well defined. Forr ∈ R simple calculus gives the
following properties of

c(r) = log

(

α
∑

k=1

exp[ryk] ρk

)

:

c ′′(r) > 0, c ′(r) → y1 asr → −∞, c ′(0) = ȳ, andc ′(r) → yα asr → ∞.
Hence there exists a uniqueβ = β(z) satisfying

c ′(−β) =
1

∑α
j=1 exp[−βyj ] ρj

·
α
∑

k=1

yk exp[−βyk] ρk (4.2)

=
α
∑

k=1

ykρ
(β)
k = z,

as claimed. Sincey1 < z < ȳ, β = β(z) is positive.
In order to prove the limit

lim
n→∞

Pn{Ln ∈ B(ρ(β), ε) |Sn/n ∈ [z − a, z]} = 1.

in part (a), we express the conditional probability in (4.1)in terms of the empir-
ical vectorLn. Define the closed convex set

Γ(z) =

{

γ ∈ Pα :

α
∑

k=1

ykγk ∈ [z − a, z]

}

,

which containsρ(β). Since for eachω ∈ Ωn

1

n
Sn(ω) =

n
∑

j=1

yk Ln(ω, yk),

it follows that{ω ∈ Ωn : Sn(ω)/n ∈ [z − a, z]} = {ω ∈ Ωn : Ln(ω) ∈ Γ(z)}.
Hence using the formal notation [see (3.4)]

Pn{Ln ∈ A} ≈ exp[−nIρ(A)] asn → ∞,
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we have for largen

Pn{Ln ∈ B(ρ(β), ε) |Sn/n ∈ [z − a, z]}
= Pn{Ln ∈ B(ρ(β), ε) |Ln ∈ Γ(z)}
= Pn{Ln ∈ B(ρ(β), ε) ∩ Γ(z)} · 1

Pn{Ln ∈ Γ(z)}
≈ exp[−n(Iρ(B(ρ(β), ε) ∩ Γ(z))− Iρ(Γ(z)))].

The last expression, and thus the probability in the first line of the display, are
of order 1 provided

Iρ(B(ρ(β), ε) ∩ Γ(z)) = Iρ(Γ(z)). (4.3)

The next proposition shows thatIρ attains its infimum overΓ(z) at the unique
pointρ(β). This gives (4.3) and motivates the fact that for largen

Pn{Ln ∈ B(ρ(β), ε) |Sn/n ∈ [z − a, z]} ≈ 1.

It is not difficult to convert these formal calculations intoa proof of the limit

lim
n→∞

Pn{Ln ∈ B(ρ(β), ε) |Sn/n ∈ [z − a, z]} = 1.

The details are omitted.

Proposition 4.2. Iρ attains its infimum overΓ(z) = {γ ∈ Pα :
∑α

k=1 ykγk ∈
[z − a, z]} at the unique pointρ(β) = (ρ

(β)
1 , . . . , ρ

(β)
α ) defined in part(a) of

Theorem4.1: for eachk = 1, . . . , α

ρ
(β)
k =

1
∑α

j=1 exp[−βyj ] ρj
· exp[−βyk] ρk,

whereβ = β(z) ∈ R is the unique value ofβ satisfying
∑α

k=1 ykρ
(β)
k = z.

Proof. We recall thatβ = β(z) > 0 and that for eachk ∈ {1, . . . , α}

ρ
(β)
k

ρk
=

1
∑α

j=1 exp[−βyj ] ρj
· exp[−βyk] =

1

exp[c(−β)]
· exp[−βyk],
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where forr ∈ R, c(r) = log(
∑α

k=1 exp[ryk] ρk). Hence for anyγ ∈ Γ(z)

Iρ(γ) =

α
∑

k=1

γk log
γk
ρk

=

α
∑

k=1

γk log
γk

ρ
(β)
k

+

α
∑

k=1

γk log
ρ

(β)
k

ρk

= Iρ(β)(γ) − β

α
∑

k=1

ykγk − c(−β).

SinceIρ(β)(ρ(β)) = 0 and by (4.2)
∑α

k=1 ykρ
(β)
k = z, it follows that

Iρ(ρ
(β)) = Iρ(β)(ρ(β)) − β

α
∑

k=1

ykρ
(β)
k − c(−β) = −βz − c(−β).

Now consider anyγ ∈ Γ(z), γ 6= ρ(β). SinceIρ(β)(γ) ≥ 0 with equality if and
only if γ = ρ(β) [Lemma 3.2], we obtain

Iρ(γ) = Iρ(β)(γ) − β
α
∑

k=1

ykγk − c(−β)

> −β
α
∑

k=1

ykγk − c(−β) ≥ −βz − c(−β) = Iρ(ρ
(β)).

We conclude that for anyγ ∈ Γ(z), Iρ(γ) ≥ Iρ(ρ
(β)) with equality if and only

if γ = ρ(β). ThusIρ attains its infimum overΓ(z) at the unique pointρ(β).

Combining this proposition with part (a) of Theorem 4.1 gives the second
maximum entropy principle in these lectures.

Maximum Entropy Principle 4.3. Conditioned on the eventSn/n ∈ [z−a, z],
the asymptotically most likely configuration ofLn is ρ(β), which is the unique

γ ∈ Pα that minimizesIρ(γ) subject to the constraint thatγ ∈ Γ(z). In sta-
tistical mechanical terminology,ρ(β) is the equilibrium macrostate ofLn with
respect to the conditional probabilitiesPn{· |Sn/n ∈ [z − a, z]}.

Part (b) of Theorem 4.1 states that for any continuous function f mapping
Pα into R

lim
n→∞

EPn{f(Ln) |Sn/n ∈ [z − a, z]} = f(ρ(β)).
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This is an immediate consequence of part (a) and the continuity of f . Part (b)
of Theorem 4.1 is another expression of the Maximum Entropy Principle 4.3.

Let yk be any point inΛ. As in [20, p. 87], we prove part (c) of Theorem 4.1
by relating the conditional probabilityPn{X1 = yk |Sn/n ∈ [z − a, z]} to the
conditional expectationEPn{f(Ln) |Sn/n ∈ [z − a, z]} considered in part (b).
Givenϕ any function mappingΛ into R, we define a continuous function onPα

by

f(γ) =

α
∑

k=1

ϕ(yk) γk.

Sincef(Ln) =
∑α

k=1 ϕ(yk)Ln(yk) = 1
n

∑n
j=1 ϕ(Xj), by symmetry and part (b)

lim
n→∞

EPn{ϕ(X1) |Sn/n ∈ [z − a, z]}

= lim
n→∞

1

n

n
∑

j=1

EPn{ϕ(Xj) |Sn/n ∈ [z − a, z]}

= lim
n→∞

EPn{f(Ln) |Sn/n ∈ [z − a, z]}

= f(ρ(β)) =

α
∑

k=1

ϕ(yk) ρ
(β)
k .

Settingϕ = 1yj
yields the limit in part (c) of Theorem 4.1:

lim
n→∞

Pn{X1 = yj |Sn/n ∈ [z − a, z]} = ρ
(β)
j .

With some additional work one can generalize part (a) of Theorem 4.1 by
proving that with respect to the conditional probabilitiesPn{· |Sn/n ∈ [z −
a, a]}, Ln satisfies the large deviation principle onPα with rate function

I(γ) =

{

Iρ(γ) − Iρ(Γ(z)) if γ ∈ Γ(z)

∞ if γ ∈ Pα \ Γ(z).

This large deviation principle is closely related to the large deviation principle
for statistical mechanical models with respect to the microcanonical ensemble,
which will be considered in Theorem 10.5.

In the next section we will show how calculations analogous to those used to
motivate Theorem 4.1 can be used to derive the form of the Gibbs state for the
discrete ideal gas.
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5 Gibbs States for Models in Statistical Mechanics

The discussion in the preceding section concerning a loadeddie applies with
minor changes to the discrete ideal gas, introduced in part (c) of Examples 2.1.
We continue to use the notation of the preceding sections. Thus letα ≥ 2 be
an integer,y1 < y2 < . . . < yα a set ofα real numbers,ρ1, ρ2, . . . , ρα a set of
α positive real numbers summing to 1,Λ the set{y1, y2, . . . , yα}, andPn the
product measure onΩn = Λn with one dimensional marginalsρ =

∑α
k=1 ρkδyk

.
For ω = (ω1, ω2, . . . , ωn) ∈ Ωn, we let{Xj, j = 1, . . . , n} be the coordinate
functions defined byXj(ω) = ωj. TheXj form a sequence of i.i.d. random
variables with common distributionρ.

The discrete ideal gas consists ofn identical, noninteracting particles, each
havingα possible energy levelsy1, y2, . . . , yα. Forω ∈ Ωn we writeHn(ω) in
place ofSn(ω) =

∑n
j=1 ωj; Hn(ω) denotes the total energy in the configuration

ω. In the absence of further information, one assigns the equal probabilities
ρk = 1/α to each of theyk’s. Definingȳ =

∑α
k=1 ykρk, suppose that the energy

per particle,Hn/n, is conditioned to lie in an interval[z − a, z], wherea is a
small positive number andy1 ≤ z − a < z < ȳ. According to part (c) of
Theorem 4.1, for eachk ∈ {1, . . . , α}

lim
n→∞

Pn{X1 = yk |Hn/n ∈ [z − a, z]}

= ρ
(β)
k =

1
∑α

j=1 exp[−βyj ] ρj
· exp[−βyk] ρk,

whereβ = β(z) ∈ R is the unique value ofβ satisfying
∑α

k=1 ykρ
(β)
k = z.

Let t ≥ 2 be a positive integer. The limit in the last display leads to anatural
question. Conditioned onHn/n ∈ [z − a, z], asn → ∞ what is the limiting
conditional distribution of the random variablesX1, . . . , Xt, which represent
the energy levels of the firstt particles? AlthoughX1, . . . , Xt are independent
with respect to the original product measurePn, this independence is lost when
Pn is replaced by the conditional distributionPn{· |Hn/n ∈ [z − a, z]}. Hence
the answer given in the next theorem is somewhat surprising:with respect to
Pn{· |Hn/n ∈ [z−a, z]}, the limiting distribution is the product measure onΩt

with one-dimensional marginalsρ(β). In other words, in the limitn → ∞ the
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independence ofX1, . . . , Xt is regained. The theorem leads to, and in a sense
motivates, the concept of the Gibbs state of the discrete ideal gas. We will end
the section by discussing Gibbs states for this and other statistical mechanical
models. As in Theorem 4.1, a theorem analogous to the following would hold
if [z − a, z] ⊂ [y1, ȳ) were replaced by[z, z + a] ⊂ (ȳ, yα].

Theorem 5.1.Givent ∈ N, yk1
, . . . , ykt

∈ Λ, and[z − a, z] ⊂ [y1, ȳ),

lim
n→∞

Pn{X1 = yk1
, . . . , Xt = ykt

|Hn/n ∈ [z − a, z]} =

t
∏

j=1

ρ
(β)
kj
. (5.1)

Comments on the Proof.We considert = 2; arbitraryt ∈ N can be handled
similarly. Forω ∈ Ωn andi, j ∈ {1, . . . , α} define

Ln,2({yi, yj}) = Ln,2(ω, {yi, yj})

=
1

n

(

n−1
∑

j=1

δXj(ω),Xj+1(ω){yi, yj} + δXn(ω),X1(ω){yi, yj}
)

.

This counts the relative frequency with which the pair{yi, yj} appears in the
configuration(ω1, . . . , ωn, ω1). We then define the empirical pair vector

Ln,2 = {Ln,2({yi, yj}), i, j = 1, . . . , α}.

This takes values in the setPα,2 consisting of allτ = {τi,j, i, j = 1, . . . , α}
satisfyingτi,j ≥ 0 and

∑α
i,j=1 τi,j = 1. Suppose one can show thatτ ∗ =

{ρ(β)
i ρ

(β)
j , i, j = 1, . . . , α} has the property that for everyε > 0

lim
n→∞

Pn{Ln,2 ∈ B(τ ∗, ε) |Hn/n ∈ [z − a, z]} = 1. (5.2)

Then as in Theorem 4.1, it will follow that

lim
n→∞

Pn{X1 = yi, X2 = yj |Hn/n ∈ [z − a, z]} = ρ
(β)
i ρ

(β)
j .

Like the analogous limit in part (a) of Theorem 4.1, (5.2) canbe proved by
showing that the sequence{Ln,2, n ∈ N} satisfies the large deviation principle
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onPα,2 [33, §I.5] and that the rate function attains its infimum over an appro-
priately defined, closed convex subset ofPα,2 at the unique pointτ ∗ [cf. (4.3)].
The details are omitted.

The quantity appearing on the right side of (5.1) defines a probability mea-
surePt,β onΩt that equals the product measure with one-dimensional marginals
ρ(β). In the notation of Theorem 5.1,

Pt,β{X1 = yk1
, . . . , Xt = ykt

} =

t
∏

j=1

ρ
(β)
kj
.

Pt,β can be written in terms of the total energyHt(ω) =
∑t

j=1 ωj: for ω ∈ Ωt

Pt,β{ω} =

t
∏

j=1

ρ(β){ωj} =
1

Zt(β)
· exp[−βHt(ω)]Pt{ω},

wherePt{ω} =
∏t

j=1 ρ{ωj} = 1/αt,

Zt(β) =
∑

ω∈Ωt

exp[−βHt(ω)]Pt{ω} =

(

α
∑

k=1

exp[−βyk] ρk
)t

,

andβ = β(z) ∈ R is the unique value ofβ satisfying
∑α

k=1 ykρ
(β)
k = z.

Theorem 5.1 can be motivated by a non-large deviation calculation that we
present using a formal notation [64]. Sinceȳ =

∑α
k=1 ykρk = EPn{X1}, by

the weak law of large numbersPn{Hn/n ∼ ȳ} ≈ 1 for largen. Since the
conditioning is on a set of probability close to 1, one expects that

lim
n→∞

Pn{X1 = yk1
, . . . , Xt = ykt

|Hn/n ∼ ȳ}
= lim

n→∞
Pn{X1 = yk1

, . . . , Xt = ykt
}

=
t
∏

j=1

ρkj
= Pt{X1 = yk1

, . . . , Xt = ykt
}.

Now takez 6= ȳ and for anyβ > 0 let Pn,β denote the product measure on
Ωn with one-dimensional marginalsρ(β). A short calculation shows that for any
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β > 0

Pn{X1 = yk1
, . . . , Xt = ykt

|Hn/n ∼ z}
= Pn,β{X1 = yk1

, . . . , Xt = ykt
|Hn/n ∼ z}.

If one picksβ = β(z) such thatz =
∑α

k=1 ykρ
(β(z))
k = EPn,β(z){X1}, then by the

weak law of large numbersPn,β(z){Hn/n ∼ z} ≈ 1, and since the conditioning
is on a set of probability close to 1, again one expects that

lim
n→∞

Pn{X1 = yk1
, . . . , Xt = ykt

|Hn/n ∼ z}
= lim

n→∞
Pn,β(z){X1 = yk1

, . . . , Xt = ykt
|Hn/n ∼ z}

= lim
n→∞

Pn,β(z){X1 = yk1
, . . . , Xt = ykt

}

=
t
∏

j=1

ρ
(β(z))
kj

= Pt,β(z){X1 = yk1
, . . . , Xt = ykt

}.

This is consistent with Theorem 5.1.
For any subsetB of Ωt, (5.1) implies that

lim
n→∞

Pn{(X1, . . . , Xt) ∈ B |Hn/n ∈ [z − a, z]} = Pt,β{B}. (5.3)

Since
∑

ω∈Ωt
[Ht(ω)/t]Pt,β{ω} =

∑α
k=1 ykρ

(β)
k , the constraint onβ = β(z) can

be expressed as a constraint onPt,β:

chooseβ = β(z) so that
∑

ω∈Ωt

[Ht(ω)/t]Pt,β{ω} = z. (5.4)

The conditional probability on the left side of (5.3) is known as the microcanon-
ical ensemble, and the probability on the right side of (5.3)as the canonical
ensemble or Gibbs state. This limit expresses the equivalence of the two en-
sembles providedβ is chosen in accordance with (5.4). Since the canonical
ensemble has a much simpler form than the microcanonical ensemble, one usu-
ally prefers to work with the former. One can interpretβ as a parameter that is
proportional to the inverse temperature. In section 10 we will discuss related is-
sues involving the equivalence of ensembles in a much broader setting, showing
that for models in which interactions are present, in general the microcanonical
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formulation gives rise to a richer set of equilibrium properties than the canonical
formulation.

This discussion motivates the definition of the Gibbs statesfor a wide class
of statistical mechanical models that are defined in terms ofan energy func-
tion. We will write the energy function, or Hamiltonian, andthe corresponding
Gibbs state asHn andPn,β rather than asHt andPt,β, as we did in the preceding
paragraph. The notation of section 2 is used. ThusPn is the product measure
on the set of subsets ofΩn = Λn with one-dimensional marginalsρ. Nonin-
teracting systems such as the discrete ideal gas have Hamiltonians of the form
Hn(ω) =

∑n
j=1 Hn,j(ωj), where eachHn,j is a function only ofωj. In the next

definition we do not restrict to this case.

Definition 5.2. Let Hn be a function mappingΩn into R; Hn(ω) defines the

energy of the configurationω and is known as a Hamiltonian. Letβ be a pa-
rameter proportional to the inverse temperature. Then the canonical ensemble,
or the Gibbs state, is the probability measure

Pn,β{ω} =
1

Zn(β)
· exp[−βHn(ω)]Pn{ω} for ω ∈ Ωn,

whereZn(β) is the normalization factor that makesPn,β a probability measure.
That is,

Zn(β) =
∑

ω∈Ωn

exp[−βHn(ω)]Pn{ω}.

We callZn(β) the partition function. ForB ⊂ Ωn we define

Pn,β{B} =
∑

ω∈B
Pn,β{ω}.

One can also characterize Gibbs states in terms of a maximum entropy prin-
ciple [67, p. 6]. Givenn ∈ N and a HamiltonianHn, letBn ⊂ R denote the
smallest closed interval containing the range of{Hn(ω)/n, ω ∈ Ωn}. For each
z ∈ B◦

n, the interior ofBn, defineCn(z) to be the set of probability measuresQ
onΩn satisfying the energy constraint

∑

ω∈Ωn
[Hn(ω)/n]Q{ω} = z.
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Maximum Entropy Principle 5.3. Letn ∈ N and a HamiltonianHn : Ωn 7→
R be given. The following conclusions hold.

(a) For eachz ∈ B◦
n there exists a uniqueβ = β(z) ∈ R such thatPn,β ∈

Cn(z).
(b) The relative entropyIPn

attains its infimum overCn(z) at the unique
measurePn,β, andIPn

(Pn,β) = nIρ(ρ
β).

Part (a) can be proved by a calculation similar to that given after the statement
of Theorem 4.1 while part (b) can be proved like Proposition 4.2. We leave the
details to the reader.

In the next section we formulate the general concepts of a large deviation
principle and a Laplace principle. Subsequent sections will apply the theory of
large deviations to study interacting systems in statistical mechanics.
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6 Generalities: Large Deviation Principle and Laplace Prin-
ciple

In Theorem 3.4 we formulated Sanov’s Theorem, which is the large deviation
principle for the empirical vectorsLn on the spacePα of probability vectors
in Rα. Applications of the theory of large deviations to models instatistical
mechanics require large deviation principles in much more general settings. As
we will see in section 9, analyzing the Curie-Weiss model of ferromagnetism
involves a large deviation principle on the closed interval[−1, 1] for the sample
means of i.i.d. random variables. Analyzing the Ising modelin dimensions
d ≥ 2 is much more complicated. It involves a large deviation principle on
the space of translation invariant probability measures on{−1, 1}Z

d

[35, §11].
In section 11, our analysis of models of two-dimensional turbulence involves a
large deviation principle on the space of probability measures onT 2×Y , where
T 2 is the unit torus inR2 andY is a compact subset ofR.

