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We derive probabilistic limit theorems that reveal the intricate structure of the phase
transitions in a mean-field version of the Blume–Emery–Griffiths model [Phys. Rev. A
4 (1971) 1071–1077]. These probabilistic limit theorems consist of scaling limits for
the total spin and moderate deviation principles (MDPs) for the total spin. The model
under study is defined by a probability distribution that depends on the parameters n, β,
and K , which represent, respectively, the number of spins, the inverse temperature, and
the interaction strength. The intricate structure of the phase transitions is revealed by
the existence of 18 scaling limits and 18 MDPs for the total spin. These limit results are
obtained as (β, K ) converges along appropriate sequences (βn, Kn) to points belonging
to various subsets of the phase diagram, which include a curve of second-order points
and a tricritical point. The forms of the limiting densities in the scaling limits and of
the rate functions in the MDPs reflect the influence of one or more sets that lie in
neighborhoods of the critical points and the tricritical point. Of all the scaling limits,
the structure of those near the tricritical point is by far the most complex, exhibiting
new types of critical behavior when observed in a limit-theorem phase diagram in the
space of the two parameters that parametrize the scaling limits.

KEY WORDS: scaling limit, moderate deviation principle, second-order phase tran-
sition, first-order phase transition, tricritical point, Blume–Emery–Griffiths model,
Blume–Capel model

American Mathematical Society 2000 Subject Classifications. Primary 60F10,
60F05, Secondary 82B20

1 Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26, D-04103 Leipzig, Germany;
e-mail: marius@mis.mpg.de

2 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003; e-mail:
rsellis@math.umass.edu

3 Department of Mathematics, Willamette University, Salem, OR 97301; e-mail: potto@willamette.edu

495

0022-4715/07/0500-0495/0 C© 2007 Springer Science+Business Media LLC



496 Costeniuc, Ellis and Otto

1. INTRODUCTION

The purpose of this paper is to analyze a new set of phenomena associated with
the critical behavior of probabilistic limit theorems for a mean-field version of an
important lattice-spin model due to Blume et al. (6) These probabilistic limit theo-
rems consist of scaling limits for the total spin and moderate deviation principles
(MDPs) for the total spin.

We will refer to the mean-field model studied in this paper as the BEG model;
it is equivalent to the Blume–Emery–Griffiths model on the complete graph on
n vertices. In contrast to the mean-field version of the Ising model known as
the Curie–Weiss model, whose only phase transition is a continuous, second-
order phase transition at the critical inverse temperature (Ref. 22, Sec. 4.4), the
BEG model exhibits both a curve of continuous, second-order points; a curve of
discontinuous, first-order points; and a tricritical point, which separates the two
curves. (27,34) It is one of the few models, and certainly one of the simplest, that
exhibit this intricate phase-transition structure.

Applications of the Blume–Emery–Griffiths model to a diverse range of
physical systems are discussed in (Ref. 27, Sec. 1) and in (Ref. 34, Sec. 3.3),
where the model is called the Blume–Emery–Griffiths-Rys model. As the latter
reference points out, the model studied in the present paper is actually a mean-field
version of a precursor of the Blume–Emery–Griffiths-Rys model due to Blume(5)

and Capel.(11−13) With apologies to these authors, we follow the nomenclature of
our earlier paper (27) by referring to this mean-field version as the BEG model.

The BEG model is defined by a probability distribution Pn,β,K , where n
equals the number of spins, β is the inverse temperature, and K is the interaction
strength. We investigate the complex structure of the phase transitions in the model
by deriving 36 different limit results for the total spin Sn as (β, K ) converges along
appropriate sequences (βn, Kn) to points belonging to three separate classes: (1)
the tricritical point, (2) the curve of second-order points, and (3) the single-phase
region lying under that curve. In case 1, we obtain 13 scaling limits and 13 MDPs;
in case 2, 4 scaling limits and 4 MDPs; and in case 3, 1 scaling limit and 1
MDP. As we will see, the numbers 13, 4, and 1 represent natural and exhaustive
enumerations of three classes of polynomials that arise in the related settings of
the scaling limits and the MDPs.

The existence of 18 = 13 + 4 + 1 scaling limits and 18 MDPs reflects the
intricate structure of the phase transitions in the BEG model. It is hoped that our
insights can also be applied to other statistical mechanical models that exhibit
other types of phase transitions and critical phenomena and thus, presumably,
other possibilities for scaling limits of macroscopic random variables like the total
spin in the BEG model. (24)

Before saying more about the limit theorems in the BEG model and their
critical behavior, we summarize a number of facts concerning the phase-transition
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structure of the model. (27) For β > 0 and K > 0 we denote by Eβ,K the set of
equilibrium macrostates of the model corresponding to the macroscopic variable
of the spin per site. In Ref. 27 it is proved that there exists a critical inverse
temperature βc = log 4 and that for β > 0 there exists a critical value Kc(β) > 0
having the following properties.

1. For β > 0 and 0 < K < Kc(β), Eβ,K consists of the unique pure phase 0.
2. For β > 0 and K > Kc(β), Eβ,K consists of two distinct, nonzero phases.
3. For 0 < β ≤ βc, as K increases through Kc(β), Eβ,K undergoes a contin-

uous bifurcation, which corresponds to a second-order phase transition.
4. For β > βc, as K increases through Kc(β),Eβ,K undergoes a discontinuous

bifurcation, which corresponds to a first-order phase transition.
5. The point (βc, Kc(βc)) = (log 4, 3/[2 log 4]) in the positive quadrant of

the β-K plane separates the second-order phase transition noted in item 3
from the first-order phase transition noted in item 4. The point (βc, Kc(βc))
is called the tricritical point.

The limit theorems to be considered in the present paper focus on the values of
β and K in items 1, 3, and 5. For each such (β, K ), Eβ,K consists of the unique pure
phase 0. Figure 1 shows the corresponding portion of the phase diagram, which
exhibits three sets A, B, and C . C is the singleton set containing the tricritical
point (βc, Kc(βc)), B is the curve of second-order points defined by

B = {(β, K ) ∈ R
2 : 0 < β < βc, K = Kc(β)}, (1.1)

and A is the single-phase region lying under B ∪ C and defined by

A = {(β, K ) ∈ R
2 : 0 < β ≤ βc, 0 < K < Kc(β)}. (1.2)

In the remainder of this introduction we focus on the scaling limits for the
total spin Sn when (β, K ) converges to the tricritical point (βc, Kc(βc)) along

Fig. 1. The sets A, B, and C .
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appropriate sequences (βn, Kn). These scaling limits describe the limiting distri-
bution of Sn/n1−γ with respect to Pn,βn ,Kn for appropriate choices of γ ∈ (0, 1/2).
The simplest sequences for which the full range of scaling limits appear are defined
in terms of parameters α > 0, θ > 0, b �= 0, and k �= 0 by

βn = log(eβc − b/nα) and Kn = K (βn) − k/nθ , (1.3)

where K (β) = (eβ + 2)/(4β) for β > 0. K (β) coincides with Kc(β) for 0 < β ≤
βc and satisfies K (β) > Kc(β) for β > βc

(27) (Thms. 3.6, 3.8). A detailed overview
of all the limit theorems in the paper—the scaling limits for Sn/n1−γ and the
MDPs for Sn/n1−γ —is given in the next section. There we will point out an
unexpected consequence of the MDPs concerning a new class of distribution
limits for Sn/n1−γ that give deeper insight into the fine structure of the phase
transitions in a neighborhood of the tricritical point [see (2.13)–(2.14)].

The mathematical explanation for the sequences (βn, Kn) in (1.3)) is clear. As
we discuss in Sec. 7, they are chosen so that certain terms in a Taylor expansion
have appropriate large-n behavior. However, the physical significance of these
sequences is not obvious and is currently under investigation.

In each of the scaling limits the form of the limiting density reflects the
influence of one or more of the sets A, B, and C that lie in a neighborhood of the
tricritical point. The influence of those sets, which depends only on α and θ and
not on b or k in (1.3), is shown in Fig. 2. In that figure the positive quadrant of the
α-θ plane is partitioned into the following sets.

1. Three open sets labeled A, B, and C .
2. Three line segments labeled A + B, A + C , and B + C that separate the

three open sets in item 1.
3. The point equal to (1/3, 2/3) and labeled A + B + C at which the three

line segments in item 2 meet.

Figure 2 is a limit-theorem phase diagram that summarizes the critical be-
havior of the scaling limits in a neighborhood of the tricritical point. This critical
behavior consists of the following phenomena, which can be verified by examining
the statement of the scaling limits in Theorem 7.1.

1. When (α, θ ) lies in one of the open sets labeled A, B, or C , then the
limiting density in the corresponding scaling limit shows the influence
only of that single set. Hence these three open sets correspond to the pure
phases of the scaling limits.

2. When (α, θ ) lies in one of the line segments labeled A + B, A + C , or
B + C , then the limiting density shows the influence of both sets, A and
B, A and C , or B and C , respectively. Hence these three line segments
correspond to the coexistence of the pure-phase scaling limits noted in
item 1.
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Fig. 2. Influence of C , B, and A when (βn, Kn) → (βc, Kc(βc)).

3. When (α, θ ) equals the point labeled A + B + C , then the limiting density
shows the influence of all three sets A, B, and C . This point is the analogue
of the tricritical point in the standard phase diagram, a portion of which
is shown in Fig. 1. Indeed, any neighborhood of the tricritical point in the
β-K plane contains values of β and K corresponding to all the different
phase-transition behaviors of the model. Similarly, any neighborhood of
the analogue of the tricritical point in the limit-theorem phase diagram
contains values of α and θ corresponding to all the different forms of the
scaling limits, which number 13.

4. As (α, θ ) crosses any of the line segments labeled A + B, A + C , or
B + C , the values of γ in the scaling limits change continuously, which
corresponds to a second-order phase transition; by contrast, the forms
of the limiting densities change discontinuously, which corresponds to a
first-order phase transition.

As noted in items 1, 2, and 3, the influence of the sets upon the forms of
the limiting densities reveals a fascinating geometric feature of the BEG model.
This feature is completely unexpected because the model has no geometric struc-
ture. In fact, each spin interacts equally with all the other spins via a mean-field
Hamiltonian, and so the model is independent of dimension. The discussion of the
scaling limits given here, including the notion of the influence of a set on the form
of the limiting density, will be greatly amplified in the next section.

The scaling limits of Sn/n1−γ corresponding to the choices of α and θ in
Fig. 2 are derived in Theorem 7.1, where we determine the values of α, θ , and γ
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leading to the various forms of the limit. In Fig. 2 the value or range of values of
γ are also shown for (α, θ ) lying in the sets labeled A, B, and C . The set labeled
A is divided into two subsets by the line θ = 1/2; the ranges of values of γ are
different in the two subsets.

