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RICHARD 8. ELLIS(1)

ABSTRACT. Let (x(?), v(?)) denote the joint Ornstein-Uhlenbeck posi-
tion-velocity process. Special solutions of the backward equation of this process
are studied by a technique used in statistical mechanics. This leads to a new proof
of the fact that,as e { 0O, ex(t/ez) tends weakly to Brownian motion. The
same problem is then considered for v(#) belonging to a large class of diffusion
processes.

1. Introduction. Previous work on the Boltzmann equation has motivated
the following problem. For € >0 a real parameter, let f = f(x, v), x and v
real, be a formal power series in € of the form Ej>0 fiei , where the coefficients
fi are C” functions of x. We seek solutions p = p.(t, x, v), t >0, of the
equation
a.n g—f + vg—% = %Qp, lim p =
which are also formal power series in e. In (1.1), Q is a negative semidefinite
operator on some Hilbert space which operates on p as a function of v only.
Equation (1.1) has the form of a model Boltzmann equation. The study of the
existence and properties of such special solutions is known as the Chapman-Enskog-
Hilbert expansion for (1.1).

In §2 of this paper, we consider this problem for the case when Q is the
infinitesimal generator of the Ornstein-Uhlenbeck velocity process {v(t); ¢ = 0}.
If welet v — —v in (1.1), then the resulting equation is the backward equation
of the joint process {x + ex(t/€), v(¢/€)}, where x is real and x(#) denotes the
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66 R. S. ELLIS

position of a particle at time ¢ when its velocity is v(f) and x(0) = 0.
Theorem 2.2 states the main properties of formal power series solutions of this
equation. We call the reader’s attention to the simple formula (2.6) which ex-
presses in closed form the special power series solutions of our equation. The
question of convergence of these formal solutions is also taken up. In §3, we use
these results to give a new proof of the fact that as € § 0 the scaled process
ex(t/e?) converges weakly to a standard Brownian motion. Finally, in §4, we
single out a class of multidimensional diffusion processes for which the formal
power series of §2 can be carried out.

The spirit of §2 of this paper is similar to that of [2], in which Q was
the infinitesimal generator of a Markov chain with finite state space. For the
proof of limit theorems for the situation treated in [2], see [3].

Acknowledgement. The author wishes to thank the referee for several help-
ful remarks.

2. Chapman-Enskog-Hilbert expansion for the Ornstein-Uhlenbeck process.
Let {w(¢); t =0} be a standard Brownian motion. We consider the joint Gauss-
ian-Markov process {(x,(¢), v(t)); ¢ >0} defined by the pair of stochastic dif-
ferential equations

dx,(t) = v(@®)dt, dvu(?) = —v@)dt + dw(t),
x,0) =, w0) = v,

where y and v are fixed real numbers. The first component x,(z) is known
as the Ornstein-Uhlenbeck (position) process. We denote by F,, ,y{-} the prob-
ability law for the joint process (x,(¢), v(t)) and by E, ,,{*} integration with
respect to this measure. For f = f(y, v) suitably smooth, one shows that the
function p(t, y, v) = E,, ,){fCx,(?), v()} satisfies the partial differential
equation

@.1)

ap_ 9p 18  dp
22 op_ op  10°p  op -
(22) at ”ay + 25,2 Vav 11:13 p=r
The main facts about the operator Q = %0%/9v?> — vd/dv are stated in
the next lemma.

LEMMA 2.1. Let H denote the Hilbert space L?(m), where m(dv) is the
probability measure w'/2exp(— v*)dv. Let D ={g € H: g € C?, Qg € H}.
Then Q on D is essentially selfadjoint. The Hermite polynomials {h,(v);n =0}
satisfy Qh,, = —nh, and have as generating function

(2.3) ) h,,(v);:-r!i = exp(2xv — x?);

n=0
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the functions {(2"n!)~1h, ()} form an orthonormal basis of H. If Q denotes
the selfadjoint closure of Q, then the spectra and the eigenfunctions of Q and
Q coincide.

ProOF. Since @ can be written

1 2 _a_( _ .2 _@_)
2exp(v)av exp( ”)au’

one has by [4, pp. 86, 189] that Q on D is essentially selfadjoint. The facts
about the Hermite polynomials are proven in [1, pp. 91-93]. The last statement
in the theorem follows from [4, p. 190]. O

Writing exp(¢Q) for the contraction semigroup on H generated by Q,
one can show by means of Lemma 2.1 that

lim exp(tQ)f = [ fam,  f € H.

This implies that as ¢ — o0 y(¢) tends in distribution to a normal random variable
distributed by m. We shall use this fact in the next section.

In the sequel, we shall work in the Hilbert space H. This choice of space
is canonical in the sense that if p is any measure with the property that Q is
even only symmetric in L?(p), then p must be a multiple of m.