In order to define the general concept of a large deviation principle, we need
some notation. First, for eachn ∈ N let (Ωn,Fn, Pn) be a probability space.
ThusΩn is a set of points,Fn is a σ-algebra of subsets ofΩn, andPn is a
probability measure onFn. An example is given by the basic model in section
2, whereΩn = Λn = {y1, y2, . . . , yα}n, Fn is the set of all subsets ofΩn, and
Pn is the product measure with one-dimensional marginalsρ.

Second, letX be a complete, separable metric space or, as it is often called,
a Polish space. Elementary examples areX = Rd for d ∈ N; X = Pα, the
set of probability vectors inRα; and in the notation of the basic probabilistic
model in section 2,X equal to the closed bounded interval[y1, yα]. A class
of Polish spaces arising naturally in applications is obtained by taking a Polish
spaceY and considering the spaceP(Y) of probability measures onY . We say
that a sequence{Πn, n ∈ N} in P(Y) converges weakly toΠ ∈ P(Y), and
write Πn ⇒ Π, if

∫

YfdΠn →
∫

YfdΠ for all bounded, continuous functionsf
mappingY into R. A fundamental fact is that there exists a metricm onP(Y)

such thatΠn ⇒ Π if and only if m(Π,Πn) → 0 andP(Y) is a Polish space
with respect tom [45, §3.1].
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Third, for eachn ∈ N let Yn be a random variable mappingΩn into X . For
example, withX = Pα let Yn = Ln, or withX = [y1, yα] let Yn =

∑n
j=1Xj/n,

whereXj(ω) = ωj for ω ∈ Ωn = Λn.
Finally, let I be a function mapping the complete, separable metric space

X into [0,∞]. I is called a rate function ifI has compact level sets; i.e., for
all M < ∞ {x ∈ X : I(x) ≤ M} is compact. This technical regularity
condition implies thatI has closed level sets or equivalently thatI is lower
semicontinuous. Hence, ifX is compact, then the lower semicontinuity ofI
implies thatI has compact level sets. For any subsetA of X we defineI(A) =

infx∈A I(x). WhenX = Pα, an example of a rate function is the relative entropy
Iρ with respect toρ; whenX = [y1, yα], any continuous functionI mapping
[y1, yα] into [0,∞) is a rate function.

We next define the concept of a large deviation principle. IfYn satisfies the
large deviation principle with rate functionI , then we summarize this by the
formal notation

Pn{Yn ∈ dx} ≍ exp[−nI(x)] dx.

Definition 6.1 (Large Deviation Principle). Let {(Ωn,Fn, Pn), n ∈ N} be a

sequence of probability spaces,X a complete, separable metric space,{Yn, n ∈
N} a sequence of random variables such thatYn mapsΩn into X , andI a rate
function onX . ThenYn satisfies the large deviation principle onX with rate
functionI if the following two limits hold.

Large deviation upper bound. For any closed subsetF ofX

lim sup
n→∞

1

n
logPn{Yn ∈ F} ≤ −I(F ).

Large deviation lower bound. For any open subsetG ofX

lim inf
n→∞

1

n
logPn{Yn ∈ G} ≥ −I(G).

We next explore several consequences of this definition. It is reassuring that
a large deviation principle has a unique rate function. The following result is
proved in Theorem II.3.2 in [33].
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Theorem 6.2. If Yn satisfies the large deviation principle onX with rate func-
tion I and with rate functionJ , thenI(x) = J(x) for all x ∈ X .

The next theorem gives a condition that guarantees the existence of large
deviation limits. The proof is analogous to the proof of Corollary 3.5.

Theorem 6.3.Assume thatYn satisfies the large deviation principle onX with

rate functionI . LetA be a Borel subset ofX having closureA and interiorA◦

and satisfyingI(A) = I(A◦). Then

lim
n→∞

1

n
log P{Yn ∈ A} = −I(A).

Proof. We evaluate the large deviation upper bound forF = A and the large
deviation lower bound forG = A◦. SinceA ⊃ A ⊃ A◦, it follows that

I(A) ≥ lim sup
n→∞

1

n
log P{Yn ∈ A} ≥ lim sup

n→∞

1

n
log P{Yn ∈ A}

≥ lim inf
n→∞

1

n
logP{Yn ∈ A} ≥ lim inf

n→∞
1

n
logP{Yn ∈ A◦} ≥ I(A◦).

By hypothesis the two extreme terms are equal, and so the theorem follows.

The next proposition states useful facts concerning the infimum of a rate
function over the entire space and the use of the large deviationprinciple to show
the convergence of a class of probabilities to 0. Part (b) generalizes Corollary
3.6.

Proposition 6.4. Suppose thatYn satisfies the large deviation principle onX
with rate functionI . The following conclusions hold.

(a) The infimum ofI over X equals 0, and the set ofx ∈ X for which

I(x) = 0 is nonempty and compact.
(b) DefineE to be the nonempty, compact set ofx ∈ X for whichI(x) = 0

and letA be a Borel subset ofX such thatA ∩ E = ∅. ThenI(A) > 0, and for
someC <∞

Pn{Yn ∈ A} ≤ C exp[−nI(A)/2] → 0 asn → ∞.
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Proof. (a) We evaluate the large deviation upper bound forF = X and the large
deviation lower bound forG = X , obtainingI(X ) = 0. SinceI has compact
level sets, the set ofx ∈ X for whichI(x) = 0 is nonempty and compact. This
gives part (a).

(b) If I(A) > 0, then the desired upper bound follows immediately from
the large deviation upper bound. We prove thatI(A) > 0 by contradiction.
If I(A) = 0, then there exists a sequencexn such thatlimn→∞ I(xn) = 0.
SinceI has compact level sets andA is closed, there exists a subsequencexn′

converging to an elementx ∈ A. SinceI is lower semicontinuous, it follows
thatI(x) = 0 and thus thatx ∈ E . This contradicts the assumption thatA∩E =

∅. The proof of the proposition is complete.

In the next section we will prove Cramér’s Theorem, which isthe large devi-
ation principle for the sample means of i.i.d. random variables. Here is a state-
ment of the theorem. The rate function is defined by a variational formula that
in general cannot be evaluated explicitly. We denote by〈·, ·〉 the inner product
onRd.

Theorem 6.5 (Craḿer’s Theorem). Let {Xj, j ∈ N} be a sequence of i.i.d.
random vectors taking values inRd and satisfyingE{exp〈t,X1〉} < ∞ for all
t ∈ R

d. We define the sample meansSn/n =
∑n

j=1Xj/n and the cumulant
generating functionc(t) = logE{exp〈t,X1〉}. The following conclusions hold.

(a) The sequence of sample meansSn/n satisfies the large deviation princi-
ple onRd with rate functionI(x) = supt∈Rd{〈t, x〉 − c(t)}.

(b) I is a convex, lower semicontinuous function onR
d, and it attains its

infimum of0 at the unique pointx0 = E{X1}.

For application in section 9, we next state a special case of Cramér’s Theo-
rem, for which the rate function can be given explicitly.

Corollary 6.6. In the basic probability model of section2, letΛ = {−1, 1} and

ρ = (1
2,

1
2), which corresponds to the probability measureρ = 1

2δ−1 + 1
2δ1 on

Λ. For ω ∈ Ωn defineSn(ω) =
∑n

j=1 ωj. Then the sequence of sample means
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Sn/n satisfies the large deviation principle on the closed interval [−1, 1] with
rate function

I(x) = 1
2(1 − x) log(1 − x) + 1

2(1 + x) log(1 + x). (6.1)

Proof. In this casec(t) = log(1
2
[et + e−t]. The functionc(t) satisfiesc ′′(t) > 0

for all t, and the range ofc ′ equals(−1, 1). Hence for anyx ∈ (−1, 1) the
supremum in the definition ofI is attained at the uniquet = t(x) satisfying
c ′(t(x)) = x. One easily verifies thatt(x) = 1

2
log[(1 + x)/(1 − x)] and that

I(x) = t(x) · x − c(t(x)) is given by (6.1). Whenx = 1 or x = −1, the
supremum in the definition ofI(x) is not attained but equalslog 2.

Corollary 6.6 is easy to motivate using the formal notation of “Theorem” 3.3.
For anyx ∈ [−1, 1] Sn(ω)/n ∼ x if and only if approximatelyn

2
(1 − x) of the

ωj ’s equal−1 and approximatelyn
2
(1 + x) of theωj ’s equal1. Hence

Pn{Sn/n ∼ x} ≈ Pn{Ln(−1) = 1
2
(1 − x), Ln(1) = 1

2
(1 + x)}

≈ exp[−nIρ( 1
2(1 − x),12(1 + x))] = exp[−nI(x)].

For application in section 11, we state a general version of Sanov’s Theorem,
which gives the large deviation principle for the sequence of empirical measures
of i.i.d. random variables. Let(Ω,F , P ) be a probability space,Y a complete,
separable metric space,ρ a probability measure onY , and{Xj, j ∈ N} a se-
quence of i.i.d. random variables mappingΩ into Y and having the common
distributionρ. Forn ∈ N, ω ∈ Ω, andA any Borel subset ofY we define the
empirical measure

Ln(A) = Ln(ω,A) =
1

n

n
∑

j=1

δXj(ω){A},

where fory ∈ Y , δy{A} equals 1 ify ∈ A and 0 if y 6∈ A. For eachω,
Ln(ω, ·) is a probability measure onY . Hence the sequenceLn takes values in
the complete, separable metric spaceP(Y).

Theorem 6.7 (Sanov’s Theorem).The sequenceLn satisfies the large devia-
tion principle onP(Y) with rate function given by the relative entropy with
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respect toρ. For γ ∈ P(Y) this quantity is defined by

Iρ(γ) =







∫

Y

(

log
dγ

dρ

)

dγ if γ ≪ ρ

∞ otherwise.

This theorem is proved, for example, in [20,§6.2] and in [31, Ch. 2]. As we will
see in the next section, if the support ofρ is a finite setΛ ⊂ R, then Theorem
6.7 reduces to Theorem 3.4.

The concept of a Laplace principle will be useful in the analysis of statistical
mechanical models.

Definition 6.8 (Laplace Principle). Let {(Ωn,Fn, Pn), n ∈ N} be a sequence
of probability spaces,X a complete, separable metric space,{Yn, n ∈ N} a se-
quence of random variables such thatYn mapsΩn intoX , andI a rate function
onX . ThenYn satisfies the Laplace principle onX with rate functionI if for
all bounded, continuous functionsf mappingX into R

lim
n→∞

1

n
log

∫

Ωn

exp[nf(Yn)] dPn = sup
x∈X

{f(x) − I(x)}.

Suppose thatYn satisfies the large deviationprinciple onX with rate function
I . Then substitutingPn{Yn ∈ dx} ≍ exp[−nI(x)] dx gives

lim
n→∞

1

n
log

∫

Ωn

exp[nf(Yn)] dPn =
1

n
log

∫

X
exp[nf(x)]Pn{Yn ∈ dx}

≈ 1

n
log

∫

X
exp[nf(x)] exp[−nI(x)] dx.

By analogy with Laplace’s method onR, the main contribution to the last inte-
gral should come from the largest value of the integrand, andthus the following
limit should hold:

lim
n→∞

1

n
log

∫

Ωn

exp[nf(Yn)] dPn = sup
x∈X

{f(x) − I(x)}.

Hence it is plausible thatYn satisfies the Laplace principle with rate functionI .
In fact, we have the following stronger result [31, Thms. 1.2.1, 1.2.3].
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Theorem 6.9.Yn satisfies the large deviation principle onX with rate function
I if and only ifYn satisfies the Laplace principle onX with rate functionI .

As we will see in section 10, where a general class of statistical mechanical
models are studied, the Laplace principle gives a variational formula for the
canonical free energy [Thm. 10.2(a)].

We next introduce the concept of exponential tightness, which will be used
in the proof of Theorem 6.11.

Definition 6.10. The sequenceYn is said to be exponentially tight if for every
M < ∞ there exists a compact subsetKM such that

lim sup
n→∞

1

n
logPn{Yn ∈ Kc

M} ≤ −M. (6.2)

The next theorem shows that ifYn is exponentially tight, then the large de-
viation upper bound for all compact sets implies the bound for all closed sets.
This is a useful observation because one can often prove the bound for compact
sets by covering them with a finite class of sets such as balls or halfspaces for
which the proof is easier to obtain. We will see an example of this in the proof
of Cramér’s Theorem in the next section.

Theorem 6.11.Assume that one can prove the large deviation upper bound for
any compact subset ofX . Then the large deviation upper bound is valid for any
closed subset ofX .

Proof. We give the proof under the assumption thatF is a closed set for which
I(F ) < ∞, omitting the minor modifications necessary to handle the case in
which I(F ) = ∞. ChooseM < ∞ such thatM > I(F ) and letKM be the
compact set satisfying (6.2) in the definition of exponential tightness. Since
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F ⊂ (F ∩KM) ∪Kc
M andF ∩KM is compact, it follows that

lim sup
n→∞

1

n
log Pn{Yn ∈ F}

≤ lim sup
n→∞

1

n
log Pn{Yn ∈ (F ∩KM) ∪Kc

M}

≤ lim sup
n→∞

1

n
log(Pn{Yn ∈ F ∩KM} + Pn{Yn ∈ Kc

M})

= max

{

lim sup
n→∞

1

n
logPn{Yn ∈ F ∩KM}, lim sup

n→∞

1

n
log Pn{Yn ∈ Kc

M}
}

≤ max{−I(F ∩KM),−M}
≤ max{−I(F ),−M} = −I(F ).

This completes the proof.

We end this section by presenting three ways to obtain large deviation prin-
ciples from existing large deviation principles. In the first theorem we show
that a large deviation principle is preserved under continuous mappings. An ap-
plication involving the relative entropy is given after thestatement of Theorem
6.14.

Theorem 6.12 (Contraction Principle).Assume thatYn satisfies the large de-

viation principle onX with rate functionI and thatψ is a continuous function
mappingX into a complete, separable metric spaceY . Thenψ(Yn) satisfies the
large deviation principle onY with rate function

J(y) = inf{I(x) : x ∈ X , ψ(x) = y}.

Proof. SinceI mapsX into [0,∞], J mapsY into [0,∞]. It is left as an exercise
to show that sinceI has compact level sets inX , J has compact level sets in
Y . If F is a closed subset ofY , then sinceψ is continuous,ψ−1(F ) is a closed
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subset ofX . Hence by the large deviation upper bound forYn

lim sup
n→∞

1

n
log Pn{ψ(Yn) ∈ F} = lim sup

n→∞

1

n
logPn{Yn ∈ ψ−1(F )}

≤ − inf
x∈ψ−1(F )

I(x)

= − inf
y∈F

{inf{I(x) : x ∈ X , ψ(x) = y}
= − inf

y∈F
J(y) = −J(F ).

Similarly, if G is an open subset ofY , then

lim inf
n→∞

1

n
log Pn{ψ(Yn) ∈ G} ≥ −J(G).

This completes the proof.

In the next theorem we show that a large deviation principle is preserved if
the probability measuresPn are multiplied by suitable exponential factors and
then normalized. This result will be applied in section 10 when we prove the
large deviation principle for statistical mechanical models with respect to the
canonical ensemble [Thm. 10.2].

Theorem 6.13. Assume that with respect to the probability measuresPn, Yn
satisfies the large deviation principle onX with rate functionI . Let ψ be a

bounded, continuous function mappingX into R. For A ∈ Fn we define new
probability measures

Pn,ψ{A} =
1

∫

X exp[−nψ(Yn)] dPn
·
∫

A

exp[−nψ(Yn)] dPn.

Then with respect toPn,ψ, Yn satisfies the large deviation principle onX with
rate function

Iψ(x) = I(x) + ψ(x) − inf
y∈X

{I(y) + ψ(y)}.

Proof. Clearly Iψ mapsX into [0,∞], and it is easily checked thatIψ has
compact level sets. We prove the theorem by showing that withrespect toPn,ψ,
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Yn satisfies the Laplace principle with rate functionIψ and then invoke Theorem
6.9. Letf be any bounded, continuous function mappingX into R. Sincef+ψ

is bounded and continuous and since with respect toPn, Yn satisfies the Laplace
principle with rate functionI , it follows that

lim
n→∞

1

n
log

∫

Ωn

exp[n f(Yn)] dPn,ψ

= lim
n→∞

1

n
log

∫

Ωn

exp[n(f(Yn) − ψ(Yn))] dPn

− lim
n→∞

1

n
log

∫

Ωn

exp[−nψ(Yn)] dPn

= sup
x∈X

{f(x) − ψ(x) − I(x)} − sup
y∈X

{−ψ(y) − I(y)}

= sup
x∈X

{f(x) − Iψ(x)}.

Thus with respect toPn,ψ, Yn satisfies the Laplace principle with rate function
Iψ, as claimed. This completes the proof.

According to our next result, if random variablesXn are superexponentially
close to random variablesYn that satisfy the large deviation principle, thenXn

satisfies the large deviation principle with the same rate function. A proof based
on the equivalent Laplace principle is given in Theorem 1.3.3 in [31].

Theorem 6.14.Assume thatYn satisfies the large deviation principle onX with
rate functionI and denote bym(·, ·) the metric onX (e.g.,m(x, y) = |x− y| if
X = R). Assume also thatXn is superexponentially close toYn in the following

sense: for eachδ > 0

lim sup
n→∞

1

n
log Pn{m(Yn, Xn) > δ} = −∞. (6.3)

ThenXn satisfies the large deviation principle onX with the same rate function
I . The condition(6.3) is satisfied if

lim
n→∞

sup
ω∈Ωn

m(Xn(ω), Yn(ω)) = 0.
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A standard application of the contraction principle statedin Theorem 6.12 is
to relate the rate functions in Sanov’s Theorem and in Cramér’s Theorem. For
simplicity, we restrict to the case of a nondegenerate probability measure onR;
much more general versions are available. For example, in [27, Thm. 5.2] it is
shown to hold in the case of random variables taking values ina Banach space.
Let ρ be a nondegenerate probability onR having compact supportK andYn
an i.i.d. sequence of random variables having common distributionρ. SinceK
is compact, the functionψ mappingγ ∈ P(K) to

∫

K xγ(dx) is bounded and
continuous, and

ψ(Ln) =

∫

K

xLn(dx) =
1

n

∫

K

x δXj
(dx) =

1

n

n
∑

j=1

Xj =
Sn
n
.

SinceLn satisfies the large deviation principle onP(K) with rate function given
by the relative entropyIρ [Thm. 6.7], the contraction principle implies thatSn/n
satisfies the large deviation onK with rate function

J(y) = inf

{

Iρ(γ) : γ ∈ P(K),

∫

K

x γ(dx) = y

}

Since a rate function in a large deviation principle is unique [Thm. 6.2],J must
equal the rate functionI in Cramér’s Theorem. We conclude that for ally ∈ R

I(y) = sup
t∈R

{ty − c(t)} = inf

{

Iρ(γ) : γ ∈ P(K),

∫

K

x γ(dx) = x

}

. (6.4)

We emphasize that in order to apply the contraction principle, one needs the
hypothesis thatρ has compact support. It is satisfying to know that (6.4) is valid
without this extra hypothesis [33, Thm. VIII.3.1].

This completes our discussion of the large deviation principle, the Laplace
principle, and related general results. In the next sectionwe prove Cramér’s
Theorem.
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7 Cramér’s Theorem

Cramér’s Theorem is the large deviation principle for sumsof i.i.d. random
vectors taking values inRd. In this section Cramér’s Theorem will be proved
and several applications will be given.

Let {Xj, j ∈ N} be a sequence of i.i.d. random vectors defined on a prob-
ability space(Ω,F , P ) and taking values inRd. We are interested in the large
deviation principle for the sample meansSn/n, whereSn =

∑n
j=1Xj. The ba-

sic assumption is that the moment generating functionE{exp〈t,X1〉} is finite
for all t ∈ R

d. We define fort ∈ R
d the cumulant generating function

c(t) = logE{exp〈t,X1〉},

which is finite, convex, and differentiable, and forx ∈ R
d we define the Legendre-

Fenchel transform
I(x) = sup

t∈Rd

{〈t, x〉 − c(t)}.