The three seeds from which the present paper grew are Refs. 27, 25, 19.
In the first paper the phase-transition structure of the BEG model is analyzed.
In the second paper scaling limits are proved for a class of models that includes
the Curie–Weiss model as a special case. In the third paper 4 different MDPs are
obtained for the Curie–Weiss model when the inverse temperature converges to
the critical inverse temperature in the model along appropriate sequences βn . The
results derived in the present paper greatly extend both the scaling limits in Ref. 25
and the MDPs in Ref. 19. This is the case because the BEG model has a much
more intricate structure of phase transitions than the Curie–Weiss model and so
exhibits a much richer class both of scaling limits and of MDPs. As we will outline
near the end of the next section, both the scaling limits and the MDPs are proved
by a unified method.

Our results are also related to the theory of finite-size scaling, which is a
framework for studying critical behavior as a function of both system size and
thermodynamic parameters. (2,14,15,37,38) Finite-size scaling functions at tricritical
points have mostly been studied for systems with short-range interactions, for
which the scaling functions are often not known analytically. (39) The present paper
highlights the extremely rich behavior of the different scaling limits at tricritical
points in the context of probabilistic limit theorems for the mean-field BEG model,
for which we explicitly compute both the finite-size scaling functions and the
corresponding scaling exponents. Finite-size scaling for probability distributions
arising in short-range models is studied by a number of authors including. (4,10)

Our unified method for proving both the scaling limits and the MDPs is based,
in part, on properties of a function Gβ,K defined in (3.4). This function plays a
central role in every aspect of the analysis of the BEG model considered in the
present paper as well as in its prequel. (27) In summary these are the following.

• The set Eβ,K of equilibrium macrostates for the BEG model is defined as
the set of zeroes of the rate function in the LDP for the Pn,β,K -distributions
of Sn/n given in Theorem 3.1. In turn, this set coincides with the set
of global minimum points of Gβ,K [see (3.5)]. This characterization of
Eβ,K allowed us to carry out the detailed analysis of the phase-transition
structure of the model in Ref. 27.

• The canonical free energy ϕ(β, K ) equals the global minimum value of
Gβ,K [see item 2 after (3.4)].

• The distribution of Sn/n1−γ can be expressed directly in terms of Gβ,K

[Lem. 4.1].
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• Gβ,K is the rate function in a second LDP involving Sn/n given in part (b)
of Lemma 4.4. The estimates derived from this LDP and given in parts (c)
and (d) of the lemma are the key estimates needed to control error terms
in the proofs of the scaling limits and the MDPs for Sn/n1−γ . Lemma 4.4
is the main technical innovation in the paper.

• When a certain quantity w defined in terms of α, θ , and γ equals 0, the 13
different forms of the Taylor expansion of nGβn ,Kn (x/nγ ) for appropriate
sequences (βn, Kn) and γ ∈ (0, 1/2) yield the 13 different forms of the
scaling limits of Sn/n1−γ [Thm. 7.1].

• When w < 0, the 13 different forms of the Taylor expansion of
n1+wGβn ,Kn (x/nγ ) for appropriate sequences (βn, Kn) and γ ∈ (0, 1/2)
yield the 13 different forms of the MDPs of Sn/n1−γ [Thm. 8.3].

This discussion shows that all the magic is in the function Gβ,K . The fact that
the wide variety of phenomena derived in the present paper and in Ref. 27 can
be obtained via properties of a single function is an appealing feature of the BEG
model. Besides the Curie–Weiss model and generalizations studied in Refs. 19,
25, 26, 35 and numerous other papers, this feature is shared with a number of other
mean-field models, including a mean-field version of the nearest neighbor Potts
model known as the Curie–Weiss–Potts model, (30) the mean-field XY Heisenberg
model, (1) and the Hopfield model of spin glasses and neural networks. (36) These
mean-field models have in common the fact that the interaction terms in their
Hamiltonians can be written as a quadratic function. Scaling limits and MDPs for
these models have either been proved, or in principle could be proved, by techniques
similar to those used in the present paper. Some of these techniques are generalized
in Ref. 16, in which the quadratic term in the Hamiltonian is replaced by the
moment generating function of suitable random variables. Other generalizations
are given in Refs. 7, 8, 28, 29. The analysis of the equilibrium macrostates and the
associated phase transitions in the BEG model, which underlies the present paper,
is carried out in Ref. 27 using large deviation techniques. While this is an elegant
method that provides exact, analytical results, it has the restriction that it works
most efficiently in models with long-range interactions, as explained in Ref. 3.

The Hopfield model of spin glasses and neural networks has received a great
deal of attention, and limit theorems for this model have been actively studied.
The Hamiltonian in the Hopfield model can be written as a quadratic function of
the overlap parameter, a feature that it shares with the Curie–Weiss model and the
BEG model, in which the Hamiltonian can be written as a quadratic function of the
spin per site. For the Hopfield model both central limit theorems and non-classical
scaling limits for the overlap parameter are studied in Refs. 19, 31–33, and MDPs
are studied in Ref. 20. These limit theorems include the cases when the inverse
temperature is constant and when the inverse temperature parameter converges to
the critical inverse temperature at an appropriate rate. (20,33)
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We next preview the contents of the present paper. In Sec. 2 a detailed
overview is given of the scaling limits and the MDPs that will be derived. In Sec. 3
we summarize the results in Ref. 27 on the structure of the set of equilibrium
macrostates of the BEG model and the associated phase transitions. In Sec. 4 we
introduce the function Gβ,K , properties of which are integral to the proofs of the
scaling limits and MDPs. These properties include a formula for the distribution of
the total spin in terms of Gβ,K [Lem. 4.1], several forms of the Taylor expansions
of Gβ,K that will be used to derive the limit theorems [Thm. 4.3], and two estimates
in Lemma 4.4 for controlling error terms in the proofs of the scaling limits and
the MDPs.

In Secs. 5–8 we apply the results in the previous sections to derive the scaling
limits and the MDPs. Sections 5 and 6 are devoted to scaling limits for Sn/n1−γ

when appropriate sequences (βn, Kn) converge to points (β, K ) ∈ A and to points
(β, Kc(β)) ∈ B, where A and B are the sets defined in (1.2) and (1.1). When
(βn, Kn) → (β, K ) ∈ A we obtain only 1 scaling limit, which is independent of
the sequence (βn, Kn) [Thm. 5.1]. The situation for (β, Kc(β)) ∈ B is much more
interesting; for appropriate choices of (βn, Kn) → (β, K ) ∈ B, 4 different forms of
the scaling limits arise [Thm. 6.1]. The scaling limits proved in these two sections
are warm-ups for the even more complicated scaling limits proved in Sec. 7.
In that section, for appropriate choices of (βn, Kn) converging to the tricritical
point (βc, Kc(βc)) we obtain 13 different forms of the scaling limits [Thm. 7.1].
Finally, in Sec. 8 we obtain 1 MDP for Sn/n1−γ when (βn, Kn) → (β, K ) ∈ A
[Thm. 8.2], 4 MDPs when (βn, Kn) → (β, Kc(β)) ∈ B [Thm. 8.1], and 13 MDPs
when (βn, Kn) → (βc, Kc(βc)) [Thm. 8.3]. The MDPs are proved by showing the
equivalent Laplace principles, which is carried out by a method closely related to
that used to prove the scaling limits in the earlier sections. Being able to prove
both classes of limit theorems via a unified method is one of the attractive features
of this paper.

2. OVERVIEW OF THE LIMIT THEOREMS

This paper is devoted to scaling limits and MDPs for the total spin in the
BEG model. In order to highlight the novelty of these results, we introduce some
notation. The BEG model is a lattice-spin model defined on the complete graph on
n vertices 1, 2, . . . , n. The spin at site j ∈ {1, 2, ..., n} is denoted by ω j , a quantity
taking values in � = {−1, 0, 1}. The joint distribution of the spins ω j is defined
by a probability measure Pn,β,K on the configuration space �n [see (3.1)]. The
sequence Pn,β,K for n ∈ N defines the canonical ensemble for the BEG model.

Through the particular form of the interactions among the spins, the measures
Pn,β,K incorporate an alignment effect that underlies the phase-transition structure
of the model. As β → 0, Pn,β,K converges weakly to the product measure on �n

with marginals equal to the uniform measure on �. Similarly, as K → 0, Pn,β,K
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converges weakly to another product measure on �n . By contrast, as K → ∞,
Pn,β,K concentrates on the configurations ω+ and ω− in which the spins are all 1 or
−1; by symmetry, as K → ∞, Pn,β,K converges weakly to the sum of point masses
1
2 (δω+ + δω−). The phase-transition structure of the model reflects the persistence
of this alignment effect in the limit n → ∞.

We define Sn = ∑n
j=1 ω j , which represents the total spin. In this paper we will

consider numerous weak limits of the distributions of Sn/n1−γ , where γ ∈ [0, 1).
The distributions are with respect to Pn,β,K for fixed β > 0 and K > 0 and,
more generally, with respect to Pn,βn ,Kn , where (βn, Kn) are appropriate sequences
converging to specific values of (β, K ). The use of Pn,βn ,Kn to study weak limits in
place of Pn,β,K is the basic innovation of this paper, which will reveal the intricate
phase-transition structure of the model. If ν is a probability measure on R, then the
notation Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ ν means that the distributions of Sn/n1−γ

with respect to Pn,βn ,Kn converge weakly to ν as n → ∞. If f is a nonnegative
integrable function on R, then the notation Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ f dx
means that the distributions of Sn/n1−γ converge weakly to the probability measure
on R having a density proportional to f with respect to Lebesgue measure.

The first hint of the intricacy of the phase-transition structure of the BEG
model can be seen by examining the law of large numbers and its breakdown, which
we consider with respect to Pn,β,K for fixed β > 0 and K > 0. The intuition is
that for sufficiently small K > 0 the interactions among the spins are sufficiently
weak so that the analogue of the classical law of large numbers holds. However, for
sufficiently large K > 0 the interactions among the spins are sufficiently strong
to cause the classical law of large numbers to break down. This intuition is in fact
correct. In Ref. 27 it is proved that there exist Kc(β) > 0, defined for β > 0, and
z(β, K ), defined for β > 0 and K ≥ Kc(β), in terms of which the following limits
hold. The form of the limits for K = Kc(β) is given in (2.3) and (2.4).

• For any β > 0 and 0 < K < Kc(β)

Pn,β,K {Sn/n ∈ dx} =⇒ δ0. (2.1)

• For any β > 0 and K > Kc(β) we have z(β, K ) > 0 and

Pn,β,K {Sn/n ∈ dx} =⇒ 1
2

(
δz(β,K ) + δ−z(β,K )

)
. (2.2)

The proofs of these two limits are indicated at the end of Sec. 3, where they are
derived from the LDP given in part (a) of Theorem 3.1.

As we explain in Sec. 3, for each β > 0 and K > 0 the sets of mass points
of the limiting measures represent the sets of equilibrium macrostates of the BEG
model, which we denote by Eβ,K . Thus, for β > 0 and 0 < K < Kc(β), Eβ,K = {0}
while for β > 0 and K > Kc(β), Eβ,K = {±z(β, K )}. The quantity z(β, K ) is a
positive, increasing, continuous function for K > Kc(β). The limit of z(β, K ) as
K → Kc(β)+ depends on whether β ≤ βc or β > βc, where βc = log 4 represents
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the critical inverse temperature of the model. For β > βc we have z(β, Kc(β)) > 0,
and

lim
K→Kc(β)+

z(β, K ) =
{

0 if 0 < β ≤ βc

z(β, Kc(β)) if β > βc.