In the theorem which follows, m denotes the orthogonal projection onto 1
in H;ie., ng = [gdm forany g € H. Also, D, stands for 9/dx, and all
exponentials are given by their power series.

THEOREM 2.1. Let f = Zj5q fjej be a formal power series in € with
coefficients which are C” in x and assume that nf = f, i.e., 1rf,- =0 for
j 2 1. Then formal power series solutions p = Ej>0 piej of the equation

op op 1 .
2.4 op _ op 1 _
24 3 = Vax T 2OP 13{3 p=1

are unique, subject to the requirement pj(t, x,*) € H. The function [ gives
rise to such a solution if and only if

2.5) f = exp(evD, — €>D2/4)f,.
Given an f satisfying (2.5), we have that
2.6 p = exp(evD, — €2D2/4 + €tD?)2)f,.

Concerning convergence, we have that if [, is an entire function of x* of finite
but arbitrary exponential type, then f and p converge for any € >0 to entire
functions of the same exponential type. In this case, p is a bonafide solution

of 2.4).
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REMARKS. What makes the explicit formula (2.6) possible is the fortunate
fact that the eigenvalue a(\) of Q — Av which satisfies a(0) =0 is a(A) =
A%/2. In general, a()) is a power series in A with a finite radius of convergence.
Formula (2.6) also reveals that power series solutions of (2.4) form a very restricted

class. However, they provide a useful tool for proving limit theorems, as §3 will
show.
PrOOF. We first show uniqueness for (2.4) by considering the equation

ap op 1.
2.7 b N . S ; =
e)) 3 ~V3x = 2P lmp=f
Substituting the power series for p into (2.7) and equating coefficients of powers

of €, one obtains the equations
op;_y opj_4 ~

2.8) 3 "V ox =0p;, Jj=>0,p_, =0

Since lim, o p; = fl and 1rfi =0,j=21, f] is determined by pjy for j=1.
For j =0, (2.8) yields Qp, = 0. Since by Lemma 2.1 the null spaces of Q
and Q are both spanned by 1, we conclude .py(t, X, v) = py(t, x). For j=1,
we obtain dp,/dt —vdp,/dx = Op,. Since Q is selfadjoint and (Qf, /) <- (£, f)s
for all f € N(Q)*, this has a solution if and only if the left-hand side is perpendic-
ular to 1 (see [9, pp. 205—208]); i.e., mdp,y/d¢t = Tvdp,/0x must hold.

But mvdp,y/0x = mumdp,/dx =0, and so p, = f, follows. Since vE f,
we can continue in like fashion to determine (1 — m)p; and mp; uniquely from
the recursive equations

0pj— 0pj
TR T

a-m
29)

= Q(l - ﬂ)pja Trpjlt:O = Oa
op;
t ] .
mp; = fo m(l — ﬂ)a_x‘, for j = 1.

Since Q C 0, the uniqueness of formal power series solutions of (2.4) is shown.

This iterative procedure can be used to show the existence of formal power
series solutions of (2.4). More directly, however, we see that p given by (2.6)
is a formal power series in €. Since

op
T eD2?p[2, Qp = (€*D2/2 - evD,)p,

p is also a formal solution of (2.4). Evaluating p at ¢t = 0% shows that f
must satisfy (2.5). Given such an f, we have from (2.3) that

f= T Sho0./0%,

n=0
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Since wh, =0 for n > 1, it is clear that mf = f,. On the other hand, if one
starts from some C™ function f, = f,(x), then one follows exactly the proof
given in [5, pp. 550—551] to show that the f defined by (2.5) gives rise to one
formal power series solution of (2.4).

The proof of convergence for any € >0 proceeds exactly as in [2, Theorem 4].
One makes use of the fact that the function of complex z obtained by writing
z for D, in the exponential in (2.6) is an entire function of z. O

Before we close this section, we indicate how formula (2.6) was discovered.
Solving (2.9) recursively, one conjectures that

(2.10). np; = H[2)\DYf,, i =0,

(2.11) (1 = Mpj| =0+ = A/2jNA,W)DLS,,  j>1.
We sum (2.10) over j =0 and find

(2.12) 7p = exp(teD2/2)f,.

Summing (2.11) over j =1 and using (2.3), one sees that at ¢ = 0%

(2.13) (1 -m)p = (exp(evD, —€2D?2/4) — D)mp.

On physical grounds (see [2, Introduction]) one expects (2.13) to be true for all
t = 0. Substituting (2.12) into (2.13), one arrives at (2.6).

3. Approximation of Brownian motion. We introduce some notation. Con-
sider as in §2 the process (x(¢), v(t)), where now x(0) = 0, v(0) = v, and define
for f(x, v) bounded and smooth

(3.1 Tif(x, v) = Eg, ,(f(x + ex(t/e), v(t/e))}, t=0.