The basic theory of convex functions and the Legendre-Fenchel transform is
developed in chapter VI of [33]. Here are some relevant definitions. A function
f mappingR into R ∪ {∞} is said to be convex if for allx andy in R

d and all
λ ∈ (0, 1)

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

Such a function is said to be lower semicontinuous if whenever xn → x ∈ R,
we havelim infn→∞ f(xn) ≥ f(x). The convexity ofc(t) is an immediate
consequence of Hölder’s inequality withp = 1/λ andq = 1/(1− λ) [33, Prop.
VII.1.1].

We consider Cramér’s Theorem first the cased = 1. Letα be a real number
exceeding the mean valueE{X1}. Assuming thatρ has an absolutely con-
tinuous component and that certain other conditions hold, Cramér obtained in
his 1938 paper [17] an asymptotic expansion for the probability P{Sn/n ∈
[α,∞)}, which implies the large deviation limit

lim
n→∞

1

n
logP{Sn/n ∈ [α,∞)} = −I(α) = −I([α,∞)).
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In the modern theory of large deviations the following generalization of this
limit is known as Cramér’s Theorem.

Theorem 7.1 (Craḿer’s Theorem). Let {Xj.j ∈ N} be a sequence of i.i.d.
random vectors taking values inRd and satisfyingE{exp〈t,X1〉} < ∞ for all
t ∈ R

d. The following conclusions hold.
(a) The sequence of sample meansSn/n satisfies the large deviation princi-

ple onRd with rate functionI(x) = supt∈Rd{〈t, x〉 − c(t)}.

(b) I is a convex, lower semicontinuous function onR
d, and it attains its

infimum of 0 at the unique pointx0 = E{X1}.

Infinite-dimensional generalizations of Cramér’s Theorem have been proved
by many authors, including [1] and [27,§5]. The book [20] presents Cramér’s
Theorem first in the setting ofRd and then in the setting of a complete, separable
metric space. At the end of this section we will derive from Cramér’s Theorem
the large deviation principle for the empirical vectors stated in Theorem 3.4.
This is a special case of Sanov’s Theorem 6.7. We will also indicate how to
prove a general version of Sanov’s Theorem from an infinite-dimensional ver-
sion of Cramér’s Theorem.

The properties ofI stated in part (b) of Theorem 7.1 as well as other prop-
erties of this function related to Legendre-Fenchel duality are proved in [33,
Thm. VII.5.5]. Before proving Cramér’s Theorem, it is worthwhile to motivate
the form of the rate functionI . Assuming that the sequenceSn/n satisfies the
large deviation principle onRd with some convex, lower semicontinuous rate
functionJ , we will prove thatJ = I .

Since for eacht ∈ R
d

c(t) = logE{exp〈t,X1〉} =
1

n
logE{exp〈t, Sn/n〉}

=
1

n
log

∫

Rd

exp[n〈t, x〉]P{Sn/n ∈ dx},

it follows that

c(t) = lim
n→∞

1

n
log

∫

Rd

exp〈t, x〉P{Sn/n ∈ dx}.
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We now use the hypothesis thatSn/n satisfies the large deviation principle on
Rd with some convex, lower semicontinuous rate functionJ . Although the
function mappingx 7→ 〈t, x〉 is not bounded, a straightforward extension of
Theorem 6.9 allows us to apply the Laplace principle to evaluate the last limit,
yielding

c(t) = sup
x∈Rd

{〈t, x〉 − J(x)}.

The assumed convexityand lower semicontinuityofJ combined with Legendre-
Fenchel duality now yields the desired formula; namely, foreachx ∈ R

d

J(x) = sup
t∈Rd

{〈t, x〉 − c(t)} = I(x).

Legendre-Fenchel duality is explained, for example, in [33, §VI.5]. This com-
pletes the motivation of the form of the rate function in Cramer’s Theorem.

We now turn to the proof of Cramér’s Theorem. The main tool used in the
proof of the large deviation upper bound is Chebyshev’s inequality, introduced
by Chernoff in [10], while the main tool used in the proof of the large deviation
lower bound is a change of measure, introduced by Cramér in his 1938 paper
[17]. These same tools for proving the large deviation bounds continue to be
used in modern developments of the theory.

Proof of Theorem7.1. We first show thatI is a rate function, then prove part (b)
followed by the proofs of the large deviation upper bound andlower bound.
I is a rate function.SinceI is defined as a Legendre-Fenchel transform, it

is automatically convex and lower semicontinuous. By part (a) of Proposition
6.4, the infimum ofI over R

d equals 0, and soI mapsR
d into the extended

nonnegative real numbers[0,∞]. We now consider a level setKL = {x ∈ Rd :

I(x) ≤ L}, whereL is any nonnegative real number. This set is closed sinceI

is lower semicontinuous. Ifx is inKL, then for anyt ∈ R
d

〈t, x〉 ≤ c(t) + I(x) ≤ c(t) + L.

Fix any positive numberR. The finite, convex, continuous functionc is
bounded on the ball of radiusR with center 0, and so there exists a number
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Γ <∞ such that

sup
‖t‖≤R

〈t, x〉 = R‖x‖ ≤ sup
‖t‖≤R

c(t) + L ≤ Γ <∞.

This implies thatKL is bounded and thus that the level sets ofI are compact.
The sketch of the proof thatI is a rate function is complete.

Part (b). We have already remarked thatI is convex and lower semicontinu-
ous. SinceI is a rate function,I attains its infimum of 0 at some pointx0 ∈ R

d

[Prop. 6.4(a)]. It is easy to show that ifx0 = E{X1}, thenI(x0) = 0. Indeed,
sincec(t) is convex and differentiable, the infimum in the definition of

I(x0) = sup
t∈Rd

{〈t, x0〉 − c(t)}

is attained whent satisfies∇c(t) = x0 = E{X1}. Since∇c(0) = E{X1}, it
follows t = 0. For this choice oft, we haveI(x0) = 〈0, x0〉 − c(0) = 0, as
claimed. The proof thatx0 = E{X1} is the unique minimum point ofI requires
some additional ideas from convex analysis, which we omit [33, Thm. VII.5.5].

Large deviation upper bound.We first prove this bound in the cased = 1.
Our aim is to prove that for any nonempty closed subsetF of R

lim sup
n→∞

1

n
log P{Sn/n ∈ F} ≤ −I(F ).

Let x0 = E{X1}. We first show this for the closed intervals[α,∞), where
α > x0. For anyt > 0 Chebyshev’s inequality implies

P{Sn/n ∈ [α,∞)} = P{tSn > ntα}
≤ exp[−ntα]E{exp[tSn]}

= exp[−ntα]

n
∏

i=1

E{exp[Xi]}

= exp[−ntα] (E{exp[X1]})n

= exp[−ntα + n logE{exp[X1]}]
= exp[−n(tα− c(t))].
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It follows that for anyt > 0

lim sup
n→∞

1

n
log P{Sn/n ∈ [α,∞)} ≤ −(tα− c(t)),

and thus that

lim sup
n→∞

1

n
log P{Sn/n ∈ [α,∞)} ≤ − sup

t>0
{tα− c(t)}. (7.1)

The next lemma will allow us to rewrite the right-hand side ofthis inequality
as in the statement of Cramér’s Theorem.

Lemma 7.2. If α > x0, then

sup
t>0

{tα− c(t)} = I(α) = I([α,∞).

Proof. Sincec(t) is continuous att = 0,

I(α) = sup
t∈R

{tα− c(t)} = sup
t 6=0

{tα− c(t)}.

Sincec(t) is differentiable and convex, we havec ′(0) ≥ c(t)/t for any t < 0.
Therefore, for anyt < 0

tα− c(t) = t(α− c(t)/t) ≤ t(α− c ′(0)) < 0 = 0 · α− c(0).

The second inequality holds sinceα > x0 = E{X1} = c ′(0) andt < 0. From
this display we see that the supremum in the formula forI(α) cannot occur for
t < 0. It follows that

I(α) = sup
t>0

{tα− c(t)}.

I(x) is nonnegative, convex function satisfyingI(x0) = 0. ThusI(x) is non-
increasing forx ≤ x0 and is nonincreasing forx ≥ x0. This means that
I(α) = inf{I(x) : x ≥ α} = I([α,∞). The proof of the lemma is complete.

Inequality (7.1) and the lemma imply that ifF is the closed interval[α,∞),
then the large deviation upper bound holds:

lim sup
n→∞

1

n
logP{Sn/n ∈ F} ≤ −I(α) = −I(F ).
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A similar proof yields the large deviation upper bound ifF = (−∞, α] and
α < x0.

Now letF be an arbitrary nonempty closed set. Ifx0 ∈ F , thenI(F ) equals
0 and the large deviation upper bound holds automatically sincelog P{Sn/n ∈
F} is always nonpositive. Ifx0 6∈ F , then let(α1, α2) be the largest open
interval containingx0 and having empty intersection withF . F is a subset of
(−∞, α1] ∪ [α2,∞), and by the first part of the proof

lim sup
n→∞

1

n
log P{Sn/n ∈ F}

≤ lim sup
n→∞

1

n
log P{Sn/n ∈ (−∞, α1] ∪ [α2,∞)}

≤ lim sup
n→∞

1

n
log(P{Sn/n ∈ [−∞, α1]} + P{Sn/n ∈ [α2,∞)})

= max

{

lim sup
n→∞

1

n
log P{Sn/n ∈ [−∞, α1]}, lim sup

n→∞

1

n
log P{Sn/n ∈ [α2,∞)}

}

≤ max{−I(α1),−I(α2)}
= −min{(I(α1), I(α2)} .

If α1 = −∞ or α2 = ∞, then the corresponding term is missing. From
the monotonicity properties ofI(x) on (−∞, x0] and on [x0,∞), I(F ) =

min{(I(α1), I(α2)}. Hence from the last display we conclude that

lim sup
n→∞

1

n
log P{Sn/n ∈ F} ≤ −I(F ).

This completes the proof of the large deviation upper bound for d = 1.
We now prove the large deviation upper bound ford > 1. Using the hy-

pothesis thatc(t) <∞ for all t ∈ R
d, it is straightforward to prove thatSn/n is

exponentially tight and that the compact setKM appearing in the definition 6.10
of exponential tightness can be taken to be the hypercubeKm = [−M,M ]d.
The details are left to the reader. By Theorem 6.11 the upper bound will follow
for any closed set if we can prove it for any compact setK. If I(K) = 0, then
the upper bound holds automatically sincelog Pn{Sn/n ∈ K} is always non-
positive. Details will now be given under the assumption that I(K) < ∞. The



Richard S. Ellis: Lectures on the Theory of Large Deviations 49

minor modifications necessary to prove the upper bound whenI(K) = ∞ are
omitted.

The technique of the proof exhibits a remarkable interplay among analysis,
geometry, and probability and readily extends to the much more general setting
of the Gärtner-Ellis Theorem, which we will consider in thenext section [Thm.
8.1]. We start by pickingε > 0 to satisfyε < I(K) and by defining fort ∈ Rd

the open halfspace

Ht = {x ∈ R
d : 〈t, x〉 − c(t) > I(K) − ε};

if t = 0, thenH0 = ∅ sinceI(K) − ε > 0. Since for allx ∈ K we have
I(x) > I(K)− ε, it follows that

K ⊂ {x ∈ R
d : I(x) > I(K)− ε}

=

{

x ∈ R
d : sup

t∈Rd

{〈t, x〉 − c(t)} > I(K)− ε

}

=
⋃

t∈Rd

{x ∈ R
d : 〈t, x〉 − c(t) > I(K) − ε}

=
⋃

t∈Rd

Ht.

SinceK is compact, there existsr ∈ N and nonzerot1, . . . , tr ∈ R
d such that

K ⊂ ∪ri=1Hti. Thus by Chebyshev’s inequality

P{Sn/n ∈ K} ≤
r
∑

i=1

P{Sn/n ∈ Hti} (7.2)

=

r
∑

i=1

P{〈ti, Sn〉 > n[c(ti) + I(K) − ε]}

≤
r
∑

i=1

exp[−n(c(ti) + I(K) − ε)]E{exp[〈ti, Sn〉]}

=

r
∑

i=1

exp[−n(c(ti) + I(K) − ε)] exp[n c(ti)]

= r exp[−n[I(K) − ε],
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from which it follows that

lim sup
n→∞

1

n
log P{Sn/n ∈ K} ≤ −I(K) + ε.

Sendingε → 0 completes the proof of the large deviation upper bound for
d > 1. This argument generalizes the proof ford = 1, in which we covered an
arbitrary closed setF by the intervals(−∞, α1] ∪ [α2,∞).

Proof of large deviation lower bound.In contrast to the large deviation upper
bound, which is proved by a global estimate involving Chebyshev’s inequality,
the large deviation lower bound is proved by a local estimate, the heart of which
involves a change of measure. The proof is somewhat more technical than the
proof of the large deviation upper bound. We denote the common distribution
of the random vectorsXj by

ρ(dx) = P{Xj ∈ dx}.
In general

c(t) = logE{exp〈t,X1〉} = log

∫

Rd

exp〈t, x〉 ρ(dx)

is a finite, convex, differentiable function onRd. We first prove the lower bound
under the highly restrictive assumption that the support ofρ is all of R

d or more
generally that the smallest convex set containing the support of ρ is all of Rd. In
this case, for eachz ∈ Rd there existst ∈ Rd such that∇c(t) = z [33, Thms.
VIII.3.3, VIII.4.3].

For z ∈ R
d andε > 0, we denote byB(z, ε) the open ball with centerz and

radiusε. LetG be an open subset ofR
d. Then for any pointz0 ∈ G there exists

ε > 0 such thatB(z0, ε) ⊂ G, and so

P{Sn/n ∈ G} ≥ P{Sn/n ∈ B(z0, ε)} =

∫

{∑n

j=1 xj/n∈B(z0,ε)}

n
∏

j=1

ρ(dxj).

We first assume thatG contains the point
∫

Rd xρ(dx) = E{X1} and letz0 =
∫

Rd xρ(dx). In this case the weak law of large numbers implies that

lim
n→∞

∫

{∑n

j=1 xj/n∈B(z0,ε)}

n
∏

j=1

ρ(dxj) = 1.
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SinceI(z0) = 0, we obtain the large deviation lower bound:

lim inf
n→∞

1

n
logP{Sn/n ∈ G} ≥ 0 = −I(z0) = −I(G).

Of course, in generalG does not contain the point
∫

Rd xρ(dx), and the ar-
gument in the preceding paragraph breaks down. In this case we let z0 be an
arbitrary point inG and introduce a change of measure, replacingρ by a new
measureρt0 whose mean equalsz0. The exponential price that must be paid
for introducing this new measure is of the order ofexp[−nI(z0)]. Putting the
various estimates together will yield the desired large deviation lower bound.

Givenz0 ∈ G, we chooset0 ∈ Rd such that∇c(t0) = z0. We then introduce
the change of measure given by the exponential family

ρt0(dx) =
1

∫

Rd e〈t0,x〉 ρ(dx)
· e〈t0,x〉 ρ(dx) =

1

ec(t0)
· e〈t0,x〉 ρ(dx).

Similar exponential families arise in Theorems 4.1 and 5.1.By the definition of
c(t0), ρt0 is a probability measure, and the mean ofρt0 is z0. Indeed

∫

Rd

x ρt0(dx) =
1

ec(t0)
·
∫

Rd

x e〈t0 ,x〉 ρ(dx) = ∇c(t0) = z0.

Furthermore, sincec(t) is convex,

I(z0) = sup
t∈Rd

{〈t, z0〉 − c(t)} = 〈t0, z0〉 − c(t0).
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We thus obtain the lower bound

Pn{Sn/n ∈ G}
≥ Pn{Sn/n ∈ B(z0, ε)}

=

∫

{∑n

j=1 xj/n∈B(z0,ε)}

n
∏

j=1

ρ(dxj)

=

∫

{∑n

j=1 xj/n∈B(z0,ε)}

(

n
∏

j=1

dρ

dρt0
(xj)

)

n
∏

j=1

ρt0(dxj)

=

∫

{∑n

j=1 xj/n∈B(z0,ε)}
exp
[

−n
(〈

t0,
∑n

j=1 xj/n
〉

− c(t0)
)]

n
∏

j=1

ρt0(dxj)

≥ exp[−n(〈t0, z0〉 − c(t0)) − n‖t0‖ε]
∫

{∑n

j=1 xj/n∈B(z0,ε)}

n
∏

j=1

ρt0(dxj)

= exp[−nI(z0) − n‖t0‖ε]
∫

{∑n

j=1 xj/n∈B(z0,ε)}

n
∏

j=1

ρt0(dxj).

Since the mean of the probability measureρt0 equalsz0, the weak law of
large numbers for i.i.d. random vectors with common distribution ρt0 implies
that

lim
n→∞

∫

{∑n

j=1 xj/n∈B(z0,ε)}

n
∏

j=1

ρt0(dxj) = 1.

Hence it follows that

lim inf
n→∞

1

n
log P{Sn/n ∈ G} ≥ −I(z0) − ‖t0‖ε.

We now sendε → 0, and sincez0 is an arbitrary point inG, we can replace
−I(z0) by − infz0∈G I(z0) = −I(G). This completes the proof of the large
deviation lower bound when the support ofρ is all of R

d or more generally
when the smallest convex set containing the support ofρ is all of R

d.
When this hypothesis does not hold, then the range of∇c(t) is no longer all

of Rd, and the argument just given breaks down. To handle the case of generalρ,
we find a setA with the properties thatI(G) = I(G∩A) and thatA is a subset
of the range of∇c(t). If we can do this, then the proof just given, specialized
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to arbitraryz0 ∈ G ∩A, yields

lim inf
n→∞

1

n
log P{Sn/n ∈ G} ≥ −I(z0).

Sincez0 is an arbitrary point inG∩A, we can replace−I(z0) by− infz0∈G∩A I(z0) =

−I(G ∩A) = −I(G), and we are done.
By definition, the domain ofI , domI , is the set ofx ∈ R

d for which
I(x) < ∞. The relative interior of domI , denoted by ri(domI), is defined
as the interior of domI when considered as a subset of the smallest affine set
that contains domI . Clearly, if the smallest affine set that contains domI is R

d,
then the relative interior of domI equals the interior of domI . This is the case
if, for example,d = 1 and domI is a nonempty interval.

Using several properties of convex sets and convex functions, we will show
that the desired setA equals ri(domI). In order to see this, we first note that
sinceI(x) equals∞ for x 6∈ domI , I(G) equals∞ if G ∩ domI is empty. In
this case the large deviation lower bound is valid. IfG ∩ domI is nonempty,
thenI(G) equalsI(G∩ domI). The setG∩ ri(domI) is also nonempty [71, p,
46], and by the continuity property ofI expressed in [33, Thm. VI.3.2]

I(G) = I(G ∩ domI) = I(G ∩ ri(domI)).

This is the first required property ofA = ri(domI). The second desired prop-
erty of this set — namely, that ri(domI) is a subset of the range of∇c(t) — is a
consequence of [33, Thm. VI.5.7], which is based on duality properties involv-
ing c(t) and its Legendre-Fenchel transformI(x) [71]. This completes the proof
of the large deviation lower bound and thus the proof of Cram´er’s Theorem.

We now apply Cramér’s Theorem to derive the special case of Sanov’s The-
orem given in Theorem 3.4; the latter states the large deviation principle for
the empirical vectors of i.i.d. random variables having a finite state space. Let
α ≥ 2 be an integer,y1 < y2 < . . . < yα a set ofα real numbers,ρ1, ρ2, . . . , ρα
a set ofα positive real numbers summing to 1, and{Xj, j ∈ N} a sequence of
i.i.d. random variables defined on a probability space(Ω,F , P ), taking values
in Λ = {y1, y2, . . . , yα}, and having distributionρ =

∑α
k=1 ρkδyk

. In Theorem
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3.4 we take{Xj, j = 1, . . . , n} to be the coordinate functions onΛn and im-
pose on this space the product measurePn with one dimensional marginalsρ,
but there is no need to restrict to this case. Forω ∈ Ω andy ∈ Λ we consider

Ln(y) = Ln(ω, y) =
1

n

n
∑

j=1

δXj(ω){y}

and the empirical vector

Ln = Ln(ω) = (Ln(ω, y1), . . . , Ln(ω, yα)) =
1

n

n
∑

j=1

(

δXj(ω){y1}, . . . , δXj(ω){yα}
)

.