Consistent with this limit behavior is the fact thatEβ,Kc(β) equals {0} for 0 < β ≤ βc

and equals {0,±z(β, Kc(β))} for β > βc. The limit behavior of z(β, K ) exhibited
in the last display shows that the sets Eβ,K undergo a continuous bifurcation
at K = Kc(β) for 0 < β ≤ βc and a discontinuous bifurcation at K = Kc(β)
for β > βc. From the viewpoint of statistical mechanics, the dual bifurcation
behavior of the model corresponds to a continuous, second-order phase transition
at (β, Kc(β)) for 0 < β ≤ βc and a discontinuous, first-order phase transition at
(β, Kc(β)) for β > βc. The point (βc, Kc(βc)) = (log 4, 3/[2 log 4]) separates the
second-order phase transition from the first-order phase transition and is called
the tricritical point.

The different behavior of the two phase transitions is reflected in the form of
the limits of Sn/n when K = Kc(β). For 0 < β ≤ βc, we have the law of large
numbers

Pn,β,Kc(β){Sn/n ∈ dx} =⇒ δ0, (2.3)

while for β > βc the limit is expressed in terms of a measure supported at the
three points in Eβ,Kc(β):

Pn,β,Kc(β){Sn/n ∈ dx} =⇒ λ0δ0 + λ1
(
δz(β,Kc(β)) + δ−z(β,Kc(β))

)
. (2.4)

In the last limit λ0 and λ1 are positive numbers satisfying λ0 + 2λ1 = 1 and given
explicitly in (4.4). As we point out at the end of Sec. 3, (2.3) follows immediately
from the LDP given in part (a) of Theorem 3.1. However, the proof of (2.4) is
more subtle and is postponed until after Theorem 4.2.

Further evidence of the intricacy of the phase-transition structure of the model
can be seen if one jumps from the context of the law of large numbers and its
breakdown to the context of scaling limits for Sn that are related to the central limit
theorem and its breakdown. We consider three cases, in all of which Eβ,K = {0}.
Case 1 is defined by β > 0 and 0 < K < Kc(β). For these values of β and K the
interactions among the spins are sufficiently weak, and the analogue of the classical
central limit theorem holds. As we prove in Theorem 5.1 when 0 < β ≤ βc,

Pn,β,K {Sn/n1/2 ∈ dx} =⇒ exp(−c2x2) dx, (2.5)

where c2 = c2(β, K ) is defined in (5.1). The same limit holds when β > βc and
0 < K < Kc(β).

Case 2 is defined by 0 < β < βc and K = Kc(β). In this case the central
limit scaling n1/2 in (2.5) must be replaced by n3/4, which reflects the onset of
long-range order represented by the second-order phase transition at (β, Kc(β)).
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We have the nonclassical limit

Pn,β,Kc(β){Sn/n3/4 ∈ dx} =⇒ exp(−c4x4) dx, (2.6)

where c4 = c4(β, K ) > 0 is defined in (6.5). The limit in the last display is a
special case of one of the limits proved in Theorem 6.1 [see the note after the
statement of the theorem].

Case 3 focuses on the tricritical point (βc, Kc(βc)). Not only is there an onset
of long-range order represented by the second-order phase transition at this point,
but also this point separates the second-order phase transition for β < βc and
the first-order phase transition for β > βc. This more intricate phase-transition
behavior in a neighborhood of the tricritical point is reflected in the replacement
of the scaling n3/4 for 0 < β < βc by n5/6. In this case

Pn,βc,Kc(βc){Sn/n5/6 ∈ dx} =⇒ exp(−c6x6) dx, (2.7)

where c6 = 9/40. The limit in the last display is a special case of one of the limits
proved in Theorem 7.1 [see the note after the statement of the theorem].

For all other values of β > 0 and K > 0—those satisfying 0 < β ≤ βc, K >

Kc(β) and β > βc, K ≥ Kc(β)—the limit theorems have different forms because
the set Eβ,K of equilibrium macrostates consists of more than one point. In both of
these cases, for any equilibrium macrostate z̃, (Sn − nz̃)/n1/2 satisfies a central-
limit-type limit when Sn/n is conditioned to lie in a sufficiently small neighborhood
of z̃. The explicit form of the limit is given in part (b) of Theorem 6.6 in Ref. 27.

We are now ready to outline the main contribution of this paper, which is to
exhibit the intricate probabilistic behavior of the BEG model in neighborhoods of
the tricritical point (βc, Kc(βc)), second-order points (β, Kc(β)) for 0 < β < βc,
and points (β, K ) for 0 < β ≤ βc and 0 < K < Kc(β). We do this by studying
scaling limits and MDPs for Sn/n1−γ with respect to Pn,βn ,Kn for appropriate
sequences (βn, Kn) that converge to points belonging to these three classes and for
appropriate choices of γ ∈ (0, 1

2 ]. In order to facilitate the discussion, we denote
by C the singleton set containing the tricritical point (βc, Kc(βc)), by B the curve
of second-order points defined by

B = {(β, K ) ∈ R
2 : 0 < β < βc, K = Kc(β)},

and by A the single-phase region lying under B ∪ C and defined by

A = {(β, K ) ∈ R
2 : 0 < β ≤ βc, 0 < K < Kc(β)}.

The sets A, B, and C are shown in Fig. 1 in the introduction. In the rest of
this section we focus mainly on the scaling limits and MDPs for Sn/n1−γ when
(βn, Kn) is an appropriate sequence that converges to (βc, Kc(βc)). Scaling limits
and MDPs when (βn, Kn) converges to (β, Kc(β)) ∈ B and to (β, K ) ∈ A are
treated, respectively, in Theorems 6.1 and 8.2 and in Theorems 5.1 and 8.2.
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Table I. 13 cases of the scaling limits in (2.9) for (βn, Kn) in (2.10) and γ∈(0, 1/2).

Case Influence Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ exp[−G(x)] dx

1 C G(x) = c6x6, c6 > 0
2 B G(x) = bc̄4x4, b > 0, c̄4 > 0
3 A G(x) = kβcx2, k > 0
4–5 B + C G(x) = bc̄4x4 + c6x6, b �= 0
6–7 A + C G(x) = kβcx2 + c6x6, k �= 0
8–9 A + B G(x) = kβcx2 + bc̄4x4, k �= 0, b > 0
10–13 A + B + C G(x) = kβcx2 + bc̄4x4 + c6x6, k �= 0, b �= 0

Corresponding to each (β, K ) ∈ A ∪ B ∪ C there exists a unique equilibrium
macrostate at 0. We do not consider scaling limits and MDPs in the neighbor-
hoods of other points corresponding to which there exist nonunique equilibrium
macrostates. In all or most cases of nonunique equilibrium macrostates, we expect
that the scaling limits and MDPs are conditioned limits as in (Ref. 27, Thm. 6.6(b))
and (Ref. 19, Thm. 1.1); however, we have not worked out the details.

Through the limits (2.5), (2.6), and (2.7), each of the sets A, B, and C is
associated, respectively, with the term x2, x4, and x6. Specifically, for fixed (β, K )

Pn,β,K {Sn/n1−γ ∈ dx} =⇒

⎧
⎪⎨

⎪⎩

exp(−c2x2) dx with γ = 1/2 if (β, K ) ∈ A

exp(−c4x4) dx with γ = 1/4 if (β, K ) ∈ B

exp(−c6x6) dx with γ = 1/6 if (β, K ) ∈ C,

(2.8)
where c2 and c4 are positive and depend on β and K , and c6 = 9/40. Theorem 7.1
shows that for appropriate sequences (βn, Kn) converging to (βc, Kc(βc)), for
appropriate choices of γ ∈ (0, 1/2), and for appropriate coefficients c̃2, c̃4, and c̃6

Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ exp(−c̃2x2 − c̃4x4 − c̃6x6) dx . (2.9)

As we show in Table I, G(x) = c̃2x2 + c̃4x4 + c̃6x6 takes all of the 13 possible
forms of an even polynomial of degree 6, 4, or 2 satisfying G(0) = 0 and G(x) →
∞ as |x | → ∞. Each of the 13 cases shows the influence of one or more of the
sets C , B, and A through the presence of the term x6, x4, or x2 associated with that
set by the limit (2.8). The coefficient c6 = 9/40 is the same as in (2.7), c̄4 = 3/16,
and b and k are any nonzero real numbers subject only to the requirement that
exp(−G) is integrable. Because in every case γ ∈ (0, 1/2), the scaling of Sn by
n1−γ is non-classical.

The forms of the scaling limits in (2.9) depend crucially on the appropri-
ate choices of the sequences (βn, Kn) converging to (βc, Kc(βc)). The simplest
sequences for which all 13 cases of the limit (2.9) arise are defined in terms of
parameters α > 0, θ > 0, b �= 0, and k �= 0 by

βn = log(eβc − b/nα) and Kn = K (βn) − k/nθ , (2.10)
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where K (β) = (eβ + 2)/(4β) for β > 0. K (β) coincides with Kc(β) for 0 < β ≤
βc and satisfies K (β) > Kc(β) for β > βc (Ref. 27, Thms. 3.6, 3.8). Since βn → βc

and since K (·) is continuous, we have K (βn) → Kc(βc); thus the convergence
(βn, Kn) → (βc, Kc(βc)) is valid. In Sec. 7 we will explain how the sequences
(βn, Kn) in (2.10) are chosen.

Depending on the signs of b and k, the sequence (βn, Kn) in (2.10) converges
to (βc, Kc(βc)) from regions exhibiting markedly different physical behavior. For
example, if b > 0 and k > 0, then βn < βc and Kn < K (βn), and so (βn, Kn)
converges to (β, K ) from the region A, corresponding to each point of which
there exists a unique equilibrium macrostate [Thm. 3.2(a)]. On the other hand, if
k < 0, then Kn > K (βn), and so (βn, Kn) converges to (β, K ) from a region of
points corresponding to each of which there exist two equilibrium macrostates. If,
in addition, b > 0, then this region lies above the curve B of second-order points
[Thm. 3.2(b)], while if b < 0, then this region lies above the curve of first-order
points described in Theorem 3.3. Despite the markedly different physical behavior
associated with these various regions, all the scaling limits in this paper are proved
by a unified method, regardless of the direction of approach of (βn, Kn) to (β, K ).
The situation with respect to the MDPs is the same. These remarks concerning
the proofs of the scaling limits and the MDPs will be amplified in Sec. 4 after we
introduce the tools that will be used in the proofs.