This is a solution of (2.4). For f, = f,(x) € C;°, the space of C™ functions
with compact support, let S,f,(x) = Efy(x + w(f)), where w(t) denotes stan-
dard Brownian motion and E the integral with respect to this process. We shall
prove that for each x

(32) li% (TF1e fo)x, v) = S,fo(x), uniformly for v in compacta.
€

We claim that (3.2) also yields the convergence of the n-dimensional distributions
of x€(¢) = ex(t/e?) to those of w(f). This is equivalent to showing that the
n-dimensional distributions of the increments of the x€(¢) process converge to
those of the increments of w(f). Take, for example, n = 3. Then for f, h,s€C;
and 0 <1t; <t, <t;, we have by the Markov property of v(¢) that

E(o,v) [FGef(2))) s h(xé(ty) - x€(ty))* s(x€(t3) — x€(t,))]

= E(O,v) [R{EA(29)] 'E(o,vl)[h(xe(tz - tl))'E(o,uz)s(xe(ta = t))1,



70 R. S. ELLIS

where v, = v(t,/e?) and v, = v((t, — t;)/e?). This can be shown to converge
to

Ef(w(t,)) - En(w(t, —t)))* Es(w(t; — 1,))
= E[f(w(t,))* h(w(t;) — w(t,)) - sw(t3) — w(z,))]
by use of (3.2) and the fact that v(¢) — N(0, 1/2) in distribution as ¢ —> oe.
Since one can prove that E(o,v)lx“’(t)l4 < Ct?, C independent of e, the weak
convergence follows [8, pp. 33—35]. We shall prove (3.2) by considering T}j.f¢,
where f€ is the power series in € related to f; by (3.5). For another approach

which exploits the Gaussian nature of the processes, see [6, pp. 60—61].
For fy € C;” and 0 < T < o, we define f » by

fo,r®) = [

iyx
e
i<z € Jod7>

where fo('y) = Qn)~! ferx fodx is the Fourier transform of f,. Now let
fé(x, v) = fl'yl<T e *exp(eiyv + 6272/4)f0d7'

The function f€ is entire in x of finite type T, is bounded in x and v, and
is related to f o by (2.5). We denote by p, the convergent power series solu-
tion of (2.4) with initial data f€, which can be written (see (2.6))

pet, x, v) = ./}'yIKT e!"*exp(eviy + e2y?[4 - et72/2)f0d7.
The key fact about p€ is contained in the next lemma.
LeMMA 3.1. We have
(33) p¢ = Tif€.

REMARK. Although both functions in (3.3) solve (2.4) with initial data
f€, we do not know of any uniqueness results for this ultraparabolic equation.

ProoF. We want to make use of the uniqueness part of Theorem 2.1. We
first show that T,5f€ isa power seriesin e. Let us write g€ = exp(— ezD,26/4)f0 T
We have from (2.5) and the entirety of f, r that

Tif¢ = E(o,u){fe(x + ex(t/e), v(t/e))}
= By, ,y{exp(ev(t/e)D,)g (x + ex(t/e)}

= E(o,lexp [e(x(the) + v(t/e))D,]8°(x)}-

However, by adding the two equations in (2.1), we find that x(t/e) + v(t/e) =
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v + w(t/e). Thus,

€X) Tif€ = Eo vy fexpl(ev +Vew(®)D, ] g5(x)}.

Since the odd moments of w() vanish, this shows that T f€ is a power series
in e. Furthermore, (3.4) shows that as functions of v the coefficients of the
powers of € in T/ f€ are polynomials, which belong to H. Hence, (3.3) fol-
lows from the uniqueness part of Theorem 2.1. O

ProoF oF (3.2). Fixing x, we have

ITHefo = Sefol < ITte/efO T5ef €l + 1T5f€ = S, [l

G5) IT5efo = Tef €1 + [ 15 exPC07%2)1fyldy

¥ ﬁ'qu exp(= 17 [2)lexp(ivey + €277%4) ~ 11-1fy|dr.

We use (3.3) to estimate the first term. The key idea below is to break up
the £-integration first over |&] < M, then over |¢| > M, for M < o. We have

Tfiefo = T5ef <1 < [[ Vo =£n, I+ Py 4 {(x +x5(t) Edn, v(t/e?) € dt)
< sup <wlfo(x) = fex, 9l

IEISM;—eo<x

Ge <sup@(lfol + €D Pro, y{lo(t/e®)] > M}

< Jpsr Foldy + S Sy Vol lexpletty +€29%4) - 1idy
+K-Py »lv@/e®)) > M} (K constant).