Ln takes values in the set of probability vectors

Pα =

{

γ ∈ R
α : γ = (γ1, γ2, . . . , γα) ≥ 0,

α
∑

k=1

γk = 1

}

.

SinceLn equals the sample mean of the i.i.d. random variables

Yj(ω) = (δXj(ω){y1}, . . . , δXj(ω){yα}),

the large deviation principle forLn follows from Cramér’s Theorem. Forγ ∈
R
α the rate function is given by

I(γ) = sup
t∈Rα

{〈γ, t〉 − c(t)}, wherec(t) = E{exp〈t, Y1〉} = log

(

α
∑

k=1

etkρk

)

.

In the next proposition we show that forγ ∈ Pα, I(γ) equals the relative entropy
Iρ(γ) and that forγ ∈ R

α \ Pα, Iρ(γ) equals∞.

Proposition 7.3.For γ ∈ Pα we define the relative entropy

Iρ(γ) =

α
∑

k=1

γk log
γk
ρk
.

Then

I(γ) = sup
t∈Rα

{〈γ, t〉 − log(
∑α

k=1 e
tkρk)} =

{

Iρ(γ) for γ ∈ Pα

∞ for γ ∈ R
α \ Pα.
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Sketch of Proof. Let G be any open set having empty intersection withPα.
SinceP{Ln ∈ G} = 0, the large deviation lower bound implies that

−∞ = lim inf
n→∞

1

n
logP{Ln ∈ G} ≥ −I(G).

It follows thatI(γ) = ∞ for γ ∈ Rα \ Pα. The exercise of proving this directly
from the definition ofI(γ) as a Legendre-Fenchel transform is left to the reader.

DefiningP◦
α to be the set ofγ ∈ Pα having all positive components, we next

prove thatI(γ) = Iρ(γ) for γ ∈ P◦
α. Let R

α
+ denote the positive orthant ofR

α.
Since−log is strictly convex on(0,∞), Jensen’s inequality implies that for any
γ ∈ P◦

α

sup
s∈Rα

+

{

α
∑

k=1

γk log sk − log

α
∑

k=1

γksk

}

≤ 0

with equality if and only ifsk = const. Forγ ∈ P◦
α, ast runs throughRα, the

vectors having componentssk = etkρk/γk runs throughRα
+. Hence

I(γ) = sup
t∈Rα

{

〈γ, t〉 − log

(

α
∑

k=1

etkρk

)}

= sup
s∈Rα

+

{

α
∑

k=1

γk log
γksk
ρk

− log

(

α
∑

k=1

γksk

)}

=

α
∑

k=1

γk log
γk
ρk

+ sup
s∈Rα

+

{

α
∑

k=1

γk log sk − log

α
∑

k=1

γksk

}

=

α
∑

k=1

γk log
γk
ρk

= Iρ(γ).

This completes the proof thatI(γ) = Iρ(γ) for γ ∈ P◦
α. In order to prove this

equality for allγ ∈ Pα, we use the continuity ofIρ on Pα and the continuity
property ofI onPα stated in [33, Thm. VI.3.2]. The proof of the proposition is
complete.

In Theorem 5.2 in [27] the following infinite dimensional version of Cramér’s
Theorem is proved.
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Theorem 7.4.LetX be a Banach space with dual spaceX ∗ and{Xj, j ∈ N}
a sequence of i.i.d. random vectores taking values inX and having common

distributionρ. Assume thatE{exp(t‖X1‖)} < ∞ for everyt > 0. Then the
sequence of sample meansSn/n satisfies the large deviation principle onX
with rate function

I(x) = sup
θ∈X ∗

{

〈θ, x〉 − log

∫

X
exp〈θ, y〉 ρ(dy)

}

.

The rate functionI is convex and lower semicontinuous and attains its infimum
of 0 at the unique pointx0 = E{X1} =

∫

X xρ(dx).

We now return to the setting of Sanov’s Theorem, consideringthe empirical
measuresLn of a sequence{Xj, j ∈ N} of i.i.d. random variables taking values
in R

d [Thm. 6.7] and more generally in a complete, separable metric spaceX .
Let ρ denote the common distribution ofXj. Then

Ln =
1

n

n
∑

j=1

δXj

takes values in the complete, separable metric spaceP(X ) of probability mea-
sures onX . SinceLn is the sample mean of the i.i.d. random variablesδXj

, it is
reasonable to conjecture that Sanov’s Theorem can be derived as a consequence
of a suitable infinite-dimensional version of Cramér’s Theorem. While Theo-
rem 7.4 cannot be applied becauseP(X ) is not a Banach space, the derivation
of Sanov’s Theorem from a suitable infinite-dimensional version of Cramér’s
Theorem is carried out in [21, Thm. 3.2.17]. This reference first proves thatLn
satisfies the large deviation principle onP(X ) with rate functionI(γ) given by
the Legendre-Fenchel transform

I(γ) = sup
f∈C(X )

{
∫

X
f dγ − log

∫

X
efdρ

}

,

whereC(X ) denotes the set of bounded, continuous functions mappingX into
R. The proof of Sanov’s Theorem is completed by showing thatI(γ) equals
the relative entropyIρ(γ). A special case of this identification of the relative
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entropy with a Legendre-Fenchel transform is given in Proposition 7.3. An in-
dependent derivation of Sanov’s Theorem for i.i.d. random vectors taking values
in a complete, separable space is given in [31, Ch. 2], which applies ideas from
stochastic optimal control theory.

In the next section we present a generalization of Cramér’sThreorem that
does not require the underlying random variables to be independent. Both in
Cramér’s Theorem and in this generalization the rate functions are defined by
Legendre-Fenchel transforms and so are always convex. Thisconvexity is not a
general feature. Indeed, at the end of the next section we present two examples
of large deviation principles in which the rate function is not convex.
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8 Gärtner-Ellis Theorem

For eachn ∈ N let (Ωn,Fn, Pn) be a probability space and letYn be a random
vector mappingΩn into R

d. In 1977 Gärtner proved an important generalization
of Cramer’s Theorem, assuming only that the limit

c(t) = lim
n→∞

1

n
logEPn{exp[n〈t, Yn〉]} (8.1)

exists and is finite for everyt ∈ R
d and thatc(t) is a differentiable function of

t ∈ R
d [50]. Gärtner’s result is thatYn satisfies the large deviation principle on

R
d with rate function equal to the Legendre-Fenchel transform

I(x) = sup
t∈Rd

{〈t, x〉 − c(t)}.

Using ideas from convex analysis, I generalized Gärtner’sresult by relaxing the
condition thatc(t) exist and be finite for everyt ∈ Rd [34]. The theorem is now
known in the literature as the Gärtner-Ellis Theorem [20,§2.3,§2.5].

Gärtner’s result contains Cramér’s Theorem as a special case. In order to see
this, letYn equal

∑n
j=1Xj/n, whereXj is a sequence of i.i.d. random vectors

satisfyingE{exp〈t,X1〉} < ∞ for everyt ∈ R
d. In this case the limitc(t) in

(8.1) equalslogE{exp〈t,X1〉}, which is a differentiable function oft ∈ Rd.
The corresponding rate function is the same as in Cramer’s Theorem.

We next state the Gärtner-Ellis Theorem under the hypotheses of [50] and
in a form that is different from but equivalent to Gärtner’sresult in that paper.
This is followed by comments on the generalization proved in[34]. In this
theorem the differentiability ofc(t) for all t ∈ R

d is a sufficient condition for the
large deviation lower bound; the large deviation upper bound is always valid.
However, as we mention just before Example 8.3 in the contextof the Ising
model in statistical mechanics, the differentiability ofc(t) is not a necessary
condition for the validity of the lower bound.

Theorem 8.1. For eachn ∈ N let (Ωn,Fn, Pn) be a probability space and let
Yn be a random vector mappingΩn into Rd. We assume that the limit

c(t) = lim
n→∞

1

n
logEPn{exp[n〈t, Yn〉]}
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exists and is finite for everyt ∈ R
d. For x ∈ R

d we define

I(x) = sup
t∈Rd

{〈t, x〉 − c(t)}.

The following conclusions hold.
(a)I is a rate function. Furthermore,I is convex and lower semicontinuous.

(b) The large deviation upper bound is valid. Namely, for every closed subset
F of R

d

lim sup
n→∞

1

an
log Pn{Yn ∈ F} ≤ −I(F ).

(c) Assume in addition thatc(t) is differentiable for allt ∈ Rd. Then the

large deviation lower bound is valid. Namely, for every opensubsetG of R
d

lim inf
n→∞

1

an
log Pn{Yn ∈ G} ≤ −I(G).

Hence, ifc(t) is differentiable for allt ∈ Rd, thenYn satisfies the large deviation
principle onRd with rate functionI .

The theorem is proved by suitably generalizing the proof of Cramér’s The-
orem (see [33, Ch. 7]). In the case of the large deviation upper bound, the
generalization is easy to see. As in the proof of Cramér’s Theorem, the as-
sumption that the limit functionc(t) is finite for everyt ∈ Rd implies thatYn
is exponentially tight. Hence by Theorem 6.11, the upper bound will follow for
any closed set if we can prove it for any compact setK. If I(K) = 0, then
the upper bound holds automatically sincelog Pn{Yn ∈ K} is always nonposi-
tive. In order to handle the case whenI(K) < ∞, we argue as in the proof of
Cramér’s Theorem. Givenε > 0 satisfyingε < I(K), there existsr ∈ N and
nonzerot1, . . . , tr ∈ Rd such thatK ⊂ ∪ri=1Hti , whereHti denotes the open
halfspace

Hti = {x ∈ R
d : 〈ti, x〉 − c(ti) > I(K)− ε}.
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As in the display (7.2), Chebyshev’s inequality yields

P{Yn ∈ K} ≤
r
∑

i=1

P{Yn ∈ Hti}

=

r
∑

i=1

P{n〈ti, Yn〉 > n[c(ti) + I(K)− ε]}

≤
r
∑

i=1

exp[−n(c(ti) + I(K)− ε)]E{exp[n〈ti, Yn〉]}

=

r
∑

i=1

exp[−n(c(ti) + I(K)− ε)] exp[n cn(ti)],

where
cn(t) =

1

n
logEPn{exp[n〈t, Yn〉]}.

Sincecn(ti) → c(ti), there existsN ∈ N such thatcn(ti) < c(ti) + ε for all
n ≥ N and alli = 1, . . . , r. Thus for alln ≥ N

Pn{Yn ∈ K} ≤ r exp[−n(I(K) − 2ε],

from which it follows that

lim sup
n→∞

1

n
logP{Yn ∈ K} ≤ −I(K) + 2ε.

Sendingε→ 0, we complete the proof of the large deviation upper bound in the
Gärtner-Ellis Theorem whenI(K) < ∞. The minor modifications necessary
to prove the upper bound whenI(K) = ∞ are omitted.

The proof of the large deviation lower bound requires a new idea. We recall
that the proof of the lower bound in Cramér’s Theorem invoked the weak law
of large numbers with respect to the change of measure given by the product
measure with one-dimensional marginalsρt0. In the proof of the lower bound
in the Gärtner-Ellis Theorem again one uses a change of measure, but the weak
law of large numbers with respect to a product measure is not available. The
innovation is to replace the weak law of large numbers by an order-1 estimate
based on the large deviation upper bound in the Gärtner-Ellis Theorem.
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In the extension of Gärtner’s result proved in [34], it is assumed that for all
t ∈ Rd, c(t) exists as an extended real number in(−∞,∞]. Then the large
deviation upper bound as stated in part (b) of Theorem 8.1 is valid with rate
function

I(x) = sup
t∈Rd

{〈t, x〉 − c(t)}.

We denote byD the set oft ∈ Rd for which c(t) is finite. If c is differentiable
on the interior ofD, thenc is called steep if‖∇c(tn)‖ → ∞ for any sequence
tn in the interior ofD that converges to a boundary point ofD. For example,
if c is lower semicontinuous,D is open, andc is differentiable onD, thenc is
steep. In the extension of Gärtner’s result, it is proved that if c is differentiable
on the interior ofD and is steep, then the large deviation lower bound as stated
in part (c) of Theorem 8.1 is valid with rate function

I(x) = sup
t∈Rd

{〈t, x〉 − c(t)}.

We next give an applicationof the Gärtner-Ellis Theorem tofinite-state Markov
chains. Letα ≥ 2 be an integer,y1 < y2 < . . . < yα be a set ofα real numbers,
and{Xj, j ∈ N} a Markov chain taking values inΛ = {y1, y2, . . . , yα}. We
denote byρ ∈ R

α the initial distributionρi = P{X1 = yi} and byπ(i, j) the
transition probabilitiesP{Xj+1 = yj|Xj = yi} for 1 ≤ i, j ≤ α. Under the
assumption that the matrixπ = {π(i, j)} is irreducible and aperiodic, we have
the following two-part theorem. Part (a) is the large deviation principle for the
sample meansYn =

∑α
j=1Xj/n, and part (b) is the large deviation principle for

the empirical vectorsLn =
∑α

j=1 δXj
/n. The hypothesis thatπ is irreducible

holds if, for example,π is a positive matrix. Part (b) is a special case of a result
proved in [26].

Theorem 8.2.We assume that the transition probability matrixπ of the Markov
chainXj is aperiodic and irreducible. The following conclusions hold.

(a) For t ∈ R letB(t) be the matrix with entries[B(t)]i,j = exp(txi)π(i, j).

Then for allt ∈ R, B(t) has a unique largest positive eigenvalueλ(t) which is
differentiable for allt ∈ R. Furthermore, for any choice of the initial distribu-
tion ρ, the sample meansYn satisfy the large deviation principle onR with rate
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function
I(x) = sup

t∈R

{tx− log λ(t)}.

(b) We denote byPα the set of probability vectors inRα. Then for any choice
of the initial distributionρ, the empirical vectorsLn satisfy the large deviation

principle onPα with rate function

Iπ(γ) = − inf
u>0

α
∑

i=1

γi log
(πu)i
ui

.

In this formulau is any positive vector inRα, and(πu)i =
∑α

j=1 π(i.j)uj.

Sketch of Proof. (a) ThatB(t) has a unique largest positive eigenvalueλ(t) is
a consequence of the Perron-Frobenius Theorem [72, Thm. 1.1]. The differen-
tiability of λ(t) is a consequence of the implicit function theorem and the fact
thatλ(t) is a simple root of the characteristic equation forB(t). For t ∈ R we
calculate

c(t) = lim
n→∞

1

n
logE{exp[ntYn]}

= lim
n→∞

1

n
logE{exp〈t∑n

j=1Xj〉}

= lim
n→∞

1

n
log

α
∑

i1,i2,...,in=1

exp(t
∑n

j=1 xij) ρi1 π(i1, i2) π(i2, i3) π(in−1, in)

= lim
n→∞

1

n
log

α
∑

i1,i2,...,in=1

ρi1 (B(t))i1,i2 (B(t))i1,i2 (B(t))in−1,in e
txin

= lim
n→∞

1

n
log

α
∑

i1,in=1

ρi1 [B(t)n−1]i1,in e
txin .

Using a standard limit theorem for irreducible, aperiodic Markov chains [48, p.
356], one proves that for each1 ≤ i, j ≤ α

lim
n→∞

1

n
log[B(t)n]i.j = log λ(t).

Details are given in [33, Lem. IX.4.1]. It follows thatc(t) = log λ(t). Sinceλ(t)

and thusc(t) are differentiable for allt, the Gärtner-Ellis Theorem implies that
Yn satisfies the large deviation principle onR with the indicated rate functionI .
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(b) We refer the reader to [34, Thm. III.1], where this large deviation prin-
ciple for the empirical vectorsLn is proved. The basic idea is that as in part
(a) the rate function is given by a Legendre-Fenchel transform in R

α. One then
shows that this Legendre-Fenchel transform equalsIπ onPα and equals∞ on
R
α \ Pα.

We end this section by examining several features of the Gärtner-Ellis Theo-
rem. Since in that theorem the rate function is always convex, a natural question
is whether there exist large deviation principles having nonconvex rate func-
tions. Two such examples are given next. Additional examples appear in [24].

One of the hypotheses of the Gärtner-Ellis Theorem is the differentiability
of the limit functionc(t). An interesting problem is to investigate the existence
of large deviation principles when this condition is violated. Unfortunately, the
situation is complicated and a general theory does not exist. In Example 8.3, the
differentiability of the limit functionc(t) does not hold and the rate function is
not given by a Legendre-Fenchel transform. In another example arising in the
Ising model in statistical mechanics, the same hypothesis of the Gärtner-Ellis
Theorem is not valid for all sufficiently large values of the inverse temperature
defining the model. However, the rate function in the large deviation princi-
ple for the spin per site is defined by the identical Legendre-Fenchel transform
appearing in the statement of the Gärtner-Ellis Theorem [35, Thm. 11.1].

The first example involves an extreme case of dependent random variables.

Example 8.3. We define a random varibleX1 by the probability distribution
P{X1 = 1} = P{X1 = −1} = 1

2
. For each integerj ≥ 2 we define random

variablesXj = X1, and forn ∈ N we set

Yn =
1

n

n
∑

j=1

Xj.

Let us first try to apply the Gärtner-Ellis Theorem to the sequenceYn. For each
t ∈ R andx ∈ R we calculate

c(t) = lim
n→∞

1

n
logE{exp(ntYn)} = lim

n→∞
1

n
log

(

1

2

[

ent + e−nt
]

)

= |t|
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and

I(x) = sup
t∈R

{tx− c(t)} =

{

0 if |x| ≤ 1

∞ if |x| > 1.

Sincec(t) = |t| is not differentiable at t = 0, the Gärtner-Ellis Theorem isnot
applicable. In fact,Yn satisfies the large deviation principle onR with the rate
function

J(x) =

{

0 if x ∈ {1,−1}
∞ if x ∈ R \ {1,−1}.

This is easily checked sinceWn has the distributionP{Wn = 1} = P{Wn =

−1} = 1
2 . The functionI is the largest convex function less than or equal to the

rate functionJ . This completes the first example.

The second example generalizes Cramer’s Theorem to the setting of a ran-
dom walk with an interface.

Example 8.4.We define the sets

Λ(1) = {x ∈ R
d : x1 ≤ 0}, Λ(2) = {x ∈ R

d : x1 > 0}, ∂ = {x ∈ R
d : x1 = 0},

wherex1 denotes the first component ofx ∈ R
d. We define a random walk

model for which the distribution of the next step depends on the halfspaceΛ(1)

or Λ(2) in which the random walk is currently located. To this end letρ(1) and
ρ(2) be two distinct probability measures onR

d. Although it is not necessary,
for simplicity we assume that the support of each measure is all of Rd. Let
{X (1)

j , j ∈ N} and{X (2)
j , j ∈ N} be independent sequences of i.i.d. random

vectors with probability distributionsP{X (1)
j ∈ dx} = ρ(1)(dx) andP{X (2)

j ∈
dx} = ρ(2)(dx). We consider the stochastic process{Sn, n ∈ N ∪ {0}}, where
S0 = 0 andSn+1 is defined recursively fromSn by the formula

Sn+1 = Sn + 1{Sn∈Λ(1)} ·X (1)
n + 1{Sn∈Λ(2)} ·X (2)

n .

For i = 1, 2, 1{Sn∈Λ(i)} denotes the indicator function of the set{Sn ∈ Λ(i)}.
Because of the abrupt change in distribution across the surface∂, we call this
random walk a model with discontinuous statistics. In [29] we show thatSn/n
satisfies the large deviation principle onR

d. The rate function is given by an
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explicit formula that takes a complicated form along the interface∂. We will
not give the definition of the rate function here, but merely note that in general
it is a nonconvex function onRd which is convex in each of the halfspacesΛ(1)

andΛ(2). If the measuresρ(l) andρ(2) coincide, then the main theorem of [29]
reduces to Cramér’s Theorem.