The occurrence of a particular one of the scaling limits enumerated in
Table I depends on γ and on the values of α and θ and thus on the speed at
which (βn, Kn) → (βc, Kc(βc)) and on the direction of approach. Only case 1 ex-
presses the influence of C alone, giving the same limit for (βn, Kn) in (2.10) as the
limit in (2.7), which holds for the constant sequence (βn, Kn) = (βc, Kc(βc)). Case
1 occurs if the convergence (βn, Kn) → (βc, Kc(βc)) is sufficiently fast; namely,
α > 1/3 and θ > 2/3. Case 2, which expresses the influence of B alone, occurs if
the convergence of (βn, Kn) → (βc, Kc(βc))is sufficiently slow but θ is relatively
large compared to α. Case 3, which expresses the influence of A alone, occurs
if the convergence is sufficiently slow but, in contrast with case 2, α is relatively
large compared to θ . Finally, cases 4–13, which express the influence of more
than one set A, B, and C , occur if the convergence of (βn, Kn) → (βc, Kc(βc))
occurs at an appropriate critical rate. For example, cases 10–13 express the in-
fluence of all three sets A, B, and C and so correspond to the most compli-
cated form of the limiting density. This case occurs when α = 1/3, θ = 2/3, and
γ = 1/6.

The scaling limits for Sn/n1−γ listed in Table I are analyzed in Theorem 7.1,
where we determine the values of α, θ , and γ leading to the 13 different cases.
The dependence of (βn, Kn) in (2.10) upon α and θ is complicated; because
βn is a function of α, Kn is both a function of θ and, through βn , a function
of α. However, as we will see, for the appropriate choice of γ ∈ (0, 1/2), in
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Fig. 3. Three choices of (βn, Kn) that show the influence of A, of B, and of A, B, and C in (2.9).

the expression for the scaling limit of Sn/n1−γ the α and the θ decouple in
such a way that the limits given in Theorem 7.1 can be read off in a systematic
way.

In Fig. 2 in the introduction we indicate the subsets of the positive quadrant
of the α-θ plane leading to all the cases in Table I. The subsets labeled C , B, and
A correspond to cases 1, 2, and 3, respectively, and the subsets labeled B + C ,
A + C , A + B, and A + B + C correspond to cases 4–5, 6–7, 8–9, and 10–13,
respectively. The relationship between the α-θ plane exhibited in Fig. 2 and the
β-K plane, inside which lies the tricritical point, is that each point in the α-θ plane
corresponds, through the formulas for βn and Kn given in (2.10), to a curve in the
β-K plane.

In Fig. 3 we exhibit three different curves in the β-K plane, labeled (a), (b),
and (abc). These curves correspond to three different choices of α and θ , three
different choices of (βn, Kn) in (2.10), and three different limits in Table I. The
curve labeled (a) corresponds to α = 1 and θ = 1/3, which in turn corresponds
to case 3 of the scaling limit; this case shows the influence only of region A. The
curve labeled (b) corresponds to α = 1/4 and θ = 1, which in turn corresponds to
case 2 of the scaling limit; this case shows the influence only of region B. Finally,
the curve labeled (abc) corresponds to α = 1/3, b > 0, θ = 2/3, and k > 0; the
associated scaling limit in case 10 shows the influence of all three sets A, B,
and C .

It is worth noting a contrast between the scaling limits in (2.8) and those in
Table I. In (2.8) the three scaling limits for Sn/n1−γ hold with respect to Pn,β,K

for fixed (β, K ) ∈ A, (β, K ) ∈ B, and (β, K ) ∈ C . In each of these three cases the
value of γ is fixed to be, respectively, 1/2, 1/4, and 1/6. By contrast, we will see
in Theorem 7.1 that in 4 of the 13 cases of the scaling limits for Sn/n1−γ stated in
Table I, the limit theorems hold for a range of values of γ . These are cases 2, 3,
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8, and 9. In the other cases, each of which includes the influence of the tricritical
point (βc, Kc(βc)), γ equals the fixed value 1/6.

We now make a transition from the scaling limits to the MDPs. As we have
seen, the scaling limits state that for appropriate choices of (βn, Kn) and of γ = γ0

Pn,βn ,Kn {Sn/n1−γ0 ∈ dx} =⇒ exp[−G(x)] dx, (2.11)

where G takes one of the 13 forms in Table I. For any γ ∈ (0, γ0), one can show
that if D is any Borel set whose closure does not contain 0, then

lim
n→∞ Pn,βn ,Kn {Sn/n1−γ ∈ D} = 0.

A natural question is to determine the rate at which these and related probabilities
converge to 0 for appropriate choices of (βn, Kn). In Theorem 8.3 we define a
quantity w in terms of α, θ , and γ having the property that when w < 0, Sn/n1−γ

satisfies an MDP with exponential speed n−w and rate function G(x) − Ḡ, where
G is the same function appearing in (2.11) and Ḡ = inf y∈R G(y). This MDP
implies that for suitable sets D

Pn,βn ,Kn {Sn/n1−γ ∈ D} → 0 like exp
[ − n−w inf

x∈D
(G(x) − Ḡ)

]
.

In order to emphasize the similarity with the scaling limits, we summarize this
class of MDPs by the formal notation

Pn,βn ,Kn {Snn1−γ ∈ dx} 	 exp[−n−wG(x)] dx, (2.12)

in which the constant Ḡ is not shown.
The situation with the MDPs is completely analogous to the situation for the

scaling limits. Specifically, as we exhibit in Table II, there are 13 cases of the MDP
(2.12), each of which shows the influence of one or more of the sets C , B, and A
depending on the speed at which the sequence (βn, Kn) defined in (2.10) converges
to (βc, Kc(βc)) and on its direction of approach. The coefficient c6 = 9/40 is the
same as in (2.7), c̄4 = 3/16, and b and k are the nonzero real numbers appearing
in (2.10) and subject only to the requirement that G(x) → ∞ as |x | → ∞. The
MDPs for Sn/n1−γ listed in Table II are analyzed in Theorem 8.3, where we
determine the values of α, θ , and γ that lead to each of the cases.

The MDPs for Sn/n1−γ have an unexpected consequence concerning a new
class of distribution limits for Sn/n1−γ that give deeper insight into the fine
structure of the phase transitions in a neighborhood of the tricritical point. In an
effort to understand the physical significance of these new limits, analogs of them
are now being investigated for a class of non-mean-field models, including the
Blume–Emery–Griffiths model. (24) In order to appreciate these new results, we
first consider a consequene of the large deviation principle stated in part (a) of
Theorem 3.1. Since Eβ,K = {0} for (β, K ) ∈ A ∪ B ∪ C , it follows that for any
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Table II. 13 cases of the MDPs in (2.12) for (βn, Kn) in (2.10) and γ∈(0, 1/2).

Case Influence Pn,βn ,Kn {Sn/n1−γ ∈ dx} 	 exp[−n−wG(x)] dx

1 C G(x) = c6x6, c6 > 0
2 B G(x) = bc̄4x4, b > 0, c̄4 > 0
3 A G(x) = kβcx2, k > 0
4–5 B + C G(x) = bc̄4x4 + c6x6, b �= 0
6–7 A + C G(x) = kβcx2 + c6x6, k �= 0
8–9 A + B G(x) = kβcx2 + bc̄4x4, k �= 0, b > 0
10–13 A + B + C G(x) = kβcx2 + bc̄4x4 + c6x6, k �= 0, b �= 0

positive sequence (βn, Kn) → (β, K ) ∈ A ∪ B ∪ C

Pn,βn ,Kn {Sn/n ∈ dx} =⇒ δ0.

The MDPs for Sn/n1−γ listed in Table II lead to refinements of this limit for
(βc, Kc(βc)) ∈ C in those cases in which the set of global minimum points of G
contains nonzero points. These are precisely the cases in which the coefficients of
G are not all positive: cases 5 (b < 0), 7 (k < 0), 9 (k < 0), 11 (k < 0, b > 0),
12 (k > 0, b < 0), and 13 (k < 0, b < 0). In all these cases except for case 12,
the set of global minimum points of G consists of two symmetric, nonzero points
±x(b, k). Hence, using the appropriate value of γ and the appropriate sequence
(βn, Kn) given in Theorem 8.3, we deduce from the corresponding MDP the limit

Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ 1

2
(δx(b,k) + δ−x(b,k)). (2.13)

In each of these cases (βn, Kn) approaches (βc, Kc(βc)) from a region of points
(β, K ) corresponding to each of which there exist two equilibrium macrostates
±z(β, k) [Thms. 3.2(b), 3.3(c)]. As we have already seen, for each (β, K ) in
this region the limit (2.2) holds. The new limit (2.13) shows that as (βn, Kn) →
(βc, Kc(βc)) from this two-phase region, the model retains a trace of the two
equilibrium macrostates ±z(β, K ), replacing them by the quantities ±x(b, k).
The physical significance of this limit as well as the limit (2.14) to be stated in
the next paragraph is currently under investigation. (24) A similar phenomenon
occurs in case 4 of Theorem 8.1, which proves MDPs for Sn/n1−γ for appropriate
sequences (βn, Kn) converging to (β, K ) lying in the curve B of second-order
points.

The situation in case 12 in Table II (k > 0, b < 0) is even more fascinating
than in the other cases. For fixed b < 0, fixed n ∈ N, and decreasing k > 0, the set
of global minimum points of G undergoes a discontinuous bifurcation, changing
from a unique global minimum point at 0 for k large, to three global minimum
points at 0,±x(b, k) for a critical value of k = const · b2, to two global minimum
points at ±x(b, k) for k small. As k decreases, (βn, Kn) crosses the first-order
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critical curve from below; the changing forms of the sets of global minimum
points of G replicate the changing forms of Eβ,K for fixed β > βc and increasing
K > 0 [Thm. 3.3]. In particular, when the set of global minimum points of G equals
{0,±x(b, k)}, the MDP corresponding to case 12 together with other information
yields the limit

Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ λ̄0δ0 + λ̄1
(
δx(b,k) + δ−x(b,k)

)
, (2.14)

where λ̄0 and λ̄1 are positive numbers satisfying λ̄0 + 2λ̄1 = 1. This limit is
reminiscent of the limit (2.4), in which the equilibrium macrostates ±z(β, K ) are
replaced by their traces ±x(b, k).

Although in general the values of α, θ , and γ leading to each of the 13 cases
of the MDPs in Table II differ from the values of these parameters leading to the
corresponding case of the scaling limit in Table I, the tables have a number of
obvious similarities. This resemblance between the two tables reaches deeper. In
fact, both sets of results are proved by a unified method. In order to explain this,
let f be any bounded, continuous function mapping R into R and let (βn, Kn) be
any positive sequence. The starting point of the proofs of both the scaling limits
and the MDPs [see Lem. 4.1] is that whenever γ ∈ (0, 1/2), we have

E{ f (Sn/n1−γ + εn)} = 1

Zn
·
∫

R

f (x) exp[−nGβn ,Kn (x/nγ )] dx . (2.15)

The function Gβ,K in this display is defined in (3.4); its global minimum value
equals the canonical free energy for the model. In addition, εn represents a sequence
of random variables that converges to 0 as n → ∞, and Zn is a normalizating
constant.

The quantity w in the MDP (2.12) is defined by w = min{2γ + θ − 1, 4γ +
α − 1, 6γ − 1}. This quantity also plays a key role in the scaling limits for
Sn/n1−γ , which like the MDPs arise from the choice of (βn, Kn) in (2.10). When
w = 0, the scaling limits listed in Table I follow at least formally from (2.15) and
the fact that for each x ∈ R

lim
n→∞ nGβn ,Kn (x/nγ ) = G(x).