However, since v(t/e%) — N0, 1/2) as € 4 0, the last term in (3.6) can be
made small, uniformly for v in compacta, by choosing M large. Since choos-
ing T large, then e small makes the other terms in (3.5) and (3.6) small uni-
formly for v in compacta, the proof of (3.2) is complete. [

4. Chapman-Enskog-Hilbert expansion for a general class of diffusion pro-
cesses. Let v(f) be the unique solution of the stochastic differential equation

dv(t) = a@@)dw + b(u(@))dt, v(0) = v real,

where @ and b are real-valued, Lipschitz continuous functions of v, @ is posi-
tive, and a*(v) + b%(v) < K(1 + v?) for each v (K a constant). The equa-
tion analogous to (2.4) takes the form

op _ op | 1 o
(4'1) at - vax + er’ ltlfg p - f:
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In (4.1),
Q = %a?V)(3*/3v*) + b(v)(3/dv),

the generator of v(f). For the purposes of the expansion, f will be taken as a
formal power series in € with coefficients which are C* functions of x, and
a and b will be assumed to be C* functions of v.

Let m denote the locally finite measure whose density r is given by

r@v) = (a@))texp Lv %Z—))du.

We denote by # the Hilbert space L?(m(dv)) and by D the set {g€ H: g EC?,
Qg € H}. Since Q can be written in the form

42) 0 =r1 a%)(ar%)

it follows from [4, pp. 86, 189—190] that Q on D is essentially selfadjoint and
the null spaces of @ and its selfadjoint closure Q0 coincide.
We have the following result.

THEOREM 4.2. Assume the following three conditions:

(1) the nullspace N(Q) of Q consists of constants;

(2) 0 is an isolated point of the spectrum of Q;

(3) veEH.
Then formal power series solutions p = Z p,-ei of (4.1) satisfying p; € H asa func-
tion of v are unique when they exist. Starting fromany C* function fy = fo(x),
one can find a formal power series solution of (4.1), where f is some formal power
series involving f, and its derivatives and satisfying fl.—o = fo-

PrOOF. We first show the existence part of the theorem. Substituting the
formal power series for p into (4.1) leads to the equations

0P;-1 3pj—1
4.3 - = . i = =0, li = .
*43) —— v~ =0 20 Py 0 lim Py fo

For j = 0,we obtain p,(t, x, v) = py(t, x). For j =1, let us first consider the
equations
0pj— )

4.4 - =0 . i > i =
( ) ot v dx Qp]a ]/ls ltlf?) 12 fOs

and then show that the solutions of (4.4) actually solve (4.3). But by hypothesis
(2), there isa & >0 such that (Of, f) < -8(f, f), all £ € N(Q)*. Since Q
is selfadjoint, we know by hypotheses (1) and (3) that equations (4.4) can be
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solved recursively for p; in terms of fy and its derivatives. In solving (4.4), one
finds that the functions f; = lim,,, p; are automatically determined in terms of
fo and its derivatives..

We now show that the p; solve (4.3). This we do by first proving that p;
is a weak solution of this equation; i.e., for any ¢ = ¢(v) € C,°, we have

4.5) J: (@*9pdv = f oh,_, dv,

where Q% is the formal adjoint of Q and h;_, denotes the left-hand side of
(4.3). Let us say (4.5) is shown. By induction, we assume pj_; isa C* func-
tion of v (certainly true for j = 1). But then h;_, is also, and since the coef-
ficients of Q are C®, it follows by a corollary to a theorem of Friedrichs [9, p.
178] that if (4.5) is true, then p;, as a function of v,isa C* solution of

Qp,. = hi_l. To show (4.5), we define the C,° function ¢ by ¢ = rlp
and argue as follows

[ ety av = [@pprav = [ @v)pjrav
= [(@¥ypyrav = [(@*op;ab.

The second equality follows from the selfadjointness of @ in H, the third from
the fact that ¢ € D, and the last from the fact that #Q = Q*r, which can be
checked from (4.2). As the uniqueness part of the theorem should now be
obvious, we are through. O
Although we do not have in general the explicit formulae of §2, one can
formally show the following facts when the three conditions of Theorem 4.2 hold.
Assuming m to be normalized to have total mass one and defining x(¢) =
fot v(s)ds, we have, in the sense of weak convergence,
lim ex(¢/e) = @t, lim ex(t/e?) — Wt/e = o> w(r),
€l0 " €40
where x(0) =0, ) = fvm(dv) isthe mean of m, and 02 = [(v— W)*m(dv)
is the variance of m. We omit the calculations.
Concerning the Chapman-Enskog-Hilbert development for multidimensional
processes, let us take the case where the generator Q of wv(f) is

0=; T 5t T 0y

2
1<i<n ov 1<i<n

It is known [7, p. 689], that a symmetrizing measure m exists for sucha Q if
and only if the vector field (b,(v),***, b,(v)) is conservative, i.e., (b;(v),**
b,(v)) = grad u(v) for some u. In such a situation, the above goes through
with little change.
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