The large deviation phenomena investigated in [29] are an example of the
fascinating problems that arise in the study of other Markovprocesses with dis-
continuous statistics. The main theorem of [29] is generalized in [31, Ch. 6] to
a large deviation principle for the entire path of the randomwalk. In [32] a large
deviation upper bound is proved for a general class of Markovprocesses with
discontinuous statistics. An important group of processeswith discontinuous
statistics arises in the study of queueing systems. The large deviation principle
for a general class of such systems is proved in [30]. This completes the second
example.

In the next section we begin our study of statistical mechanical models by
considering the Curie-Weiss spin model.
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9 The Curie-Weiss Model of Ferromagnetism

The Curie-Weiss model of ferromagnetism is one of the simplest examples of an
interacting system in statistical mechanics. As we will seein the next section,
using the theory of large deviations to analyze this model suggests how one can
apply the theory to analyze much more complicated models.

The Curie-Weiss model is a spin system on the configuration spacesΩn =

{−1, 1}n; the value−1 represents “spin-down” and the value 1 “spin-up.” Let
ρ = 1

2δ−1+
1
2δ1 and letPn denote the product measure onΩn with one-dimensional

marginalsρ. ThusPn{ω} = 1/2n for each configuration or microstateω =

{ωi, i = 1, . . . , n} ∈ Ωn. The Hamiltonian, or energy, ofω is defined by

Hn(ω) = − 1

2n

n
∑

i,j=1

ωiωj = −n
2

(

1

n

n
∑

j=1

ωj

)2

, (9.1)

and the probability ofω corresponding to inverse temperatureβ > 0 is defined
by the canonical ensemble

Pn,β{ω} =
1

Zn(β)
exp[−βHn(ω)]Pn{ω}, (9.2)

whereZn(β) is the partition function

Zn(β) =

∫

Ωn

exp[−βHn(ω)]Pn(dω) =
∑

ω∈Ωn

exp[−βHn(ω)]
1

2n
.

Pn,β models a ferromagnet in the sense that the maximum ofPn,β{ω} over
ω ∈ Ωn occurs at the two microstates having all coordinatesωi equal to−1

or all coordinates equal to 1. Furthermore, asβ → ∞ all the mass ofPn,β
concentrates on these two microstates. The Curie-Weiss model is used as a
mean-field approximation to the much more complicated Isingmodel and re-
lated short-range, ferromagnetic models [33,§V.9].

A distinguishing feature of the Curie-Weiss model is its phase transition.
Namely, the alignment effects incorporated in the Gibbs statesPn,β persist in
the limit n → ∞. This is most easily seen by evaluating then → ∞ limit
of the distributionsPn,β{Sn/n ∈ dx}, whereSn(ω)/n equals the spin per site
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∑n
j=1 ωj/n. We will see that forβ ≤ 1 this limit acts like the classical weak law

of large numbers, concentrating on the value 0. However, forβ > 1 the analogy
with the classical law of large numbers breaks down; the alignment effects are
so strong that the limitingPn,β-distribution ofSn/n concentrates on the two
points±m(β) for somem(β) ∈ (0, 1). The analysis of the Curie-Weiss model
to be presented below can be easily modified to handle an external magnetic
field h. The resulting probabilistic description of the phase transition yields the
predictions of mean field theory [33,§V.9], [67, §3.2].

We calculate then → ∞ limit of Pn,β{Sn/n ∈ dx} by establishing a large
deviation principle for the spin per site with respect toPn,β. For eachn, Sn/n
takes values in[−1, 1]. By the equivalence between the Laplace principle and
the large deviation principle asserted in Theorem 6.9, it suffices to find a rate
functionIβ on [−1, 1] such that for any continuous functionf mapping[−1, 1]

into R

lim
n→∞

1

n
log

∫

Ωn

{exp[nf(Sn/n)] dPn,β = sup
x∈[−1,1]

{f(x) − Iβ(x)}.

In order to prove this Laplace principle, we defineψ(x) = −1
2
βx2 for x ∈

[−1, 1] and appeal to a number of results established earlier in these lectures.
Since

Hn(ω) = − n

2

(

1

n

n
∑

j=1

ωj

)2

= − n

2

(

Sn(ω)

n

)2

,

we can write

Pn,ψ{ω} =
1

∫

[−1,1] exp[−nψ(Sn/n)] dPn
· exp[−nψ(Sn/n(ω))]Pn(ω).

In addition, by the version of Cramér’s Theorem given in Corollary 6.6, with
respect toPn, Sn/n satisfies the Laplace principle with rate function

I(x) = 1
2(1 − x) log(1 − x) + 1

2(1 + x) log(1 + x).

We can thus apply Theorem 6.13 withX = [−1, 1]. We restate the theorem
here for easy reference.
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Theorem 9.1. Assume that with respect to the probability measuresPn, Yn
satisfies the large deviation principle onX with rate functionI . Let ψ be a

bounded, continuous function mappingX into R. For A ∈ Fn we define new
probability measures

Pn,ψ{A} =
1

∫

X exp[−nψ(Yn)] dPn
·
∫

A

exp[−nψ(Yn)] dPn.

Then with respect toPn,ψ, Yn satisfies the large deviation principle onX with

rate function

Iψ(x) = I(x) + ψ(x) − inf
y∈X

{I(y) + ψ(y)}.

This gives the following large deviation principle forSn/n with respect to
the Curie-Weiss model. We write the rate function asIβ rather than asIψ.

Theorem 9.2.With respect to the canonical ensemblePn,β defined in(9.2), the
spin per siteSn/n satisfies the large deviation principle on[−1, 1] with rate

function
Iβ(x) = I(x) − 1

2βx
2 − inf

y∈[−1,1]
{I(y)− 1

2βy
2}.

The limiting behavior of the distributionsPn,β{Sn/n ∈ dx} is now deter-
mined by examining whereIβ attains its infimum of0 [33, §IV.4]. Infimizing
pointsx∗ satisfy

I
′

β(x
∗) = 0 or I

′

(x∗) = βx∗.

The second equation is equivalent to the mean field equationx∗ = (I
′

)−1(βx∗) =

tanh(βx∗) [33, §V.9], [67, §3.2]. The next theorem is a consequence of the fol-
lowing easily verified properties ofI :

• I ′′

(0) = 1.

• I ′

is convex on[0, 1] andlimx→1 I
′

(x) = ∞.

• I ′

is concave on[−1, 0] andlimx→−1 I
′

(x) = −∞.



Richard S. Ellis: Lectures on the Theory of Large Deviations 69

Theorem 9.3.For eachβ > 0 we defineEβ = {x ∈ [−1, 1] : Iβ(x) = 0}. The
following conclusions hold.

(a)For 0 < β ≤ 1, Eβ = {0}.
(b) For β > 1 there existsm(β) > 0 such thatEβ = {±m(β)}. The function

m(β) is monotonically increasing on(1,∞) and satisfiesm(β) → 0 asβ →
1+,m(β) → 1 asβ → ∞.

According to Proposition 6.4, ifA is any closed subset of[−1, 1] such that
A ∪ Eβ = ∅, thenI(A) > 0 and for someC <∞

Pn,β{Sn/n ∈ A} ≤ C exp[−nI(A)/2] → 0 asn→ ∞.

In combination with Theorem 9.3, we are led to the following weak limits:

Pn,β

{

1

n

n
∑

i=1

ωi ∈ dx

}

=⇒
{

δ0 if 0 < β ≤ 1
1
2
δm(β) + 1

2
δ−m(β) if β > 1.

(9.3)

We callm(β) the spontaneous magnetization for the Curie-Weiss model and
βc = 1 the critical inverse temperature [33,§IV.4].

The limit (9.3) justifies callingEβ the set of equilibrium macrostates for the
spin per siteSn/n in the Curie-Weiss model. Becausem(β) → 0 asβ → 1+

and 0 is the unique equilibrium macrostate for0 < β ≤ 1, the phase transition at
βc is said to be continuous or second order. It is not difficult toshow that points
x∗ ∈ Eβ have an equivalent characterization in terms of a maximum entropy
principle. Because of the relatively simple nature of the model, this maximum
entropy principle takes a rather trivial form. The details are omitted.

Before leaving the Curie-Weiss model, there are several points that should be
emphasized. The first is to emphasize what makes possible thelarge deviation
analysis of the phase transition in the model. In (9.1) we write the Hamilto-
nian as a quadratic function of the spin per siteSn/n, which by the version of
Cramér’s Theorem given in Corollary 6.6 satisfies the largedeviation principle
on [−1, 1] with respect to the product measuresPn. The equivalent Laplace
principle allows us to convert this large deviation principle into a large devi-
ation principle with respect to the canonical ensemblePn,β. The form of the
rate functionIβ allows us to complete the analysis. In the next section we will
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generalize these steps to formulate a large deviation approach to a wide class of
models in statistical mechanics.

Our large deviation analysis of the phase transition in the Curie-Weiss model
has the attractive feature that it directly motivates the physical importance ofEβ.
This set is the support of then→ ∞ limit of the distributionsPn,β{Sn/n ∈ dx}.
As we will see in the next section, an analogous fact is true for a large class of
statistical mechanical models [Thm. 10.3].

The large deviation analysis of the Curie-Weiss model yields the limiting
behavior of thePn,β-distributions ofSn/n. For0 < β ≤ 1 this limit corresponds
to the classical weak law of large numbers for the sample means of i.i.d. random
variables and suggests examining the analogues of other classical limit results
such as the central limit theorem. We end this section by summarizing these
limit results for the Curie-Wiess, referring the reader to [33, §V.9] for proofs.
If θ ∈ (0, 1) andf is a nonnegative integrable function onR, then the notation
Pn,β{Sn/nθ ∈ dx} =⇒ f dx means that the distributions ofSn/nθ converge
weakly to the probability measure onR having a density proportional tof with
respect to Lebesgue measure.

In the Curie-Weiss model for0 < β < 1, the interactions among the spins
are relatively weak, and the analogue of the central limit theorem holds [33,
Thm. V.9.4]:

Pn,β{Sn/n1/2 ∈ dx} =⇒ exp[−1
2
x2/σ2(β)] dx,

whereσ2(β) = 1/(1 − β). However, whenβ = βc = 1, the limiting variance
σ2(β) diverges, and the central limit scalingn1/2 must be replaced byn3/4,
which reflects the onset of long-range order atβc. In this case we have [33,
Thm. V.9.5]

Pn,βc
{Sn/n3/4 ∈ dx} =⇒ exp[− 1

12x
4] dx.

Finally, forβ > βc, (Sn − nz̃)/n1/2 satisfies a central-limit-type theorem when
Sn/n is conditioned to lie in a sufficiently small neighborhood ofz̃ = m(β) or
z̃ = −m(β); see Theorem 2.4 in [41] withk = 1.

The results discussed in this section have been extensivelygeneralized to a
number of models, including the Curie-Weiss-Potts model [13, 44], the mean-
field Blume-Emery-Griffiths model [12, 42], and the Ising andrelated models
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[25, 49, 65]. For the latter models, refined large deviationsat the surface level
have been studied; see [20, p. 339] for references.
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10 Equivalence of Ensembles for a General Class of Models
in Statistical Mechanics

Equilibrium statistical mechanics specifies two ensemblesthat describe the prob-
ability distribution of microstates in statistical mechanical models. These are
the microcanonical ensemble and the canonical ensemble. Particularly in the
case of models of coherent structures in turbulence, the microcanonical ensem-
ble is physically more fundamental because it expresses thefact that the Hamil-
tonian is a constant of the Euler dynamics underlying the model.

The introduction of two separate ensembles raises the basicproblem of en-
semble equivalence. As we will see in this section, the theory of large deviations
and the theory of convex functions provide the perfect toolsfor analyzing this
problem, which forces us to re-evaluate a number of deep questions that have
often been dismissed in the past as being physically obvious. These questions
include the following. Is the temperature of a statistical mechanical system
always related to its energy in a one-to-one fashion? Are themicrocanonical
equilibrium properties of a system calculated as a functionof the energy always
equivalent to its canonical equilibrium properties calculated as a function of
the temperature? Is the microcanonical entropy always a concave function of
the energy? Is the heat capacity always a positive quantity?Surprisingly, the
answer to each of these questions is in general no.

Starting with the work of Lynden-Bell and Wood [58] and the work of Thirring
[75], physicists have come to realize in recent decades thatsystematic incom-
patibilities between the microcanonical and canonical ensembles can arise in
the thermodynamic limit if the microcanonical entropy function of the system
under study is nonconcave. The reason for this nonequivalence can be ex-
plained mathematically by the fact that when applied to a nonconcave function
the Legendre-Fenchel transform is non-involutive; i.e., performing it twice does
not give back the original function but gives back its concave envelope [42, 76].
As a consequence of this property, the Legendre-Fenchel structure of statistical
mechanics, traditionally used to establish a one-to-one relationship between the
entropy and the free energy and between the energy and the temperature, ceases
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to be valid when the entropy is nonconcave.
From a more physical perspective, the explanation is even simpler. When

the entropy is nonconcave, the microcanonical and canonical ensembles are
nonequivalent because the nonconcavity of the entropy implies the existence of
a nondifferentiable point of the free energy, and this, in turn, marks the presence
of a first-order phase transition in the canonical ensemble [36, 51]. Accordingly,
the ensembles are nonequivalent because the canonical ensemble jumps over a
range of energy values at a critical value of the temperatureand is therefore
prevented from entering a subset of energy values that can always be accessed
by the microcanonical ensemble [36, 51, 75]. This phenomenon lies at the
root of ensemble nonequivalence, which is observed in systems as diverse as
lattice spin models, including the Curie-Weiss-Potts model [13, 14], the mean-
field Blume-Emery-Griffiths model [2, 3, 42, 43], mean-field versions of the
Hamiltonian model [19, 56], and the XY model [18]; in gravitational systems
[51, 52, 58, 75]; in models of coherent structures in turbulence [9, 36, 37, 47,
53, 70]; in models of plasmas [54, 73]; and in a model of the Lennard-Jones
gas [5], to mention only a few. Many of these models can be analyzed by the
methods to be introduced in this section, which summarize the results in [36].
Further developments in the theory are given in [15]. The reader is referred
to these two paper for additional references to the large literature on ensemble
equivalence for classical lattice systems and other models.

In the examples cited in the preceding paragraph as well as inother cases, the
microcanonical formulation gives rise to a richer set of equilibrium macrostates
than the canonical formulation, a phenomenon that occurs especially in the neg-
ative temperature regimes of the vorticity dynamics models[22, 23, 47, 53]. For
example, it has been shown computationally that the strongly reversing zonal-
jet structures on Jupiter as well as the Great Red Spot fall into the nonequivalent
range of the microcanonical ensemble with respect to the energy and circulation
invariants [78].

The general class of models to be considered include both spin models and
models of coherent structures in turbulence, and for these two sets of models
several of the definitions take slightly different forms. The models to be con-
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sidered are defined in terms of the following quantities. After presenting the
general setup, we will verify that it applies to the Curie-Weiss model. The large
deviation analysis of that model, summarized in the preceding section, inspired
the general approach presented here.

• A sequence of probability spaces(Ωn,Fn, Pn) indexed byn ∈ N, which
typically represents a sequence of finite dimensional systems. TheΩn are
the configuration spaces,ω ∈ Ωn are the microstates, and thePn are the
prior measures.

• For eachn ∈ N the HamiltonianHn, a bounded, measurable function
mappingΩn into R.

• A sequence of positive scaling constantsan → ∞ asn → ∞. In general
an equals the total number of degrees of freedom in the model. Inmany
casesan equals the number of particles.

Models of coherent structures in turbulence often incorporate other dynam-
ical invariants besides the Hamiltonian; we will see such a model in the next
section. In this case one replacesHn in the second bullet by the vector of dy-
namical invariants and makes other corresponding changes in the theory, which
are all purely notational. For simplicity we work only with the Hamiltonian in
this section.

A large deviationanalysis of the general model is possible provided that there
exist, as specified in the next four items, a space of macrostates, a sequence of
macroscopic variables, and an interaction representationfunction and provided
that the macroscopic variables satisfy the large deviationprinciple on the space
of macrostates. Item 3 takes one form for spin models and a different form for
models of coherent structures in turbulence. Items 1, 2, and4 are the same for
these two sets of models.

1. Space of macrostates. This is a complete, separable metric spaceX ,
which represents the set of all possible macrostates.
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2. Macroscopic variables. These are a sequence of random variablesYn
mappingΩn into X . These functions associate a macrostate inX with
each microstateω ∈ Ωn.

3. Hamiltonian representation function. This is a bounded, continuous
functionH̃ that mapsX into R and enables us to writeHn, either exactly
or asymptotically, as a function of the macrostate via the macroscopic vari-
ableYn. The precise description for the two sets of models is as follows.

Spin models.As n → ∞

Hn(ω) = anH̃(Yn(ω)) + o(an) uniformly for ω ∈ Ωn;

i.e.,

lim
n→∞

sup
ω∈Ωn

∣

∣

∣

∣

1

an
Hn(ω) − H̃(Yn(ω))

∣

∣

∣

∣

= 0. (10.1)

Models of coherent structures in turbulence.As n→ ∞

Hn(ω) = H̃(Yn(ω)) + o(1) uniformly forω ∈ Ωn;

i.e.,
lim
n→∞

sup
ω∈Ωn

|Hn(ω) − H̃(Yn(ω))| = 0. (10.2)

4. Large deviation principle for the macroscopic variables. There exists
a functionI mappingX into [0,∞] and having compact level sets such
that with respect toPn the sequenceYn satisfies the LDP onX with rate
functionI and scaling constantsan. In other words, for any closed subset
F of X

lim sup
n→∞

1

an
logPn{Yn ∈ F} ≤ − inf

x∈F
I(x),

and for any open subsetG of X

lim inf
n→∞

1

an
logPn{Yn ∈ G} ≥ − inf

x∈G
I(x).

We now verify that this general setup applies to the Curie-Weiss model.
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Example 10.1.

• n spinsωi ∈ {−1, 1}.

• Microstates:ω = (ω1, ω2, . . . , ωn) ∈ Ωn = {−1, 1}n.

• Prior measures:
Pn(ω) =

1

2n
for eachω ∈ Ωn.

• Scaling constants:an = n.

• Hamiltonians:

Hn(ω) = Hn(ω) = − 1

2n

n
∑

i,j=1

ωiωj = − n

2

(

1

n

n
∑

j=1

ωj

)2

.

• Macroscopic variables:

Yn(ω) =
1

n
Sn(ω) =

1

n

n
∑

j=1

ωj .

• Yn mapsΩn into [−1, 1], which is the space of macrostates.

• Energy representation function:

Hn(ω) = −1
2
(Yn(ω))2 = H̃(Yn(ω)), whereH̃(x) = −1

2
x2 for x ∈ [−1, 1].

Thus (10.1) holds with equality for allω without the error term o(an).

• Large deviation principle with respect toPn:

Pn{Yn ∈ dx} ≍ e−nI(x).

The version of Cramér’s Theorem given in Corollary 6.6 gives the rate
function

I(x) = 1
2(1 − x) log(1 − x) + 1

2(1 + x) log(1 + x).

This completes the example.
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Here is a partial list of statistical mechanical models to which the large devi-
ation formalism has been applied. Further details are givenin [15, Ex. 2.1].

• The Miller-Robert model of fluid turbulence based on the two dimensional
Euler equations [6]. This will be discussed in section 11.

• A model of geophysical flows based on equations describing barotropic,
quasi-geostrophic turbulence [37].

• A model of soliton turbulence based on a class of generalizednonlinear
Schrödinger equations [38]

• Lattice spin models including the Curie-Weis model [33,§IV.4], the Curie-
Weiss-Potts model [13], the mean-field Blume-Emery-Griffiths spin model
[42], and the Ising model [49, 65]. The large deviation analysis of these
models illustrate the three levels of the Donsker-Varadhantheory of large
deviations, which are explained in Chapter 1 of [33].

– Level 1. As we have seen, for the Curie-Weiss model the macroscopic
variables are the sample means of i.i.d. random variables, and the large
deviation principle with respect to the prior measures is the version of
Cramér’s Theorem given in Corollary 6.6.