The proof of this limit relies on an analysis of the Taylor expansion of Gβn ,Kn

at 0, which has 13 different forms depending on the choices of γ and of the
parameters α and θ appearing in the definition (2.10) of (βn, Kn). Details are
given in Theorem 7.1.

We now assume that w < 0. Given ψ be any bounded, continuous function,
we substitute f = exp(n−wψ) into (2.15), obtaining

E{exp[n−wψ(Sn/n1−γ + εn)]}

= 1

Zn
·
∫

R

exp[n−w{ψ(x) − n1+wGβn ,Kn (x/nγ )}]dx .
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When w < 0, the last display, the fact that for each x ∈ R

lim
n→∞ n1+wGβn ,Kn (x/nγ ) = G(x),

and the fact that εn → 0 in probability at a rate faster than exp(−n−w) give the
formal asymptotics

E{exp[n−wψ(Sn/n1−γ + εn)]}

≈
∫

R

exp
[
n−w

{
ψ(x) − (G(x) − Ḡ)

}]
dx

≈ exp
[
n−w supx∈R

{
ψ(x) − (G(x) − Ḡ)

}]
,

where Ḡ = inf y∈R G(y). In Sec. 8 we show to convert this formal calculation
into a limit known as the Laplace principle, which is equivalent to the MDPs for
Sn/n1−γ listed in Table II. As in the proof of the scaling limits, the proof of the
Laplace limit relies on an analysis of the Taylor expansion of Gβn ,Kn at 0. Despite
the similarity in the proofs of the scaling limits and the Laplace principles, the
proof of the latter is much more delicate, requiring additional estimates not needed
in the proof of the former.

We start our analysis of the BEG model in the next section.

3. PHASE-TRANSITION STRUCTURE OF THE BEG MODEL

After defining the BEG model, we summarize its phase-transition structure
in Theorems 3.2 and 3.3. In (3.4) we introduce the function Gβ,K , in terms of
which the scaling limits and the MDPs for Sn/n1−γ will be deduced later in the
paper.

The BEG model is a lattice-spin model defined on the complete graph on n
vertices 1, 2, . . . , n. The spin at site j ∈ {1, 2, . . . , n} is denoted by ω j , a quantity
taking values in � = {−1, 0, 1}. The configuration space for the model is the set
�n containing all sequences ω = (ω1, ω2, . . . , ωn) with each ω j ∈ �. In terms of
a positive parameter K representing the interaction strength, the Hamiltonian is
defined by

Hn,K (ω) =
n∑

j=1

ω2
j − K

n

⎛

⎝
n∑

j=1

ω j

⎞

⎠

2

for each ω ∈ �n . For n ∈ N, inverse temperature β > 0, and K > 0, the canonical
ensemble for the BEG model is the sequence of probability measures that assign
to each subset B of �n the probability

Pn,β,K (B) = 1

Zn(β, K )
·
∫

B
exp[−βHn,K ] d Pn . (3.1)
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In this formula Pn is the product measure on �n with identical one-dimensional
marginals

ρ = 1
3 (δ−1 + δ0 + δ1),

and Zn(β, K ) is the normalizing constant
∫
�n exp[−βHn,K ]d Pn .

In Ref. 27 the analysis of the canonical ensemble Pn,β,K was facilitated by
expressing it in the form of a Curie–Weiss-type model. This is done by absorbing
the noninteracting component of the Hamiltonian into the product measure Pn ,
obtaining

Pn,β,K (dω) = 1

Z̃n(β, K )
· exp

[

nβK

(
Sn(ω)

n

)2
]

Pn,β (dω). (3.2)

In this formula Sn(ω) equals the total spin
∑n

j=1 ω j , Pn,β is the product measure
on �n with identical one-dimensional marginals

ρβ(dω j ) = 1

Z (β)
· exp(−βω2

j ) ρ(dω j ), (3.3)

Z (β) is the normalizing constant
∫
�

exp(−βω2
j )ρ(dω j ) = 1 + 2e−β , and

Z̃n(β, K ) is the normalizing constant [Z (β)]n/Zn(β, K ).
Although Pn,β,K has the form of a Curie–Weiss model when rewritten as in

(3.2), it is much more complicated because of the β-dependent product measure
Pn,β and the presence of the parameter K . These complications introduce new
features not present in the Curie–Weiss model (Ref. 22, Secs. 4.4 and 5.9); these
features include the existence of a second-order phase transition for all sufficiently
small β > 0 and all sufficiently large K > 0 and a first-order phase transition for
all sufficiently large β > 0 and all sufficiently large K > 0. The existence of a
second-order phase transition and a first-order phase transition also implies the
existence of a tricritical point, which separates the two phase transitions and is one
of the main focuses of the present paper.

The starting point of the analysis of the phase-transition structure of the BEG
model is the large deviation principle (LDP) satisfied by the spin per site Sn/n
with respect to Pn,β,K . In order to state the form of the rate function, we introduce
the cumulant generating function cβ of the measure ρβ defined in (3.3); for t ∈ R

this function is defined by

cβ (t) = log
∫

�

exp(tω1) ρβ(dω1)

= log

[
1 + e−β(et + e−t )

1 + 2e−β

]

.
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We also introduce the Legendre–Fenchel transform of cβ , which is defined for
z ∈ [−1, 1] by

Jβ(z) = sup
t∈R

{t z − cβ(t)};

Jβ(z) is finite for z ∈ [−1, 1]. Jβ is the rate function in Cramér’s Theorem, which is
the LDP for Sn/n with respect to the product measures Pn,β (Ref. 22, Thm. 2.4.1)
and is one of the components of the proof of the LDP for Sn/n with respect to
Pn,β,K . This LDP and a related limit are stated in parts (a) and (b) of the next
theorem. Part (a) is proved in Theorem 3.3 in Ref. 27, and part (b) in Theorem 2.4
in Ref. 23.

Theorem 3.1. For all β > 0 and K > 0 the following conclusions hold.
(a) With respect to the canonical ensemble Pn,β,K , Sn/n satisfies the LDP on

[−1, 1] with exponential speed n and rate function

Iβ,K (z) = Jβ(z) − βK z2 − inf
y∈R

{Jβ(y) − βK y2}.

(b) We define the canonical free energy

ϕ(β, K ) = − lim
n→∞

1

n
log Zn(β, K ),

where Zn(β, K ) is the normalizing constant in (3.1). Then ϕ(β, K ) =
inf y∈R{Jβ(y) − βK y2}.

The LDP in part (a) of the theorem implies that those z ∈ [−1, 1] satisfying
Iβ,K (z) > 0 have an exponentially small probability of being observed in the
canonical ensemble. Hence we define the set of equilibrium macrostates by

Eβ,K = {z ∈ [−1, 1] : Iβ,K (z) = 0}.
In Ref. 27 we used the notation Ẽβ,K to describe this set, using the notation Eβ,K

to describe a different but related set of equilibrium macrostates. In the present
paper we write Eβ,K instead of Ẽβ,K in order to simplify the notation.

For z ∈ R we define

Gβ,K (z) = βK z2 − cβ(2βK z). (3.4)

The calculation of the zeroes of Iβ,K —equivalently, the global minimum points
of Jβ,K (z) − βK z2—is greatly facilitated by the following observations made in
Proposition 3.4 in Ref. 27:

1. The global minimum points of Jβ,K (z) − βK z2 coincide with the global
minimum points of Gβ,K , which are much easier to calculate.
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2. The minimum values minz∈R{Jβ,K (z) − βK z2} and minz∈R Gβ,K (z) coin-
cide and both equal the canonical free energy ϕ(β, K ) defined in part (b)
of Theorem 3.1.

Item 1 gives the alternate characterization that

Eβ,K = {z ∈ [−1, 1] : z minimizes Gβ,K (z)}. (3.5)

In the context of Curie–Weiss-type models, the form of Gβ,K is explained on page
2247 of Ref. 27.

As shown in the next two theorems, the structure of Eβ,K depends on the
relationship between β and the critical value βc = log 4. We first describe Eβ,K

for 0 < β ≤ βc and then for β > βc. In the first case Eβ,K undergoes a continu-
ous bifurcation as K increases through the critical value Kc(β) defined in (3.6);
physically, this bifurcation corresponds to a second-order phase transition. The
following theorem is proved in Theorem 3.6 in Ref. 27.

Theorem 3.2. For 0 < β ≤ βc, we define

Kc(β) = 1

2βc′′
β (0)

= eβ + 2

4β
. (3.6)

For these values of β, Eβ,K has the following structure.
(a) For 0 < K ≤ Kc(β), Eβ,K = {0}.
(b) For K > Kc(β), there exists z(β, K ) > 0 such that Eβ,K = {±z(β, K )}.
(c) z(β, K ) is a positive, increasing, continuous function for K > Kc(β), and

as K → (Kc(β))+, z(β, K ) → 0. Therefore, Eβ,K exhibits a continuous bifurca-
tion at Kc(β).

For β ∈ (0, βc), the curve (β, Kc(β)) is the curve of second-order points. As
we will see in a moment, for β ∈ (βc,∞) the BEG model also has a curve of first-
order points, which we denote by the same notation (β, Kc(β)). In order to simplify
the notation, we do not follow the convention in Ref. 27, where we distinguished
between the second-order phase transition and the first-order phase transition
by writing Kc(β) for 0 < β ≤ βc as K (2)

c (β) and writing Kc(β) for β > βc as
K (1)

c (β).
We now describe Eβ,K for β > βc. In this case Eβ,K undergoes a discontinuous

bifurcation as K increases through an implicitly defined critical value. Physically,
this bifurcation corresponds to a first-order phase transition. The following theo-
rem is proved in Theorem 3.8 in Ref. 27.

Theorem 3.3. For all β > βc, Eβ,K has the following structure in terms of the

quantity Kc(β), denoted by K (1)
c (β) in Ref. 27 and defined implicitly for β > βc
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on page 2231 of Ref. 27.

(a) For 0 < K < Kc(β), Eβ,K = {0}.
(b) There exists z(β, Kc(β)) > 0 such that Eβ,Kc(β) = {0,±z(β, Kc(β))}.
(c) For K > Kc(β) there exists z(β, K ) > 0 such that Eβ,K = {±z(β, K )}.
(d) z(β, K ) is a positive, increasing, continuous function for K ≥ Kc(β), and

as K → Kc(β)+, z(β, K ) → z(β, Kc(β)) > 0. Therefore, Eβ,K exhibits a
discontinuous bifurcation at Kc(β).

We end this section by outlining the proofs of the laws of large numbers in
(2.1) and (2.3) and its breakdown in (2.2). The upper large deviation bound in
the LDP stated in part (a) of Theorem 3.1 implies that for any β > 0 and K > 0
the limiting mass of Sn/n with respect to Pn,β,K concentrates on the elements
of Eβ,K . According to Theorems 3.2(a) and 3.3(a), Eβ,K = {0} when 0 < β ≤ βc

and 0 < K ≤ Kc(β) and when β > βc and K < Kc(β). For these values of β and
K , the laws of large numbers in (2.1) and (2.3) follow immediately. For β > 0
and K > Kc(β), we have Eβ,K = {±z(β, K )}, and so by symmetry the limit (2.2)
follows. The proof of the limit (2.4) is postponed until after Theorem 4.2 because
it requires more detailed information about the elements of Eβ,K when β > βc and
K = Kc(β).