– Level 2. For the Curie-Weiss-Potts model [13] and the mean-field
Blume-Emery-Griffiths spin model [42] the macroscopic variables are
empirical vectors of i.i.d. random variables, and the largedeviation
principle with respect to the prior measures is the version of Sanov’s
Theorem given in Theorem 3.4.

– Level 3. For the Ising model the macroscopic variables are aninfinite-
dimensional generalization of the empirical measure knownas the
empirical field, and the large deviation principle with respect to the
prior measures is derived in [49, 65]. This is related to level 3 of the
Donsker-Varadhan theory, which is formulated for a generalclass of
Markov chains and Markov processes [28]. A special case is treated
in [33, Ch. IX], which proves the large deviation principle for the em-
pirical process of i.i.d. random variables taking values ina finite state
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space. The complicated large deviation analysis of the Ising model is
outlined in [35,§11].

Returning now to the general theory, we introduce the microcanonical en-
semble, the canonical ensemble, and the basic thermodynamic functions as-
sociated with each ensemble: the microcanonical entropy and the canonical
free energy. We then sketch the proofs of the large deviationprinciples for the
macroscopic variablesYn with respect to the two ensembles. As in the case of
the Curie-Weiss model, the zeroes of the corresponding ratefunctions define
the corresponding sets of equilibrium macrostates, one forthe microcanoni-
cal ensemble and one for the canonical ensemble. The problemof ensemble
equivalence investigates the relationship between these two sets of equilibrium
macrostates.

In general terms, the main result is that a necessary and sufficient condition
for equivalence of ensembles to hold at the level of equilibrium macrostates is
that it holds at the level of thermodynamic functions, whichis the case if and
only if the microcanonical entropy is concave. The necessity of this condition
has the following striking formulation. If the microcanonical entropy is not
concave at some value of its argument, then the ensembles arenonequivalent in
the sense that the corresponding set of microcanonical equilibrium macrostates
is disjoint from any set of canonical equilibrium macrostates. The reader is
referred to [36,§1.4] for a detailed discussion of models of coherent structures
in turbulence in which nonconcave microcanonical entropies arise.

We start by introducing the function whose support and concavity properties
completely determine all aspects of ensemble equivalence and nonequivalence.
This function is the microcanonical entropy, defined foru ∈ R by

s(u) = − inf{I(x) : x ∈ X , H̃(x) = u}. (10.3)

SinceI mapsX into [0,∞], s mapsR into [−∞, 0]. Moreover, sinceI is lower
semicontinuous and̃H is continuous onX , s is upper semicontinuous onR. We
define doms to be the set ofu ∈ R for which s(u) > −∞. In general, doms
is nonempty since−s is a rate function [36, Prop. 3.1(a)]. The microcanonical
ensemble takes two different forms depending on whether we consider spin
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models or models of coherent structures in turbulence. For eachu ∈ doms,
r > 0, n ∈ N, andA ∈ Fn the microcanonical ensemble for spin models is
defined to be the conditioned measure

P u,r
n {A} = Pn{A | Hn/an ∈ [u− r, u + r]}.

For models of coherent structures in turbulence we work with

P u,r
n {A} = Pn{A | Hn ∈ [u− r, u + r]}.

As shown in [36, p. 1027], ifu ∈ doms, then for all sufficiently largen the
conditioned measuresP u,r

n are well defined.
A mathematically more tractable probability measure is thecanonical en-

semble. For eachn ∈ N, β ∈ R, andA ∈ Fn we define the partition function

Zn(β) =

∫

Ωn

exp[−βHn] dPn,

which is well defined and finite; the canonical free energy

ϕ(β) = − lim
n→∞

1

an
logZn(β);

and the probability measure

Pn,β{A} =
1

Zn(β)
·
∫

A

exp[−βHn] dPn. (10.4)

The measuresPn,β are Gibbs states that define the canonical ensemble for the
given model. Although for spin models one usually takesβ > 0, in general
β ∈ R is allowed; for example, negative values ofβ arise naturally in the study
of coherent structures in two-dimensional turbulence.

Among other reasons, the canonical ensemble was introducedby Gibbs in
the hope that in the limitn → ∞ the two ensembles are equivalent; all macro-
scopic properties of the model obtained via the microcanonical ensemble could
be realized as macroscopic properties obtained via the canonical ensemble.
However, as we will see, this in general is not the case.

The large deviation analysis of the canonical ensemble for spin models is
summarized in the next theorem, Theorem 10.2. Additional information is given
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in Theorem 10.3. The modifications in these two theorems necessary for ana-
lyzing the canonical ensemble for models of coherent structures in turbulence
are indicated in Theorem 10.4.

Part (a) of Theorem 10.2 shows that the limit definingϕ(β) exists and is
given by the variational formula

ϕ(β) = inf
x∈X

{βH̃(x) + I(x)}.

If in the definition ofZn(β) one could replaceHn by anH̃, then this limit is a
direct consequence of the Laplace principle forYn with respect toPn, which is
equivalent to the assumed large deviation principle forYn with respect toPn.
As we will see in the proof, the approximation property (10.1) of H̃ allows us
to make this replacement. Part (b) of Theorem 10.2 states thelarge deviation
principle for the macroscopic variables with respect to canonical ensemble. This
large deviation principle is easy to see. If in the definitionof Pn,β one replaces
Hn by anH̃ , then it follows immediately from Theorem 6.13. Part (b) is the
analogue of Theorem 9.2 for the Curie-Weiss model. In part (c) we consider
the setEβ consisting of points at which the rate function in part (b) attains its
infimum of 0. The second property ofEβ given in part (c) justifies calling this the
set of canonical equilibrium macrostates. Part (c) is a special case of Proposition
6.4.

Theorem 10.2 (Canonical ensemble for spin models).For the general spin
model we assume that there exists a space of macrostatesX , macroscopic vari-
ablesYn, and a Hamiltonian representation functioñH satisfying

lim
n→∞

sup
ω∈Ωn

∣

∣

∣

∣

1

an
Hn(ω) − H̃(Yn(ω))

∣

∣

∣

∣

= 0, (10.5)

whereHn is the Hamiltonian. We also assume that with respect to the prior
measuresPn, Yn satisfies the large deviation principle onX with some rate
functionI and scaling constantsan. For eachβ ∈ R the following conclusions
hold.

(a) The canonical free energyϕ(β) = − limn→∞
1
an

logZn(β) exists and is
given by

ϕ(β) = inf
x∈X

{βH̃(x) + I(x)}.
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(b) With respect to the canonical ensemblePn,β defined in(10.4), Yn satisfies
the large deviation principle onX with scaling constantsan and rate function

Iβ(x) = I(x) + βH̃(x) − ϕ(β).

(c) We define the set of canonical equilibrium macrostates

Eβ = {x ∈ X : Iβ(x) = 0}.

ThenEβ is a nonempty, compact subset ofX . In addition, ifA is a Borel subset
ofX such thatA ∩ Eβ = ∅, thenIβ(A) > 0 and for someC <∞

Pn,β{Yn ∈ A} ≤ C exp[−nIβ(A)/2] → 0 asn → ∞.

Proof. Once we take into account the error betweenHn andanH̃(Yn) expressed
in (10.5), the proofs of (a) and (b) follow from the Laplace principle. Here are
the details.

(a) By (10.5)
∣

∣

∣

∣

1

an
logZn(β) − 1

an
log

∫

Ωn

exp[−βanH̃(Yn)] dPn

∣

∣

∣

∣

=

∣

∣

∣

∣

1

an
log

∫

Ωn

exp[−βHn] dPn −
1

an
log

∫

Ωn

exp[−βanH̃(Yn)] dPn

∣

∣

∣

∣

≤ |β| 1

an
sup
ω∈Ωn

|Hn(ω) − anH̃(Yn(ω))| → 0 asn→ ∞.

SinceH̃ is a bounded continuous function mappingX into R, the Laplace prin-
ciple satisfied byYn with respect toPn yields part (a):

ϕ(β) = − lim
n→∞

1

an
logZn(β)

= − lim
n→∞

1

an
log

∫

Ωn

exp[−βanH̃(Yn)] dPn

= − sup
x∈X

{−βH̃(x) − I(x)}

= inf
x∈X

{βH̃(x) + I(x)}.
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(b) Rather than derive this from Theorem 6.13, we proceed as in the proof of
part (a), but now withPn,β replacingPn. For any bounded continuous function
f mappingX into R, again (10.5) and the Laplace principle satisfied byYn with
respect toPn yield

lim
n→∞

1

an
log

∫

Ωn

exp[anf(Yn)] dPn,β

= lim
n→∞

1

an
log

∫

Ωn

exp[anf(Yn) − βHn] dPn − lim
n→∞

1

an
logZn(β)

= lim
n→∞

1

an
log

∫

Ωn

exp[an(f(Yn) − βH̃(Yn))] dPn − lim
n→∞

1

an
logZn(β)

= sup
x∈X

{f(x) − βH̃(x) − I(x)} + ϕ(β)

= sup
x∈X

{f(x) − Iβ(x)}.

By hypothesis,I has compact level sets and̃H is bounded and continuous. Thus
Iβ has compact level sets. SinceIβ mapsX into [0,∞], Iβ is a rate function.
We conclude that with respect toPn,β, Yn satisfies the Laplace principle, and
thus the equivalent large deviation principle, with scaling constantsan and rate
functionIβ.

(c) This is proved in Proposition 6.4. The display in part (c)is based on the
large deviation upper bound forYn with respect toPn,β, which was proved in
part (b). The proof of the theorem is complete.

The second property ofEβ given in part (c) of the theorem can be regarded as
a concentrationproperty of thePn,β-distributions ofYn which justifies callingEβ
the set of canonical equilibrium macrostates. With respectto these distributions,
the probability of any Borel setA whose closure has empty intersection withEβ
goes to 0 exponentially fast withan. This large deviation characterization of the
equilibrium macrostates is an attractive feature of our approach.

The concentration property of thePn,β-distributions ofYn as expressed in
part (c) of the theorem has a refinement that arises in our study of the Curie-
Weiss model. From Theorem 9.3 we recall thatEβ = {0} for 0 < β ≤ 1

andEβ = {±m(β)} for β > 1, wherem(β) is the spontaneous magnetiza-
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tion. According to (9.3), for allβ > 0 the weak limit ofPn,β{Sn/n ∈ dx}
is concentrated onEβ. While in the case of the general model treated in the
present section one should not expect such a precise formulation, the next the-
orem gives considerable information, relating weak limitsof subsequences of
Pn,β{Yn ∈ dx} to the set of equilibrium macrostatesEβ. For example, if one
knows thatEβ consists of a unique point̃x, then it follows that the entire se-
quencePn,β{Yn ∈ dx} converges weakly toδx̃. This situation corresponds to
the absence of a phase transition. The proof of the theorem istechnical and is
omitted.

Theorem 10.3 (Canonical ensemble for spin systems).We fixβ ∈ R and use
the notation of Theorem10.2. If Eβ consists of a unique point̃x, thenPn,β{Yn ∈
dx} ⇒ δx̃. If Eβ does not consist of a unique point, then any subsequence

of Pn,β{Yn ∈ dx} has a subsubsequence converging weakly to a probability
measureΠβ onX that is concentrated onEβ; i.e.,Πβ{(Eβ)c} = 0.

In order to carry out the large deviation analysis of the canonical ensemble
for models of coherent structures in turbulence, in Theorems 10.2 and 10.3 one
must make two changes: replace the limit (10.5) by

lim
n→∞

sup
ω∈Ωn

|Hn(ω) − H̃(Yn(ω))| = 0, (10.6)

whereHn is the Hamiltonian, and replaceZn(β) andPn,β by Zn(anβ) and
Pn,anβ. For easy reference, this is summarized in the next theorem.

Theorem 10.4 (Canonical ensemble for models of coherent structures in
turbulence). For the general model of coherent structures in turbulence we as-
sume that there exists a space of macrostatesX , macroscopic variablesYn, and
a Hamiltonian representation functioñH satisfying(10.6). We also assume that
with respect to the prior measuresPn, Yn satisfies the large deviation principle

onX with some rate functionI and scaling constantsan. Then for eachβ ∈ R

all the conclusions of Theorems10.2 and 10.3 are valid provided thatZn(β)

andPn,β are replaced byZn(anβ) andPn,anβ.
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In order to carry out the large deviation analysis of the microcanonical en-
semble, we recall the relevant definitions. Foru ∈ R the microcanonical en-
tropy is defined by

s(u) = − inf{I(x) : x ∈ X , H̃(x) = u}.

For eachu ∈ doms, r > 0, n ∈ N, and setA ∈ Fn the microcanonical
ensemble for spin models is defined by

P u,r
n {A} = Pn{A | Hn/an ∈ [u− r, u + r]}, (10.7)

while the microcanonical ensemble for models of coherent states in turbulence
is defined by

P u,r
n {A} = Pn{A | Hn ∈ [u− r, u + r]}, (10.8)

In order to simplify the discussion we will work with the microcanonical
ensemble for models of coherent states in turbulence. The treatment of the
microcanonical ensemble for spin models is analogous. We start our analysis of
the microcanonical ensemble by pointing out that−s is the rate function in the
large deviation principles, with respect to the prior measuresPn, of bothH̃(Yn)

andHn. In order to see this, we recall that with respect toPn, Yn satisfies the
large deviation principle with rate functionI . SinceH̃ is a continuous function
mappingX into R, the large deviation principle for̃H(Yn) is a consequence of
the contraction principle [Thm. 6.12]. Foru ∈ R the rate function is given by

inf{I(x) : x ∈ X , H̃(x) = u} = −s(u).

In addition, since

lim
n→∞

sup
ω∈Ωn

|Hn(ω) − H̃(Yn(ω))| = 0,

Hn inherits fromH̃(Yn) the large deviation principle with the same rate func-
tion. This follows from Theorem 6.14 or can be derived as in the proof of
Theorem 10.2 by using the equivalent Laplace principle. We summarize this
large deviation principle by the notation

Pn{Hn ∈ du} ≍ exp[ans(u)]. (10.9)
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Forx ∈ X andα > 0,B(x, α) denotes the open ball with centerx and radius
α. We next motivate the large deviation principle forYn with respect to the
microcanonical ensembleP u,r

n by estimating the exponential order contribution
to the probabilityP u,r

n {Yn ∈ B(x, α)} asn → ∞. Specifically we seek a
functionIu such that for allu ∈ doms, all x ∈ X , and allα > 0 sufficiently
small

P u,r
n {Yn ∈ B(x, α)} ≈ exp[−anIu(x)] asn→ ∞, r → 0, α→ 0. (10.10)

The calculation that we present shows both the interpretivepower of the large
deviation notation and the value of left-handed thinking. Although the calcula-
tion is a bit complicated, it is much more straightforward than the actual proof,
which is given in [36,§3] (see Thm. 3.20).

We first work withx ∈ X for which I(x) < ∞ andH̃(x) = u. Such anx
exists sinceu ∈ doms and thuss(u) > −∞. Because

lim
n→∞

sup
ω∈Ωn

|Hn(ω) − H̃(Yn(ω))| = 0,

for all sufficiently largen depending onr the set ofω for which bothYn(ω) ∈
B(x, α) andHn(ω) ∈ [u − r, u + r] is approximately equal to the set ofω
for which bothYn(ω) ∈ B(x, α) and H̃(Yn(ω)) ∈ [u − r, u + r]. SinceH̃
is continuous and̃H(x) = u, for all sufficiently smallα compared tor this
set reduces to{ω : Yn(ω) ∈ B(x, α)}. Hence for all sufficiently smallr, all
sufficiently largen depending onr, and all sufficiently smallα compared tor,
the assumed large deviation principle forYn with respect toPn and the large
deviation principle forHn summarized in (10.9) yield

P u,r
n {Yn ∈ B(x, α)} =

Pn{{Yn ∈ B(x, α)} ∩ {Hn ∈ [u− r, u + r]}}
Pn{Hn ∈ [u− r, u + r]}

≈ Pn{Yn ∈ B(x, α)}
Pn{Hn ∈ [u− r, u + r]}

≈ exp[−an(I(x) + s(u))].

On the other hand, if̃H(x) 6= u, then a similar calculation shows that for
all sufficiently smallr, all sufficiently smallα, and all sufficiently largen
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P u,r
n {Yn ∈ B(x, α)} = 0. Comparing these approximate calculations with

the desired asymptotic form (10.10) motivates the correct formula for the rate
function [36, Thm. 3.2]:

Iu(x) =

{

I(x) + s(u) if H̃(x) = u,

∞ if H̃(x) 6= u.
(10.11)

We record the facts in the next theorem, which takes the same form both for
spin models and for models of coherent structures in turbulence. An additional
complication occurs in the statement of the large deviationprinciple in part (b)
because it involves the double limitn → 0 followed byr → 0. In part (c) we
introduce the set of microcanonical equilibrium macrostatesEu and state a con-
centration property of this set with respect to the microcanonical ensemble that
is analogous to the concentration satisfied by the setEβ of canonical equilibrium
macrostates with respect to the canonical ensemble. The proof is similar to the
proof of the analogous property ofEβ given in part (c) of Theorem 10.2, and it
is therefore omitted.

Theorem 10.5 (Microcanonical ensemble).Both for the general spin model
and for the general model of coherent structures in turbulence we assume that

there exists a space of macrostatesX , macroscopic variablesYn, and a Hamil-
tonian representation functioñH satisfying(10.1) in the case of spin models
and (10.2) in the case of models of coherent structures in turbulence. We also
assume that with respect to the prior measuresPn, Yn satisfies the large devi-
ation principle onX with scaling constantsan and some rate functionI . For

eachu ∈ doms and anyr ∈ (0, 1) the following conclusions hold.
(a) With respect toPn, H̃(Yn) andHn both satisfy the large deviation prin-

ciple with scaling constantsan and rate function−s.
(b) We consider the microcanonical ensembleP u,r

n defined in(10.7)for spin
models and defined in(10.8) for models of coherent structures in turbulence.

With respect toP u,r
n and in the double limitn → ∞ andr → 0, Yn satisfies the

large deviation principle onX with scaling constantsan and rate functionIu

defined in(10.11). That is, for any closed subsetF of X

lim
r→0

lim sup
n→∞

1

an
log P u,r

n {Yn ∈ F} ≤ −Iu(F )
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and for any open subsetG of X

lim
r→0

lim inf
n→∞

1

an
log P u,r

n {Yn ∈ G} ≥ −Iu(G).

(c) We define the set of equilibrium macrostates

Eu = {x ∈ X : Iu(x) = 0}.

ThenEu is a nonempty, compact subset ofX . In addition, ifA is a Borel subset
of X such thatA ∩ Eu = ∅, thenIu(A) > 0 and there existsr0 > 0 and for all
r ∈ (0, r0] there existsCr <∞

Pn,β{Yn ∈ A} ≤ Cr exp[−n Iβ(A)/2] → 0 asn → ∞.

In the remainder of this section we investigate issues related to the equiv-
alence and nonequivalence of the canonical and microcanonical ensembles,
which involves studying the relationships between the two sets of equilibrium
macrostates

Eβ = {x ∈ X : Iβ(x) = 0} and Eu = {x ∈ X : Iu(x) = 0}.

The following questions will be considered.

1. Givenβ ∈ R andx ∈ Eβ, does there existsu ∈ R such thatx ∈ Eu? In
other words, is any canonical equilibrium macrostate realized microcanon-
ically?

2. Givenu ∈ R andx ∈ Eu, does there existβ ∈ R such thatx ∈ Eβ? In other
words, is any microcanonical equilibrium macrostate realized canonically?

As we will see in Theorem 10.6, the answer to question 1 is always yes, but
the answer to question 2 is much more complicated, involvingthree possibili-
ties.

2a. Full equivalence.There existsβ ∈ R such thatEu = Eβ.

2b. Partial equivalence.There existsβ ∈ R such thatEu ⊂ Eβ butEu 6= Eβ.
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2c. Nonequivalence.Eu is disjoint fromEβ for all β ∈ R.