In the next section we present additional properties of the function Gβ,K

introduced in (3.4). These properties will be used in later sections to prove the
scaling limits and the MDPs for Sn/n1−γ .

4. PROPERTIES OF Gβ,K

As we saw in (3.5), the global minimum points of

Gβ,K (z) = βK z2 − cβ(2βK z)

= βK z2 − log

[
1 + e−β(e2βK z + e−2βK z)

1 + 2e−β

]

coincide with the elements of Eβ,K , the set of equilibrium macrostates for the
BEG model. In this section we study further properties of Gβ,K that will be used
in later sections to prove the scaling limits and the MDPs for Sn/n1−γ with respect
to Pn,β,K and with respect to Pn,βn ,Kn for appropriate sequence (βn, Kn) and for
appropriate choices of γ .

We first show that for any γ ∈ [0, 1) the Pn,βn ,Kn -distribution of Sn/n1−γ can
be expressed in terms of Gβn ,Kn and an independent normal random variable. The
next lemma can be proved like Lemma 3.3 in Ref. 25, which applies to the Curie–
Weiss model, or like Lemma 3.2 in Ref. 30, which applies to the Curie–Weiss-Potts
model. In an equivalent form, the next lemma is well known in the literature as
the Hubbard-Stratonovich transformation, where it is invoked to analyze models
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with quadratic Hamiltonians (see, e.g., Ref. 1, p. 2363). After the statement of
the lemma, we outline how we will use it in order to deduce the scaling limits of
Sn/n1−γ .

Lemma 4.1. Given a positive sequence (βn, Kn), let Wn be a sequence of
N (0, (2βn Kn)−1) random variables defined on a probability space (�,F , Q).
Then for any γ ∈ [0, 1) and any bounded, measurable function f

∫

�n×�

f

(
Sn

n1−γ
+ Wn

n1/2−γ

)

d(Pn,βn ,Kn × Q) (4.1)

= 1
∫

R
exp[−nGβn ,Kn (x/nγ )] dx

·
∫

R

f (x) exp[−nGβn ,Kn (x/nγ )] dx .

As we will see in Theorems 5.1, 6.1 and 7.1, the scaling limits have different
forms depending on which of the following three sets (β, K ) lies in: the singleton
set C containing the tricritical point (βc, Kc(βc)), the curve B of second-order
points

B = {(β, K ) ∈ R
2 : 0 < β < βc, K = Kc(β)},

and the single-phase region

A = {(β, K ) ∈ R
2 : 0 < β ≤ βc, 0 < K < Kc(β)}.

These sets are shown in Fig. 1 in the introduction.
We now indicate how we will use Lemma 4.1 to prove the scaling limits of

Sn/n1−γ for γ ∈ (0, 1/2]. Let (βn, Kn) be a suitable positive sequence converging
to (β, K ) ∈ A ∪ B ∪ C . Assume that (βn, Kn) and γ are chosen so that the limit
of the right hand side of (4.1) exists as n → ∞. We first consider γ < 1/2. Since
βn and Kn are bounded and uniformly positive over n, rewriting the limit of the
left hand side in terms of characteristic functions shows that Wn/n1/2−γ does not
contribute. Hence it follows that

lim
n→∞

∫

�n

f (Sn/n1−γ ) d Pn,βn ,Kn

= lim
n→∞

1
∫

R
exp[−nGβn ,Kn (x/nγ )] dx

·
∫

R

f (x) exp[−nGβn ,Kn (x/nγ )] dx .

(4.2)

From this formula we will be able to determine the scaling limits of Sn/n1−γ when
(βn, Kn) → (β, K ) ∈ B ∪ C [Thms. 6.1, 7.1]. Using an analogous formula, we
will be able to determine the MDPs of Sn/n1−γ when (βn, Kn) → (β, K ) ∈ B ∪ C
[Thms. 8.1, 8.3].
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Now consider γ = 1/2, which corresponds to the central-limit-type scaling
for Sn in (2.5). In this case (4.1) yields

lim
n→∞

∫

�n×�

f (Sn/n1/2 + Wn) d(Pn,βn ,Kn × Q)

= lim
n→∞

1
∫

R
exp[−nGβn ,Kn (x/n1/2)] dx

·
∫

R

f (x) exp[−nGβn ,Kn (x/n1/2)] dx .

(4.3)

In contrast to when γ ∈ (0, 1/2), Wn now contributes to the limit. Again the use
of characteristic functions enables one to determine the scaling limit of Sn/n1/2

when (βn, Kn) → (β, K ) ∈ A [Thm. 5.1]
Formulas (4.2) and (4.3) suggest how to proceed in proving the scaling

limits of Sn/n1−γ . First consider (βn, Kn) for which Gβn ,Kn has a unique global
minimum point at 0 [Thms. 3.2(a), 3.3(a)]. As (4.2) and (4.3) suggest, the forms
of the scaling limits of Sn/n1−γ with respect to Pn,βn ,Kn depend on the forms of
the Taylor expansions of Gβn ,Kn in the neighborhood of the global minimum point
0. One of the attractive features of our analysis is that the same Taylor expansions
can be used to handle sequences (βn, Kn) for which Gβn ,Kn has nonunique global
minimum points. Such sequences arise naturally in the scaling limits and the
MDPs to be proved later in the paper; in fact, it is precisely such sequences for
which the MDPs yield the new class of distribution limits of the form (2.13) and
(2.14). What makes it possible to use the same Taylor expansions regardless of the
nature of the global minimum points of Gβn ,Kn is Lemma 4.4, the main technical
innovation in this paper.

Preliminary information on the forms of the relevant Taylor expansions is
presented in Theorems 4.2 and 4.3. In the proofs of the scaling limits, in order
to justify replacing nGβn ,Kn (x/nγ ) in (4.2) by n times the Taylor expansion eval-
uated at x/nγ and taking limits under the integral, one invokes the dominated
convergence theorem, for which the appropriate bounding function depends on
the particular sequence (βn, Kn). This will be handled on a case-by-case basis in
subsequent sections. Finally, one must show that the contributions to the limit in
(4.2) and (4.3) by all x for which x/nγ lies in the complement of a neighborhood
of 0 is exponentially small. The relevant error estimate is given in part (c) of
Lemma 4.4. Similar considerations apply to the proofs of the MDPs in Sec. 8, for
which the relevant error estimate is given in part (d) of Lemma 4.4.

The steps outlined in the preceding paragraph for deducing the scaling limits
of Sn/n1−γ from (4.2) and (4.3) are well known in the related contexts of the Curie–
Weiss model and the Curie–Weiss-Potts model. Scaling limits for these models are
studied in Refs. 25, 26 and in Ref. 30 for fixed values of the inverse temperature
defining the corresponding canonical ensemble. In contrast to those earlier papers,
our study of scaling limits for the BEG model necessitates a considerably more
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careful analysis because we work with the canonical ensemble Pn,βn ,Kn , allowing
sequences (βn, Kn) rather than only fixed values of (β, K ).

The analysis of the Taylor expansions of Gβ,K in the neighborhood of a global
minimum point involves the notion of the type of a global minimum point, which
we next introduce. We temporarily consider any β > 0 and any K > 0 and then
specialize to (β, K ) ∈ A ∪ B ∪ C . Let z̃ be an element of Eβ,K . Since Gβ,K is real
analytic and z̃ is a global minimum point, there exists a positive integer r = r (z̃)
such that G(2r )

β,K (z̃) > 0 and

Gβ,K (z) = Gβ(z̃) + G(2r )
β,K (z̃)

(2r )!
(z − z̃)2r + O((z − z̃)2r+1) as z −→ z̃.

We call r (z̃) the type of the global minimum point z̃. If r = 1, then G(2)
β,K (z̃) =

2βK − (2βK )2(cβ)′′(2βK z̃), and if r ≥ 2, then G(2r )
β (z̃) = −(2βK )2r c(2r )

β

(2βK z̃).
In Theorem 6.3 in Ref. 27 the types of the elements of Eβ,K are determined

for all β > 0 and K > 0. In our study of scaling limits of Sn/n1−γ in the present
paper, we focus on (β, K ) ∈ A ∪ B ∪ C , for which Eβ,K = {0} [Thm. 3.2(a)].
Although the conclusion in Ref. 27 that for (β, K ) ∈ B the type of 0 equals 2 is
correct, the formula for G(4)

β,K (0) given in (6.6) in that paper has a small error. The

correct formula for G(4)
β,K (0) is given in (4.10) with (βn, Kn) = (β, K ).

Theorem 4.2. For all (β, K ) ∈ A ∪ B ∪ C, Eβ,K = {0}.
(a) For all (β, K ) ∈ A, z̃ = 0 has type r = 1.
(b) For all (β, Kc(β)) ∈ B, z̃ = 0 has type r = 2.
(c) For (β, K ) = (βc, Kc(βc)) ∈ C, z̃ = 0 has type r = 3.

For all other values of β > 0 and K > 0 not considered in Theorem 4.2, the
elements of Eβ,K all have type r = 1. This includes the values 0 < β ≤ βc and
K > Kc(β) [Thm. 3.2(b)] and the values β > βc, K > 0 [Thm. 3.3]. In these two
cases the fact that the elements of Eβ,K all have type r = 1 is proved in Ref. 27 in
part (c) of Theorem 6.3 and in Theorem 6.4.

We now point out how to prove the breakdown of the law of large numbers
stated in (2.4), which holds for β > βc and K = Kc(β). In this case, Eβ,Kc(β) =
{0,±z(β, Kc(β))}. Since each of the elements of Eβ,Kc(β) has type r = 1, the limit
in (2.4) is proved exactly as in part (c) of Theorem 2.3 in Ref. 30, which treats
the breakdown of the law of large numbers for the Curie–Weiss–Potts model at
β = βc. In (2.4),

λ0 = κ0

κ0 + 2κ1
and λ1 = κ1

κ0 + 2κ1
, (4.4)

where κ0 = [G(2)
β,Kc(β)(0)]−1/2 and κ1 = [G(2)

β,Kc(β)(z(β, Kc(β)))]−1/2.
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We return to Lemma 4.1 and in particular to (4.2)–(4.3), which express
the scaling limit of Sn/n1−γ in terms of the function nGβn ,Kn (x/nγ ). Using the
information about the three different types of the global minimum point of Gβ,K

at 0 for (β, K ) ∈ A, (β, K ) ∈ B, and (β, K ) ∈ C , we now indicate the three
different forms of the Taylor expansion of nGβn ,Kn (x/nγ ) needed to deduce the

scaling limits of Sn/n1−γ . These involve the quantities G(2)
βn ,Kn

(0), G(4)
βn ,Kn

(0), and

G(6)
βn ,Kn

(0), for the first two of which explicit formulas in terms of βn and Kn are
given. As we will see in later sections, these formulas will guide us into how we
should choose the sequences (βn, Kn) so that all the different scaling limits of
Sn/n1−γ appear. Since Gβn ,Kn is symmetric around 0, all odd-order derivatives of
this function evaluated at 0 vanish; in addition, Gβn ,Kn (0) = 0.