One of the big surprises of the theory to be presented here is that we are able
to decide on which of these three possibilities occur by examining support and
concavity properties of the microcanonical entropys(u). This is remarkable
because the setsEβ andEu are in general infinite dimensional while the micro-
canonical entropy is a function onR.

In order to begin our study of ensemble equivalence and nonequivalence, we
first recall the definitions of the corresponding rate functions:

Iβ(x) = I(x) + βH̃(x) − ϕ(β),

whereϕ(β) denotes the canonical free energy

ϕ(β) = inf
x∈X

{βH̃(x) + I(x)},

and

Iu(x) =

{

I(x) + s(u) if H̃(x) = u,

∞ if H̃(x) 6= u,

wheres(u) denotes the microcanonical entropy

s(u) = − inf{I(x) : x ∈ X , H̃(x) = u}.

Using these definitions, we see that the two sets of equilibrium macrostates have
the alternate characterizations

Eβ = {x ∈ X : I(x) + βH̃(x) is minimized}

and
Eu = {x ∈ X : I(x) is minimized subject tõH(x) = u}.

ThusEu is defined by the following constrained minimization problem for u ∈
R:

minimizeI(x) overX subject to the constraint̃H(x) = u. (10.12)

By contrast,Eβ is defined by the following related, unconstrained minimization
problem forβ ∈ R:

minimizeI(x) + βH̃(x) overx ∈ X . (10.13)
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In this formulationβ is a Lagrange multiplier dual to the constraintH̃(x) =

u. The theory of Lagrange multipliers outlines suitable conditions under which
the solutions of the constrained problem (10.12) lie among the critical points of
I + βH̃. However, it does not give, as we will do in Theorems 10.6, necessary
and sufficient conditions for the solutions of (10.12) to coincide with the solu-
tions of the unconstrained minimization problem (10.13). These necessary and
sufficient conditions are expressed in terms of support and concavity properties
of the microcanonical entropys(u).

Before we explain this, we reiterate a number of properties of ϕ(β) ands(u)
that emphasize the fundamental nature of these two thermodynamic functions.
Properties 1, 2, and 3 show a complete symmetry between the canonical and
microcanonical ensembles, a state of affairs that is spoiled by property 4.

1. Bothϕ(β) ands(u) are given by limits and by variational formulas.

• ϕ(β) expresses the asymptotics of the partition function

Zn(β) =

∫

Ωn

exp[−βHn] dPn

via the definition

ϕ(β) = − lim
n→∞

1

an
logZn(β).

In addition,ϕ(β) is given by the variational formula [Thm. 10.2(a)]

ϕ(β) = inf
x∈X

{βH̃(x) + I(x)}.

• s(u) is defined by the variational formula

s(u) = − inf{I(x) : x ∈ X , H̃(x) = u}.

In additions(u) expresses the asymptotics ofPn{Hn ∈ du}, which
satisfies the large deviation principle with rate function−s(u) [Thm.
10.5(a)]; i.e.,Pn{Hn ∈ du} ≍ exp[ans(u)]. Furthermore, foru ∈
doms we have the limit [36, Prop. 3.1(c)]

s(u) = lim
r→0

lim
n→∞

1

an
logPn{Hn ∈ [u− r, u + r]}.
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2. Bothϕ(β) ands(u) are respectively the normalization constants in the rate
functionsIβ andIu in the large deviation principles forYn with respect to
the canonical ensemble and with respect to the microcanonical ensemble:

Iβ(x) = I(x) + βH̃(x) − ϕ(β)

and

Iu(x) =

{

I(x) + s(u) if H̃(x) = u,

∞ if H̃(x) 6= u,

3. The sets of equilibrium macrostates have the alternate characterizations

Eβ = {x ∈ X : I(x) + βH̃(x) is minimized}
and

Eu = {x ∈ X : I(x) is minimized subject tõH(x) = u}.
• ThusEβ consists of allx ∈ X at which the infimum is attained in

ϕ(β) = inf
x∈X

{βH̃(x) + I(x)}.

• ThusEu consists of allx ∈ X at which the infimum is attained in

s(u) = − inf{I(x) : x ∈ X , H̃(x) = u}.

4. ϕ(β) ands(u) are related via the Legendre-Fenchel transform

ϕ(β) = inf
u∈R

{βu− s(u)}. (10.14)

As do the two formulas forϕ(β) is item 1, this Legendre-Fenchel trans-
form shows thatϕ(β) is always concave, even ifs(u) is not. Unlesss(u)
is concave onR, the dual formulas(u) = infβ∈R{βu−ϕ(β)} is not valid.

• Proof 1 of (10.14) using variational formulas:

ϕ(β) = inf
x∈X

{βH̃(x) + I(x)}

= inf
u∈R

inf{βH̃(x) + I(x) : x ∈ X , H̃(x) = u}

= inf
u∈R

{βu + inf{I(x) : x ∈ X , H̃(x) = u}
= inf

u∈R

{βu− s(u)}.
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• Proof 2 of (10.14) using asymptotic properties:

ϕ(β) = − lim
n→∞

1

an
logZn(β)

= − lim
n→∞

1

an
log

∫

Ωn

exp[−βHn] dPn

= − lim
n→∞

1

an
log

∫

R

exp[−βu]Pn{Hn ∈ du}
= − sup

u∈R

{−βu + s(u)}

= inf
u∈R

{βu− s(u)}.

To derive the next-to-last line we use the fact that with respect toPn,
Hn satisfies the large deviation principle, and therefore the equivalent
Laplace principle, with rate function−s(u) [Thm. 10.5(a)]. Invoking
the Laplace principle is a bit of cheating since the identityfunction
mappingu ∈ R 7→ u is not bounded.

The complete symmetry between the two ensembles as indicated by proper-
ties 1, 2, and 3 is spoiled by property 4. Although one can obtain ϕ(β) from
s(u) via a Legendre-Fenchel transform, in general one cannot obtains(u) from
ϕ(β) via the dual formula unlesss is concave onR. The concavity ofs on R

depends on the nature ofI andH̃. For example, ifI is convex onX andH̃
is affine, thens is concave onR. Because of the local mean-field, long-range
nature of the Hamiltonians arising in many models of coherent structures in tur-
bulence, the associated microcanonical entropies are typically not concave on
subsets ofR corresponding to a range of negative temperatures. This discussion
indicates that of the two thermodynamic functions, the microcanonical entropy
is the more fundamental, a state of affairs that is reinforced by the results on
ensemble equivalence and nonequivalence to be presented inTheorem 10.6.

In order to state this theorem, we need several definitions. Afunctionf on
R is said to be concave onR, or concave, if−f is a proper convex function in
the sense of [71, p. 24]; that is,f mapsR into R∪{−∞}, f 6≡ −∞, and for all
u andv in R and allλ ∈ (0, 1)

f(λu + (1 − λ)v) ≥ λf(u) + (1 − λ)f(v).
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Givenf 6≡ −∞ a function mappingR into R ∪ {−∞}, we define domf to be
the set ofu ∈ R for whichf(u) > −∞. Let β be a point inR. The functionf
is said to have a supporting line atu ∈ domf with tangentβ if

f(v) ≤ f(u) + β(v − u) for all v ∈ R.

It follows from this inequality thatu ∈ domf . In addition,f is said to have a
strictly supporting line atu ∈ domf with tangentβ if the inequality in the last
display is strict for allv 6= u.

Let f 6≡ −∞ be a function mappingR into R ∪ {−∞}. Forβ andu in R

the Legendre-Fenchel transformsf∗ andf∗∗ are defined by [71, p. 308]

f∗(β) = inf
u∈R

{βu− f(u)} and f∗∗(u) = inf
β∈R

{βu− f∗(β)}.

As in the case of convex functions [33, Thm. VI.5.3],f∗ is concave and upper
semicontinuous onR, and for allu ∈ R we havef∗∗(u) = f(u) if and only
if f is concave and upper semicontinuous onR. If f is not concave and upper
semicontinuous onR, thenf∗∗ is the smallest concave, upper semicontinuous
function onR that satisfiesf∗∗(u) ≥ f(u) for all u ∈ R [15, Prop. A.2]. In
particular, if for someu, f(u) 6= f∗∗(u), thenf(u) < f∗∗(u).

Let f 6≡ −∞ be a function mappingR into R ∪ {−∞}, u a point in domf ,
andK a convex subset of domf . The first three of the following four definitions
are reasonable becausef∗∗ is concave onR.

• f is concave atu if f(u) = f∗∗(u).

• f is not concave atu if f(u) < f∗∗(u).

• f is concave onK if f is concave at allu ∈ K.

• f is strictly concave onK if for all u 6= v in K and allλ ∈ (0, 1)

f(λu + (1 − λ)v) > λf(u) + (1 − λ)f(v).

We now state the main theorem concerning the equivalence andnonequiv-
alence of the microcanonical and canonical ensembles. According to part (d),
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canonical equilibrium macrostates are always realized microcanonically. How-
ever, according to parts (a)–(c), the converse in general isfalse. The three pos-
sibilities given in parts (a)–(c) depend on support and concavity properties of
the microcanonical entropys(u).

Theorem 10.6.In parts(a), (b), and(c), u denotes any point indoms.
(a) Full equivalence. There existsβ ∈ R such thatEu = Eβ if and only ifs

has a strictly supporting line atu with tangentβ; i.e.,

s(v) < s(u) + β(v − u) for all v 6= u.

(b) Partial equivalence. There existsβ ∈ R such thatEu ⊂ Eβ butEu 6= Eβ
if and only ifs has a nonstrictly supporting line atu with tangentβ; i.e.,

s(v) ≤ s(u) + β(v − u) for all v with equality for somev 6= u.

(c) Nonequivalence. For all β ∈ R, Eu ∩ Eβ = ∅ if and only if s has no
supporting line atu; i.e.,

for all β ∈ R there existsv such thats(v) > s(u) + β(v − u).

Except possibly for boundary points ofdoms, the latter condition is equivalent
to the nonconcavity ofs at u [Thm. A.5(c)].

(d) Canonical is always realized microcanonically.We definẽH(Eβ) to be

the set ofu ∈ R having the formu = H̃(x) for somex ∈ Eβ. Then for any
β ∈ R we haveH̃(Eβ) ⊂ doms and

Eβ =
⋃

u∈H̃(Eβ)

Eu.

Here are two useful criteria for full or partial equivalenceof ensembles.

• Full or partial equivalence. Except for boundary points of doms, s has
a supporting line atu ∈ doms if and only if s is concave atu [15, Thm.
A.5(c)], and thus according to parts (a) and (b) of the next theorem, full or
partial equivalence of ensembles holds.
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• Full equivalence.Assume that doms is a nonempty interval and thats is
strictly concave on the interior of doms and continuous on doms. Then
except for boundary points of doms, s has a strictly supporting line at all
u ∈ doms, and thus according to part (a) of the theorem, full equivalence
of ensembles holds.

The reader is referred to [36,§4] for the proof of Theorem 10.6. A partial
proof of the equality in part (d) is easily provided. Indeed,if x ∈ Eβ, thenx
minimizesI + βH̃ overX . Thereforex minimizesI + βH̃ over the subset of
X consisting of allx satisfyingH̃(x) = u. It follows thatx minimizesI over
X subject to the constraint̃H(x) = u and thus thatx ∈ E H̃(x). We conclude
thatEβ ⊂ ∪u∈H̃(Eβ)Eu, which is half of the assertion in part (d).

The various possibilities in parts (a), (b), and (c) are illustrated in [43] for
the mean-field Blume-Emery-Griffiths spin model. In [37] thetheory is ap-
plied to a model of coherent structures in two-dimensional turbulence. Numer-
ical computations implemented for geostrophic turbulenceover topography in
a zonal channel demonstrate that nonequivalence of ensembles occurs over a
wide range of the model parameters and that physically interesting equilibria
seen microcanonically are often omitted by the canonical ensemble. The coher-
ent structures observed in the model resemble the coherent structures observed
in the mid-latitude, zone-belt domains on Jupiter.

In [15] we extend the theory developed in [36] and summarizedin Theorem
10.6. In [15] it is shown that when the microcanonical ensemble is nonequiv-
alent with the canonical ensemble on a subset of values of theenergy, it is
often possible to slightly modify the definition of the canonical ensemble so
as to recover equivalence with the microcanonical ensemble. Specifically, we
give natural conditions under which one can construct a so-called Gaussian en-
semble that is equivalent with the microcanonical ensemblewhen the canonical
ensemble is not. This is potentially useful if one wants to work out the equi-
librium properties of a system in the microcanonical ensemble, a notoriously
difficult problem because of the equality constraint appearing in the definition
of this ensemble. An overview of [15] is given in [16], and in [14] it is applied
to the Curie-Weiss-Potts model.
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The general large deviation procedure presented in the firstpart of the present
section is applied in the next section to the analysis of two models of coherent
structures in two-dimensional turbulence, the Miller-Robert model [61, 62, 69,
70] and a related model due to Turkington [77].
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11 Maximum Entropy Principles in Two-Dimensional Tur-
bulence

This section presents an overview of work in which Gibbs states are used to pre-
dict the large-scale, long-lived order of coherent vortices that persist amid the
turbulent fluctuations of the vorticity field in two dimensions [6]. This is done
by applying a statistical equilibrium theory of the two-dimensional Euler equa-
tions, which govern the motion of an inviscid, incompressible fluid. As shown
in [11, 59], these equations are reducible to the vorticity transport equations

∂ω

∂t
+
∂ω

∂x1

∂ψ

∂x2
− ∂ω

∂x2

∂ψ

∂x1
= 0 and −△ψ = ω, (11.1)

in whichω is the vorticity,ψ is the stream function, and△ = ∂2/∂x2
1 + ∂/∂x2

2

denotes the Laplacian operator onR2. The two-dimensionality of the flow
means that these quantities are related to the velocity fieldv = (v1, v2, 0) ac-
cording to(0, 0, ω) = curlv andv = curl(0, 0, ψ). All of these fields depend
upon the time variablet ∈ [0,∞) and the space variablex = (x1, x2), which
runs through a bounded domain inR

2. Throughout this section we assume that
this domain equals the unit torusT 2 = [0, 1) × [0, 1), and we impose doubly
periodic boundary conditions on all the flow quantities.

The governing equations (11.1) can also be expressed as a single equation
for the scalar vorticity fieldω = ω(x, t). The periodicity of the velocity field
implies that

∫

T 2 ω dx = 0. With this restriction on its domain, the Green’s
operatorG = (−△)−1 mappingω into ψ with

∫

X ψ dx = 0 is well-defined.
More explicitly,G is the integral operator

ψ(x) = Gω(x) =

∫

X
g(x− x′)ω(x′) dx′,

whereg is the Green’s function defined by the Fourier series

g(x− x′) =
∑

0 6=z∈Z2

|2πz|−2 e2πi〈z,(x−x′)〉 .

Consequently, (11.1) can be considered as an equation inω alone.
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Even though the initial value problem for the equation (11.1) is known to be
well-posed for weak solutions whenever the initial dataω0 = ω(·, 0) belongs to
L∞(X ) [59], it is well known that this deterministic evolution does not provide
a useful description of the system over long time intervals.When one seeks
to quantify the long-time behavior of solutions, therefore, one is compelled to
shift from the microscopic, or fine-grained, description inherent inω to some
kind of macroscopic, or coarse-grained, description. We will make this shift
by adopting the perspective of equilibrium statistical mechanics. That is, one
views the underlying deterministic dynamics as a means of randomizing the
microstateω subject to the conditioning inherent in the conserved quantities for
the governing equations (11.1), and one takes the appropriate macrostates to be
the canonical Gibbs measures built from these conserved quantities. In doing
so, of course, one accepts an ergodic hypothesis that equates the time averages
with canonical ensemble averages. Given this hypothesis, one hopes that these
macrostates capture the long-lived, large-scale, coherent vortex structures that
persist amid the small-scale vorticity fluctuations. The characterization of these
self-organized macrostates, which are observed in simulations and physical ex-
periments, is the ultimate goal of the theory.

The models that we will consider build on earlier and simplertheories, the
first of which was due to Onsager [66]. Studying point vortices, he predicted
that the equilibrium states with high enough energy have a negative temperature
and represent large-scale, coherent vortices. This model was further developed
in the 1970’s, notably by Montgomery and Joyce [63]. However, the point vor-
tex model fails to incorporate all the conserved quantitiesfor two-dimensional
ideal flow.

These conserved quantities are the energy, or Hamiltonian functional, and
the family of generalized enstrophies, or Casimir functionals [59]. Expressed
as a functional ofω, the kinetic energy is

H(ω) =
1

2

∫

X×X
g(x− x′)ω(x)ω(x′) dx dx′. (11.2)
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The so-called generalized enstrophies are the global vorticity integrals

A(ω) =

∫

X
a(ω(x)) dx,

wherea is an arbitrary continuous real function on the range of the vorticity. In
terms of these conserved quantities, the canonical ensemble is defined by the
formal Gibbs measure

Pβ,a(dω) = Z(β, a)−1 exp[−βH(ω) − A(ω)] Π(dω),

whereZ(β, a) is the associated partition function andΠ(dω) denotes some in-
variant product measure on some phase space of all admissible vorticity fields
ω. Of course, this formal construction is not meaningful as itstands due to the
infinite dimensionality of such a phase space. We therefore proceed to define
a sequence of lattice models onT 2 in order to give a meaning to this formal
construction.

One lattice model that respects conservation of energy and also the general-
ized enstrophy constraints was developed by Miller et. al. [61, 62] and Robert
et. al. [69, 70]; we will refer to it as the Miller-Robert model. A related model,
which discretizes the continuum dynamics in a different way, was developed
by Turkington [77]. These authors use formal arguments to derive maximum
entropy principles that are argued to be equivalent to variational formulas for
the equilibrium macrostates. In terms of these macrostates, coherent vortices
of two-dimensional turbulence can be studied. The purpose of this section is to
outline how the large deviation analysis presented in section 10 can be applied
to derive these variational formulas rigorously. References [6] and [77] discuss
in detail the physical background.

The variational formulas will be derived for the following lattice model that
includes both the Miller-Robert model and the Turkington model as special
cases. LetT 2 denote the unit torus[0, 1) × [0, 1) with periodic boundary con-
ditions and letL be a uniform lattice ofn = 22m sitess in T 2, wherem is a
positive integer. The intersite spacing in each coordinatedirection is2−m. We
make this particular choice ofn to ensure that the lattices are refined dyadically
asm increases, a property that is needed later when we study the continuum
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limit obtained by sendingn → ∞ along the sequencen = 22m. In correspon-
dence with this lattice we have a dyadic partition ofT 2 into n squares called
microcells, each having area1/n. For eachs ∈ L we denote byM(s) the
unique microcell having the sites in its lower left corner. AlthoughL and
M(s) depend onn, this is not indicated in the notation.

The configuration spaces for the lattice model are the product spacesΩn =

Yn, whereY is a compact set inR. Configurations inΩn are denoted by
ζ = {ζ(s), s ∈ L}, which represents the discretized vorticity field. Letρ be
a probability measure onY and letPn denote the product measure onΩn with
one-dimensional marginalsρ. As discussed in [6], the Miller-Robert model and
the Turkington model differ in their choices of the compact setY and the prob-
ability measureρ.

For ζ ∈ Ωn the Hamiltonian for the lattice model is defined by

Hn(ζ) =
1

2n2

∑

s,s′∈L
gn(s− s′) ζ(s) ζ(s′),

wheregn is the lattice Green’s function defined by the finite Fourier sum

gn(s− s′) =
∑

0 6=z∈L∗

|2πz|−2 e2πi〈z,s−s′〉

over the finite setL∗ = {z = (z1, z2) ∈ Z2 : −2m−1 < z1, z2 ≤ 2m−1}. Let
a be any continuous function mappingY into R. For ζ ∈ Ωn we also define
functions known as the generalized enstrophies by

An,a(ζ) =
1

n

∑

s∈L
a(ζ(s)),

In terms of these quantities we define the partition function

Zn(β, a) =

∫

Ωn

exp[−βHn(ζ)− An,a(ζ)]Pn(dζ)

and the canonical ensemblePn,β,a, which is the probability measure that assigns
to a Borel subsetB of Ωn the probability

Pn,β,a{B} =
1

Zn(β, a)

∫

B

exp[−βHn(ζ)−An,a(ζ)]Pn(dζ). (11.3)
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These probability measures are parametrized by the constant β ∈ R and the
functiona ∈ C(Y). The dependence of Gibbs measures on the inverse tempera-
tureβ is standard, while their dependence on the functiona that determines the
enstrophy functional is a novelty of this particular statistical equilibrium prob-
lem. The Miller-Robert model and the Turkington model also differ in their
choices of the parameterβ and the functiona.