In order to state part (d) of the theorem, we define for β > 0

K (β) = 1

2c′′
β (0)

= eβ + 2

4β
. (4.5)

For 0 < β ≤ βc this function coincides with the function Kc(β) defined in (3.6),
while for β > βc, K (β) > Kc(β) (Ref. 27, Thm. 3.8). Thus for (β, K ) ∈ B we have
K = Kc(β) = K (β) while for (β, K ) ∈ C we have β = βc and K = Kc(βc) =
K (βc).

Theorem 4.3. Let (βn, Kn) be any positive bounded sequence and γ any positive
number. The following conclusions hold.

(a) Assume that (βn, Kn) → (β, K ) ∈ A. Then the type of 0 ∈ Eβ,K equals 1.
In addition, for any R > 0 and for all x ∈ R satisfying |x/nγ | < R there
exists ξ = ξ (x/nγ ) ∈ [−x/nγ , x/nγ ] such that

nGβn ,Kn (x/nγ ) = 1

n2γ−1

G(2)
βn ,Kn

(0)

2!
x2

+ 1

n3γ−1
An(ξ (x/nγ ))x3. (4.6)

The error terms An(ξ (x/nγ )) are uniformly bounded over n ∈ N and
x ∈ (−Rnγ , Rnγ ). Furthermore, as n → ∞, G(2)

βn ,Kn
(0) → G(2)

β,K (0) > 0.
(b) Assume that (βn, Kn) → (β, Kc(β)) ∈ B. Then the type of 0 ∈ Eβ,Kc(β) is

2. In addition, for any R > 0 and for all x ∈ R satisfying |x/nγ | < R
there exists ξ = ξ (x/nγ ) ∈ [−x/nγ , x/nγ ] such that

nGβn ,Kn (x/nγ ) = 1

n2γ−1

G(2)
βn ,Kn

(0)

2!
x2 + 1

n4γ−1

G(4)
βn ,Kn

(0)

4!
x4

+ 1

n5γ−1
Bn(ξ (x/nγ ))x5. (4.7)
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The error terms Bn(ξ (x/nγ )) are uniformly bounded over n ∈ N and
x ∈ (−Rnγ , Rnγ ). Furthermore, as n → ∞, G(2)

βn ,Kn
(0) → G(2)

β,Kc(β)(0) =
0 while G(4)

βn ,Kn
(0) → G(4)

β,Kc(β)(0) > 0.
(c) Assume that (βn, Kn) → (βc, Kc(βc)). Then the type of 0 ∈ Eβc,Kc(βc) is 3.

In addition, for any R > 0 and for all x ∈ R satisfying |x/nγ | < R there
exists ξ = ξ (x/nγ ) ∈ [−x/nγ , x/nγ ] such that

nGβn ,Kn (x/nγ ) = 1

n2γ−1

G(2)
βn ,Kn

(0)

2!
x2 + 1

n4γ−1

G(4)
βn ,Kn

(0)

4!
x4

+ 1

n6γ−1

G(6)
βn ,Kn

(0)

6!
x6 + 1

n7γ−1
Cn(ξ (x/nγ ))x7. (4.8)

The error terms Cn(ξ (x/nγ )) are uniformly bounded over n ∈ N and x ∈
(−Rnγ , Rnγ ). Furthermore, as n → ∞, G(2)

βn ,Kn
(0) → G(2)

βc,Kc(βc)(0) = 0

and G(4)
βn ,Kn

(0) → G(4)
βc,Kc(βc)(0) = 0 while G(6)

βn ,Kn
(0) → G(6)

βc,Kc(βc)(0) = 2

·34.
(d) For β > 0 we define K (β) in (4.5). Then in (4.6)–(4.8)

G(2)
βn ,Kn

(0) = 2βn Kn(eβn + 2 − 4βn Kn)

eβn + 2
= 2βn Kn[K (βn) − Kn]

K (βn)
(4.9)

and

G(4)
βn ,Kn

(0) = 2(2βn Kn)4(4 − eβn )

(eβn + 2)2
. (4.10)

Proof: In parts (a), (b), and (c) the type of the global minimum point at 0 is
specified in Theorem 4.2. The formulas for G(2)

βn ,Kn
(0) and G(4)

βn ,Kn
(0) in part (d)

follow from an explicit calculation of the derivatives and from the formula for
K (β) given in (4.5). In addition, one evaluates the limits of the Taylor coefficients
given in the last sentence of each part (a), (b), and (c) using the continuity of the
derivatives G(2 j)

β,K (0) with respect to β and K and the fact that the type of the global
minimum point of Gβ,K at 0 is, respectively, r = 1, r = 2, and r = 3.

We now prove the form of the Taylor expansion given in part (c); the forms of
the Taylor expansions given in parts (a) and (b) are proved similarly. By Taylor’s
Theorem, for any R > 0 and for all u ∈ R satisfying |u| < R there exists ξ =
ξ (u) ∈ [−u, u] such that

Gβn ,Kn (u) = G(2)
βn ,Kn

(0)

2!
u2 + G(4)

βn ,Kn
(0)

4!
u4 + G(6)

βn ,Kn
(0)

6!
u6 + Cn(ξ (u))u7, (4.11)

where Cn(ξ (u)) = G(7)
βn ,Kn

(ξ (u))/7!. Because the sequence (βn, Kn) is positive and
bounded, there exists b ∈ (0,∞) such that 0 < βn ≤ b and 0 < Kn ≤ b for all
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n. As a continuous function of (β, K , x) on the compact set [0, b] × [0, b] ×
[−R, R], G(7)

β,K (x) is uniformly bounded. It follows that G(7)
βn ,Kn

(ξ (u)), and thus
Cn(ξ (u)), are uniformly bounded over n ∈ N and u ∈ (−R, R). Multiplying both
sides of (4.11) by n and substituting u = x/nγ yields part (c). �

This completes our preliminary discussion of the Taylor expansions of
nGβn ,Kn (x/nγ ) as they are needed to deduce the scaling limits of Sn/n1−γ via
Lemma 4.1. In order to finalize our analysis of these scaling limits, we will have to
prove that the contributions to the integrals in (4.2) and (4.3) by x ∈ R satisfying
|x/nγ | ≥ R converge to 0 as n → ∞. In part (c) of the next lemma we prove that
the convergence to 0 is exponentially fast. The technical hypothesis in part (c) is
satisfied in each of the theorems that proves the scaling limits [Thms. 5.1, 6.1,
7.1]. In part (d) of the next lemma we prove the exponentially fast convergence
to 0 of a related integral that arises in the proof of the MDPs. As we verify in
the proof of Theorem 8.1, the technical hypothesis in part (d) is satisfied in that
setting. The estimates in parts (c) and (d) are consequences of the LDP proved
in part (b), which in turn follows from part (a) and the representation formula in
Lemma 4.1.

Lemma 4.4 is the main technical innovation in this paper. When adapted to
the BEG model, the precursors of Lemma 4.4 given in Lemma 3.5 in Ref. 25 and
Lemma 3.3 in Ref. 30 are able to handle only positive sequences (βn, Kn) con-
verging to (β, K ) ∈ A ∪ B ∪ C for which Gβn ,Kn has a unique global minimum
point at 0. In order to handle sequences (βn, Kn) for which Gβn ,Kn has nonunique
global minimum points, the modifications that would be necessary in the precur-
sors of Lemma 4.4 would introduce serious technical complications in the proofs
of the scaling limits and the MDPs. By allowing us to handle any positive se-
quence (βn, Kn) converging to (β, K ) ∈ A ∪ B ∪ C , parts (c) and (d) of Lemma
4.4 are universal bounds that enable us to avoid these technical complications
altogether.

Lemma 4.4. Let (βn, Kn) be any positive sequence converging to (β, K ) ∈ A ∪
B ∪ C and as in Lemma 4.1, let Wn be a sequence of N (0, (2βn Kn)−1) random
variables defined on a probability space (�,F , Q). The following conclusions
hold.

(a) There exist a1 > 0 and a2 > 0 such that for all n ∈ N and all x ∈ R,
Gβn ,Kn (x) ≥ a1(|x | − 1)2 − a2.

(b) With respect to Pn,βn ,Kn × Q, Sn/n + Wn/n1/2 satisfies the LDP on R

with exponential speed n and rate function Gβ,K .
(c) Given γ > 0 and R > 0, we define

yn =
∫

{|x |<Rnγ }
exp[−nGβn ,Kn (x/nγ )] dx . (4.12)
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If the sequence yn is bounded, then there exists a3 > 0 and a4 > 0 such that for
all sufficiently large n

∫

{|x |≥Rnγ }
exp[−n Gβn ,Kn (x/nγ )] dx ≤ a3 exp(−na4) → 0.

(d) Assume that there exist γ > 0, R > 0, u ∈ (0, 1), a5 > 0, and a6 ∈ R

such that for all sufficiently large n

yn =
∫

{|x |<Rnγ }
exp[−nGβn ,Kn (x/nγ )] dx ≤ a5 exp(nua6).

Then there exists a7 > 0 such that for all sufficiently large n
∫

{|x |≥Rnγ }
exp[−n Gβn ,Kn (x/nγ )] dx ≤ 2a5 exp(−na7) → 0.

Proof: (a) Because the sequence (βn, Kn) is bounded and remains a positive
distance from the origin and the coordinate axes, there exist 0 < b1 < b2 < ∞
such that b1 ≤ βn ≤ b2 and b1 ≤ Kn ≤ b2 for all n ∈ N. The conclusion of part
(a) is a consequence of the elementary inequalities

Gβn ,Kn (x) = βn Kn x2 − cβn (2βn Kn x)

≥ βn Kn x2 − 2βn Kn|x | − log 4 ≥ b2
1(|x | − 1)2 − b2

2 − log 4.

(b) We prove that for any bounded, continuous function ψ

lim
n→∞

1

n
log

∫

�n×�

exp

[

nψ

(
Sn

n
+ Wn

n1/2

)]

d(Pn,βn ,Kn × Q)

= sup
x∈R

{ψ(x) − Gβ,K (x)}. (4.13)

This Laplace principle implies the LDP stated in part (b) (Ref. 18, Thm. 1.2.3).
Gβ,K is continuous, and by part (a) of this lemma applied to the constant sequence
(βn, Kn) = (β, K ), this function has compact level sets. Since (β, K ) ∈ A ∪ B ∪
C , Gβ,K has a unique global minimum point at 0, and therefore inf x∈R Gβ,K (x) =
0. It follows that Gβ,K is a rate function. We now use Lemma 4.1 with γ = 0 to
rewrite the integral in the last display as

∫

�n×�

exp

[

nψ

(
Sn

n
+ Wn

n1/2

)]

d(Pn,βn ,Kn × Q)

= 1
∫

R
exp[−nGβn ,Kn (x)] dx

·
∫

R

exp[n{ψ(x) − Gβn ,Kn (x)}] dx . (4.14)
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By part (a) of this lemma, there exist M > 0 and a8 > 0 having the following
three properties:

1. Gβn ,Kn (x) ≥ a8x2 for all n ∈ N and all x ∈ R satisfying |x | ≥ M .
2. The supremum of ψ − Gβ,K on R is attained on the interval [−M, M].
3. Let � = supx∈R

{ψ(x) − Gβ,K (x)}. Then ‖ψ‖∞ − a8 M2 ≤ −|�| − 1.