The main theorem in this section applies the theory of large deviations to
derive the continuum limitn → ∞ of the lattice model just introduced. Be-
cause the interactionsgn(s − s′) in the lattice model are long-range, one must
replaceβ anda by nβ andna in order to obtain a nontrivial continuum limit
[6, 61, 62]. Replacingβ anda by nβ andna in the formulas for the partition
function and the Gibbs state is equivalent to replacingHn andAn by nHn and
nAn and leavingβ anda unscaled. We carry out the large deviation analysis
of the lattice model by applying the general procedure specified in the pre-
ceding section, making the straightforward modifications necessary to handle
both the Hamiltonian and the generalized enstrophy. Thus weseek a space of
macrostates, a sequence of macroscopic variablesYn, representation functions
H̃ andÃa for the Hamiltonian and for the generalized enstrophy, and alarge
deviation principle forYn with respect to the product measuresPn. The first
marginal of a probability measureµ onT 2 × Y is defined to be the probability
measureµ1{A} = µ{A× Y} for Borel subsetsA of T 2.

• Space of macrostates.This is the spacePθ(T
2 × Y) of probability mea-

sures onT 2 × Y with first marginalθ, whereθ(dx) = dx is Lebesgue
measure onT 2.

• Macroscopic variables.For eachn ∈ N, Yn is the measure-valued func-
tion mappingζ ∈ Ωn to Yn(ζ, dx× dy) ∈ Pθ(T

2 × Y) defined by

Yn(dx× dy) = Yn(ζ, dx× dy) = dx⊗
∑

s∈L
1M(s)(x) δζ(s)(dy).

Thus for Borel subsetsA of T 2 ×Y

Yn{A} =
∑

s∈L

∫

A

1M(s)(x) dx δζ(s)(dy).
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Since
∑

s∈L 1M(s)(x) = 1 for all x ∈ T 2, the first marginal ofYn equals
dx.

• Hamiltonian representation function. H̃ : Pθ(T
2 × Y) 7→ R is defined

by

H̃(µ) =
1

2

∫

(T 2×Y)2
g(x− x′) y y′ µ(dx× dy)µ(dx′ × dy′),

where
g(x− x′) =

∑

0 6=z∈Z2

|2πz|−2 exp[2πi〈z, x − x′〉].

As proved in [6, Lem. 4.4],̃H is bounded and continuous and there exists
C <∞ such that

sup
ζ∈Ωn

|Hn(ζ)− H̃(Yn(ζ, ·))| ≤ C

(

log n

n

)1/2

for all n ∈ N. (11.4)

• Generalized enstrophy representation function.Ãa : Pθ(T
2 ×Y) 7→ R

is defined by

Ãa(µ) =

∫

T 2×Y
a(y)µ(dx× dy).

Ãa is bounded and continuous and

An,a(ζ) = Ãa(Yn(ζ, ·)) for all ζ ∈ Ωn. (11.5)

• Large deviation principle for Yn. With respect to the product measures
Pn, Yn satisfies the large deviation principle onPθ(T

2×Y) with rate func-
tion the relative entropy

Iθ×ρ(µ) =







∫

T 2×Y

(

log
dµ

d(θ × ρ)

)

dµ if µ≪ θ × ρ

∞ otherwise.

We first comment on the last item. The large deviation principle for Yn with
respect toPn is far from obvious and in fact is one of the main contributions
of [6]. We will address this issue after specifying the largedeviation behavior



Richard S. Ellis: Lectures on the Theory of Large Deviations 102

of the model in Theorem 11.1. Concerning (11.4), sinceθ{M(s)} = 1/n, it is
plausible that

H̃(Yn(ζ, ·)) =
1

2

∑

s,s′∈L

∫

M(s)×M(s′)

g(x− x′) dx dx′ ζ(s)ζ(s′)

is a good approximation toHn(ζ) = [1/(2n2)]
∑

s,s′∈L gn(s−s′)ζ(s)ζ(s′). Con-
cerning (11.5), forζ ∈ Ωn we have

Ãa(Yn(ζ, ·)) =

∫

T 2×Y
a(y) Yn(ζ, dx× dy) =

1

n

∑

s∈L
a(ζ(s)) = An,a(ζ).

The proofs of the boundedness and continuity ofÃa are straightforward.
Part (a) of Theorem 11.1 gives the asymptotic behavior of thescaled partition

functionsZn(nβ, na), and part (b) states the large deviation principle forYn
with respect to the scaled canonical ensemblePn,nβ,na. The rate function has
the familiar form

Iβ,a = Iρ×θ + βH̃ + Ã− ϕ(β, a),

whereϕ(β, a) denotes the canonical free energy. In the formula forIβ,a the
relative entropyIρ×θ arises from the large deviation principle forYn with respect
toPn, and the other terms arise from (11.4), (11.5), and the form of Pn,nβ,na. Part
(c) of the theorem gives properties of the setEβ,a of equilibrium macrostates.
Eβ,a consists of measuresµ at which the rate functionIβ,a in part (b) attains its
infimum of 0 overPθ(T

2 × Y). The proof of the theorem is omitted since it is
similar to the proof of Theorem 10.4, which adapts Theorems 10.2 and 10.3 to
the setting of models of coherent structures in turbulence.

Theorem 11.1.For eachβ ∈ R anda ∈ C(Y) the following conclusions hold.
(a) The canonical free energyϕ(β, a) = − limn→∞ 1

n
logZn(nβ, na) exists

and is given by the variational formula

ϕ(β, a) = inf
µ∈Pθ(T 2×Y)

{βH̃(µ) + Ãa(µ) + Iρ×θ(µ)}.

(b) With respect to the scaled canonical ensemblePn,nβ,na defined in(11.3),
Yn satisfies the large deviation principle onPθ(T

2 × Y) with scaling constants
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n and rate function

Iβ,a(µ) = Iρ×θ(µ) + βH̃(µ) + Ãa(µ) − ϕ(β, a).

(c) We define the set of equilibrium macrostates

Eβ,a = {µ ∈ Pθ(T
2 × Y) : Iβ,a(µ) = 0}.

ThenEβ,a is a nonempty, compact subset ofPθ(T
2 × Y). In addition, ifA is a

Borel subset ofPθ(T
2 × Y) such thatA ∩ Eβ,a = ∅, thenIβ,a(A ) > 0 and for

someC <∞

Pn,β,a{Yn ∈ A} ≤ exp[−nIβ,a(A )/2] → 0 asn→ ∞.

In section 3 of [6] we discuss the physical implications of the theorem and the
relationship between the following concepts in the contextof the Miller-Robert
model and the Turkington model:µ ∈ Pθ(T

2 × Y) is a canonical equilibrium
macrostate (i.e.,µ ∈ Eβ,a) andµ satisfies a corresponding maximum entropy
principle. In the Miller-Robert model, the maximum entropyprinciple takes the
form of minimizing the relative entropyIθ×ρ(µ) overµ ∈ Pθ(T

2 × Y) subject
to the constraints

H̃(µ) = H(ω0) and
∫

T 2

µ(dx× ·) =

∫

T 2

δω0(x)(·) dx,

whereω0 is an initial vorticity field andH(ω0) is defined in (11.2). By analogy
with our work in the preceding section, this constrained minimization problem
defines the set of equilibrium macrostates with respect to the microcanonical
ensemble for the Miller-Robert model. The fact that eachµ ∈ Eβ,a is also a
microcanonical equilibrium macrostate is a consequence ofpart (d) of Theorem
10.6 adapted to handle both the Hamiltonian and the generalized enstrophy. In
the Turkington model, the maximum entropy principle takes asomewhat related
form in which the second constraint appearing in the Miller-Robert maximum
entropy principle is relaxed to a family of convex inequalities parametrized by
points inY . Understanding for each model the relationship between equilibrium
macrostatesµ and the corresponding maximum entropy principle allows oneto
identify a steady vortex flow with a given equilibrium macrostateµ. Through
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this identification, which is described in [6], one demonstates how the equi-
librium macrostates capture the long-lived, large-scale,coherent structures that
persist amid the small-scale vorticity fluctuations.

We spend the rest of this section outlining how the large deviation principle
is proved for the macroscopic variables

Yn(dx× dy) = dx⊗
∑

s∈L
1M(s)(x) δζ(s)(dy)

with respect to the product measuresPn. The proof is based on the innovative
technique of approximatingYn by a doubly indexed sequence of random mea-
suresWn,r for which the large deviation principle is, at least formally, almost
obvious. This doubly indexed sequence, obtained fromYn by averaging over
an intermediate scale, clarifies the physical basis of the large deviation princi-
ple and reflects the multiscale nature of turbulence. A similar large deviation
principle is derived in [60, 68] by an abstract approach thatrelies on a convex
analysis argument. That approach obscures the role of spatial coarse-graining
in the large deviation behavior.

In order to defineWn,r, we recall thatL containsn = 22m sitess. For
evenr < 2m we consider a regular dyadic partition ofT 2 into 2r macrocells
{Dr,k, k = 1, 2, . . . , 2r}. Each macrocell containsn/2r lattice sites and is the
union ofn/2r microcellsM(s), whereM(s) contains the sites in its lower left
corner. We now define

Wn,r(dx× dy) = Wn,r(ζ, dx× dy) = dx⊗
2r

∑

k=1

1Dr,k
(x)

1

n/2r

∑

s∈Dr,k

δζ(s)(dy).

Wn,r is obtained fromYn by replacing, for eachs ∈ Dr,k, the point massδζ(s)
by the average(n/2r)−1

∑

s∈Dr,k
δζ(s) over then/2r sites contained inDr,k.

We need the key fact that with respect to a suitable metricd onPθ(T
2 ×Y),

d(Yn,Wn,r) ≤
√

2/2r/2 for all n = 22m and all evenr ∈ N satisfyingr < 2m.
The proof of this approximation property uses the fact that the diameter of each
macrocellDr,k equals

√
2/2r/2 [6, Lem. 4.2]. The next theorem states the two-

parameter large deviation principle forWn,r with respect to the product mea-
suresPn. The approximation propertyd(Yn,Wn,r) ≤

√
2/2r/2 implies that with
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respect toPn, Yn satisfies the Laplace principle, and thus the equivalent large
deviation principle, with the same rate functionIθ×ρ [6, Lem. 4.3]. Subtleties
involved in invoking the Laplace principle are discussed inthe proof of that
lemma.

Theorem 11.2. With respect to the product measuresPn, the sequenceWn,r

satisfies the following two-parameter large deviation principle onPθ(T
2 × Y)

with rate functionIθ×ρ: for any closed subsetF ofPθ(T
2 × Y)

lim sup
r→∞

lim sup
n→∞

1

n
log Pn{Wn,r ∈ F} ≤ −Iθ×ρ(F )

and for any open subsetG of Pθ(T
2 × Y)

lim inf
r→∞

lim inf
n→∞

1

n
logPn{Wn,r ∈ G} ≥ −Iθ×ρ(G).

Our purpose in introducing the doubly indexed processWn,r is the following.
The local averaging over the setsDr,k introduces a spatial scale that is interme-
diate between the macroscopic scale of the torusT 2 and the microscopic scale
of the microcellsM(s). As a result,Wn,r can be written in the form

Wn,r(dx× dy) = dx⊗
2r

∑

k=1

1Dr,k
(x)Ln,r,k(dy), (11.6)

where
Ln,r,k(dy) = Ln,r,k(ζ, dy) =

1

n/2r

∑

s∈Dr,k

δζ(s)(dy).

Since eachDr,k containsn/2r lattice sitess, with respect toPn the sequence
{Ln,r,k, k = 1, . . . , 2r} is a family of i.i.d. empirical measures. For eachr and
eachk ∈ {1, . . . , 2r} Sanov’s Theorem 6.7 implies that asn → ∞, Ln,r,k
satisfies the large deviation principle onP(Y) with scaling constantsn/2r and
rate functionIρ.

We next motivate the large deviation principle forWn,r stated in Theorem
11.2. Suppose thatµ ∈ Pθ(T

2 × Y) has finite relative entropy with respect to
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θ × ρ and has the special form

µ(dx× dy) = dx⊗ τ(x, dy), where τ(x, dy) =

2r

∑

k=1

1Dr,k
(x) τk(dy) (11.7)

andτ1, . . . , τ2r are probability measures onY . The representation (11.6), Sanov’s
Theorem, and the independence ofLn,r,1, . . . , Ln,r,2r suggest that

lim
n→∞

1

n
log Pn {Wn,r ∼ µ}

= lim
n→∞

1

n
log Pn{Ln,r,k ∼ τk, k = 1, . . . , 2r}

=
1

2r

2r

∑

k=1

lim
n→∞

1

n/2r
log Pn{Ln,r,k ∼ τk}

≈ − 1

2r

2r

∑

k=1

Iρ(τk) = −
∫

T 2

Iρ(τ(x, ·)) dx

= −
∫

T 2

∫

Y

(

log
dτ(x, ·)
dρ(·) (y)

)

τ(x, dy) dx

= −
∫

T 2×Y

(

log
dµ

d(θ × ρ)
(x, y)

)

µ(dx× dy)

= −Iθ×ρ(µ).

Because of this calculation, the two-parameter large deviation principle forWn,r

with rate functionIθ×ρ is certainly plausible, in view of the fact that any measure
µ ∈ Pθ(T

2 × Y) can be well approximated, asr → ∞, by a sequence of
measures of the form (11.7) [7, Lem. 3.2]. The reader is referred to [6] for
an outline of the proof of this two-parameter large deviation principle. The
large deviation principle forWn,r is a special case of a large deviation principle
proved in [7] for an extensive class of random measures that includesWn,r as a
special case.

This completes our application of the theory of large deviations to models of
two-dimensional turbulence. The asymptotic behavior of these models is stated
in Theorem 11.1. One of the main components of the proof is thelarge deviation
principle for the macroscopic variablesYn, which in turn follows by approxi-
matingYn by the doubly indexed sequenceWn,r and proving the large deviation
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principle for this sequence. This proof relies on Sanov’s Theorem, which gener-
alizes Boltzmann’s 1877 calculation of the asymptotic behavior of multinomial
probabilities. Earlier in the paper we used the elementary form of Sanov’s The-
orem stated in Theorem 3.4 to derive the form of the Gibbs state for the discrete
ideal gas and to motivate the version of Cramér’s Theorem needed to analyze
the Curie-Weiss model [Cor. 6.6]. It is hoped that both the importance of Boltz-
mann’s 1877 calculation and the applicability of the theoryof large deviations
to problems in statistical mechanics have been amply demonstrated in these lec-
tures. It is also hoped that these lectures will inspire the reader to discover new
applications.
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[50] J. Gärtner. On large deviations from the invariant measure.Th. Probab.

Appl.22:24–39, 1977.

[51] D. H. E. Gross. Microcanonical thermodynamics and statistical fragmen-
tation of dissipative systems: the topological structure of then-body phase
space.Phys. Rep.279:119–202, 1997.



Richard S. Ellis: Lectures on the Theory of Large Deviations 113

[52] P. Hertel and W. Thirring. A soluble model for a system with negative
specific heat.Ann. Phys. (NY)63:520, 1971.

[53] M. K.-H. Kiessling and J. L. Lebowitz. The micro-canonical point vortex
ensemble: beyond equivalence.Lett. Math. Phys.42:43–56, 1997.

[54] M. K.-H. Kiessling and T. Neukirch. Negative specific heat of a magnet-
ically self-confined plasma torus.Proc. Natl. Acad. Sci. USA100:1510–
1514, 2003.

[55] O. E. Lanford. Entropy and equilibrium states in classical statistical me-
chanics. In:Statistical Mechanics and Mathematical Problems, pp. 1–113.
Edited by A. Lenard.Lecture Notes in Physics20. Berlin: Springer, 1973.

[56] V. Latora, A. Rapisarda, and C. Tsallis. Non-Gaussian equilibrium in a
long-range Hamiltonian system.Phys. Rev. E64:056134, 2001.

[57] D. Lindley.Boltzmann’s Atom: The Great Debate That Launched a Revo-
lution in Physics. New York: Free Press, 2001.

[58] D. Lynden-Bell and R. Wood. The gravo-thermal catastrophe in isothermal
spheres and the onset of red-giant structure for stellar systems.Mon. Notic.
Roy. Astron. Soc.138:495, 1968.

[59] C. Marchioro and M. Pulvirenti.Mathematical Theory of Incompressible
Nonviscous Fluids. New York: Springer, 1994.

[60] J. Michel and R. Robert. Large deviations for Young measures and statis-
tical mechanics of infinite dimensional dynamical systems with conserva-
tion law.Comm. Math. Phys.159:195–215, 1994.

[61] J. Miller. Statistical mechanics of Euler equations intwo dimensions.Phys.
Rev. Lett.65:2137–2140 (1990).

[62] J. Miller, P. Weichman and M. C. Cross. Statistical mechanics, Euler’s
equations, and Jupiter’s red spot.Phys. Rev. A45:2328–2359, 1992.



Richard S. Ellis: Lectures on the Theory of Large Deviations 114

[63] D. Montgomery and G. Joyce. Statistical mechanics of negative tempera-
ture states.Phys. Fluids17:1139–1145, 1974.

[64] P. Ney. Private communication, 1997.

[65] S. Olla. Large deviations for Gibbs random fields.Probab. Th. Rel. Fields
77:343–359, 1988.

[66] L. Onsager. Statistical hydrodynamics.Suppl. Nuovo Cim.6:279–287,
1949.

[67] G. Parisi.Statistical Field Theory. Redwood City, CA: Addison-Wesley
Publishing Co., 1988.

[68] R. Robert. Concentration et entropie pour les mesures d’Young. C. R.
Acad. Sci. Paris309, Série I:757–760, 1989.

[69] R. Robert. A maximum-entropy principle for two-dimensional perfect
fluid dynamics.J. Stat. Phys.65:531–553, 1991.

[70] R. Robert and J. Sommeria. Statistical equilibrium states for two-
dimensional flows.J. Fluid Mech.229:291–310, 1991.

[71] R. T. Rockafellar.Convex Analysis. Princeton: Princeton Univ. Press,
1970.

[72] E. Seneta.Non-Negative Matrices and Markov Chains.Second edition.
New York: Springer, 1981.

[73] R. A. Smith and T. M. O’Neil. Nonaxisymmetric thermal equilibria of
a cylindrically bounded guiding center plasma or discrete vortex system.
Phys. Fluids B2:2961–2975, 1990.

[74] D. W. Stroock.An Introduction to the Theory of Large Deviations. New
York: Springer, 1984.

[75] W. Thirring. Systems with negative specific heat.Z. Physik, 235:339–352,
1970.



Richard S. Ellis: Lectures on the Theory of Large Deviations 115

[76] H. Touchette, R. S. Ellis, and B. Turkington. An introduction to the ther-
modynamic and macrostate levels of nonequivalent ensembles. Physica A

340:138–146, 2004.

[77] B. Turkington. Statistical equilibrium measures and coherent states in two-
dimensional turbulence.Comm. Pure Appl. Math.52:781–809, 1999.

[78] B. Turkington, A. Majda, K. Haven, and M. DiBattista. Statistical equilib-
rium predictions of jets and spots on Jupiter.Proc. Natl. Acad. Sci. USA

98:12346–12350, 2001.

[79] A. S. Wightman. Convexity and the notion of equilibriumstate in thermo-
dynamics and statistical mechanics. Introduction to R. B. Israel.Convexity
in the Theory of Lattice Gases.Princeton: Princeton Univ. Press, 1979.