Since Gβn ,Kn converges uniformly to Gβ,K on [−M, M], we have for any δ > 0
and all sufficiently large n

exp(−nδ)
∫

{|x |≤M}
exp[n{ψ(x) − Gβ,K (x)}] dx

≤
∫

{|x |≤M}
exp[n{ψ(x) − Gβn ,Kn (x)}] dx

≤ exp(nδ)
∫

{|x |≤M}
exp[n{ψ(x) − Gβ,K (x)}] dx .

In addition, by items 1 and 3
∫

{|x |>M}
exp[n{ψ(x) − Gβn ,Kn (x)}] dx

≤ exp[n‖ψ‖∞]
∫

{|x |>M}
exp[−na8x2] dx

≤ 1

nMa8
exp[n‖ψ‖∞ − na8 M2]

≤ 1

nMa8
exp[−n(|�| + 1)].

We now put these estimates together. For all sufficiently large n we have

exp(−nδ)
∫

{|x |≤M}
exp[n{ψ(x) − Gβ,K (x)}] dx

≤
∫

R

exp[n{ψ(x) − Gβn ,Kn (x)}] dx

≤ exp(nδ)
∫

{|x |≤M}
exp[n{ψ(x) − Gβ,K (x)}] dx + 1

nMa8
exp[−n(|�| + 1)].

Since by item 2

lim
n→∞

1

n
log

∫

{|x |≤M}
exp[n{ψ(x) − Gβ,K (x)}] dx

= sup
{|x |≤M}

{ψ(x) − Gβ,K (x)} = sup
x∈R

{ψ(x) − Gβ,K (x)},
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we see that

sup
x∈R

{ψ(x) − Gβ,K (x)} − δ

≤ lim inf
n→∞

1

n
log

∫

R

exp[n{ψ(x) − Gβn ,Kn (x)}] dx

≤ lim sup
n→∞

1

n
log

∫

R

exp[n{ψ(x) − Gβn ,Kn (x)}] dx

≤ sup
x∈R

{ψ(x) − Gβ,K (x)} + δ,

and since δ > 0 is arbitrary, it follows that

lim
n→∞

1

n
log

∫

R

exp[n{ψ(x) − Gβn ,Kn (x)}] dx = sup
x∈R

{ψ(x) − Gβ,K (x)}.

We combine this limit with the same limit for ψ = 0 and use (4.14) together with
the fact that inf x∈R Gβ,K (x) = Gβ,K (0) = 0, concluding that

lim
n→∞

1

n
log

∫

�n×�

exp

[

nψ

(
Sn

n
+ Wn

n1/2

)]

d(Pn,βn ,Kn × Q)

= sup
x∈R

{ψ(x) − Gβ,K (x)} − inf
x∈R

Gβ,K (x) = sup
x∈R

{ψ(x) − Gβ,K (x)}.

This is the Laplace principle (4.13). The proof of part (b) is complete.
(c) Since Gβ,K has a unique global minimum point at 0, the LDP proved in

part (b) implies the existence of a9 > 0 such that for all n ∈ N

Pn,βn ,Kn × Q

{
Sn

n
+ Wn

n1/2
�∈ (−R, R)

}

≤ exp(−na9). (4.15)

Using Lemma 4.1, we rewrite the probability in the last display as

Pn,βn ,Kn × Q

{
Sn

n
+ Wn

n1/2
�∈ (−R, R)

}

= Pn,βn ,Kn × Q

{
Sn

n1−γ
+ Wn

n1/2−γ
�∈ (−Rnγ , Rnγ )

}

= 1
∫

R
exp[−nGβn ,Kn (x/nγ )] dx

·
∫

{|x |≥Rnγ }
exp[−nGβn ,Kn (x/nγ )] dx

= zn

yn + zn
, (4.16)

where yn is defined in (4.12) and

zn =
∫

{|x |≥Rnγ }
exp[−n Gβn ,Kn (x/nγ )] dx .
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Since by hypothesis the sequence yn is bounded, there exists y > 0 such that
yn ≤ y for all n. It follows from (4.15) and (4.16) that for all sufficiently large n

1
2 zn ≤ zn(1 − exp(−na9)) ≤ yn exp(−na9) ≤ y exp(−na9)

and thus for all sufficiently large n, zn ≤ 2y exp(−na9). This completes the proof
of part (c).

(d) Exactly as in the proof of part (c), we have for all sufficiently large n

1
2 zn ≤ zn(1 − exp(−na9)) ≤ yn exp(−na9).

Since by hypothesis yn ≤ a5 exp(nua6) and u ∈ (0, 1), it follows that for all suffi-
ciently large n

zn ≤ 2a5 exp(−na9 + nua6) ≤ 2a5 exp(−na9/2).

This completes the proof of part (d). �

In the next section we begin our analysis of the scaling limits of Sn/n1−γ in the
simplest case by considering (βn, Kn) → (β, K ) ∈ A. In the two sections follow-
ing the next one, we will uncover a wider variety of scaling limits by considering
sequences (βn, Kn) converging to (β, Kc(β)) ∈ B and to (βc, Kc(βc)) ∈ C .

5. 1 SCALING LIMIT FOR (βn, Kn)→ (β, K ) ∈ A

In this short section, we deduce the unique scaling limit of Sn/n1−γ when
(βn, Kn) is any positive sequence converging to (β, K ) ∈ A. The unique global
minimum point of Gβ,K at 0 has type r = 1 [Thm. 4.2(a)]. As the next theorem
shows, the scaling limit with respect to Pn,βn ,Kn has the form of a central limit-type
theorem that is independent of the particular sequence chosen. In addition, the only
value of γ for which Sn/n1−γ has a nontrivial limit is γ = 1/2. We are including
this scaling limit in order to highlight the much more complicated behavior of the
scaling limits of Sn/n1−γ in the subsequent two sections, in which (βn, Kn) →
(β, Kc(β)) ∈ B and (βn, Kn) → (βc, Kc(βc)) ∈ C and in which different forms of
the limit can be obtained by choosing different sequences.

The following theorem, stated for 0 < β ≤ βc and 0 < K < Kc(β), is also
valid for β > βc and 0 < K < Kc(β), and the proof is essentially the same. The key
observation is that for β > βc, we have K (β) = (eβ + 2)/(4β) > Kc(β) (Ref. 27,
Thm. 3.8). Hence if K < Kc(β), then also K < K (β) and thus G(2)

β,K (0) in (5.2)
is positive.

Theorem 5.5. Let (βn, Kn) be an arbitrary positive sequence that converges to
(β, K ) ∈ A; thus β and K satisfy 0 < β ≤ βc and 0 < K < Kc(β). Then

Pn,βn ,Kn {Sn/n1/2 ∈ dx} =⇒ exp(−c2x2) dx,
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where c2 > 0 is defined by

c2 = 1

2
· 1
[
G(2)

β,K (0)
]−1 − [2βK ]−1

= β[K (β) − K ]. (5.1)

Thus the limit is independent of the particular sequence (βn, Kn) that is chosen.

Proof: We use the Taylor expansion in part (a) of Theorem 4.3 with γ = 1/2.
By continuity, G(2)

βn ,Kn
(0) given in (4.9) converges to

G(2)
β,K (0) = 2βK [K (β) − K ]

K (β)
, (5.2)

which is positive since 0 < K < Kc(β) = K (β). For any R > 0 the error terms
An(x/n1/2) in the Taylor expansion are uniformly bounded over n ∈ N and x ∈
(−Rn1/2, Rn1/2). It follows that for all x ∈ R

lim
n→∞ nGβn ,Kn (x/n1/2) = 1

2 G(2)
β,K (0)x2

and that R > 0 can be chosen to be sufficiently small so that for all sufficiently
large n and all x ∈ R satisfying |x/n1/2| < R

nGβn ,Kn (x/n1/2) ≥ 1
4 G(2)

β,K (0)x2.

Since
∫

R
exp[−G(2)

β,K (0)x2/4]dx < ∞, the dominated convergence theorem im-
plies that for any bounded, continuous function f

lim
n→∞

∫

{|x |<Rn1/2}
f (x) exp[−nGβn ,Kn (x/n1/2)] dx

=
∫

R

f (x) exp
[ − G(2)

β,K (0)x2/2
]

dx .

The existence of this limit implies that the sequence yn = ∫
{|x |<Rn1/2} exp[−nGβn ,Kn

(x/n1/2)]dx is bounded. Hence, combining this limit with part (c) of Lemma 4.4
yields

lim
n→∞

∫

R

f (x) exp[−nGβn ,Kn (x/n1/2)] dx =
∫

R

f (x) exp
[ − G(2)

β,K (0)x2/2
]

dx .

We now augment this limit with the same limit for f = 1 and use (4.3) to obtain

lim
n→∞

∫

�n×�

f (Sn/n1/2 + Wn) d(Pn,β,Kc(β) × Q)

= 1
∫

R
exp

[ − G(2)
β,K (0)x2/2

]
dx

·
∫

R

f (x) exp
[ − G(2)

β,K (0)x2/2
]

dx .
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We omit the straightforward argument using characteristic functions that enables
one to deduce from the last display that

Pn,βn ,Kn {Sn/n1/2 ∈ dx} =⇒ exp(−c2x2) dx,

where c2 is given by the first equality in (5.1). A similar argument involving
moment generating functions is given on pages 70–71 of Ref. 30 The positivity of
c2 and the second formula for c2 given in (5.1) follow from (5.2). This completes
the proof of the theorem. �

In Theorem 8.2 we prove an MDP for Sn/n1−γ that is related to the scaling
limit proved in Theorem 5.1. As in the latter theorem, the form of the MDP
is independent of the particular sequence (βn, Kn) converging to (β, K ) ∈ A. In
the next section we see the first example of scaling limits for Sn/n1−γ where
different forms of the limit can be obtained by choosing different sequences
(βn, Kn) → (β, Kc(β)) ∈ B.

6. 4 SCALING LIMITS FOR (βn, Kn)→ (β, Kc(β)) ∈ B

In this section we determine the scaling limits of Sn/n1−γ with respect
to Pn,βn ,Kn , where (βn, Kn) is an appropriate positive sequence converging to
(β, Kc(β)) ∈ B and γ ∈ (0, 1/2) is appropriately chosen. We recall that B is the
curve of second-order points for the BEG model. For any (β, K ) ∈ B, we have
0 < β < βc = log 4 and

K = Kc(β) = 1

2βc′′
β (0)

= eβ + 2

4β
.

The scaling limits that we obtain involve limiting densities proportional to
exp[−G(x)], where G takes one of the 4 forms of an even polynomial of degree
4 or 2 satisfying G(0) = 0 and G(x) → ∞ as |x | → ∞. There are 3 such G’s of
degree 4; namely, G(x) = c4x4, where c4 > 0 and G(x) = kβx2 + c4x4, where
c4 > 0 and either k > 0 or k < 0. There is also 1 such G of degree 2; namely,
G(x) = kβx2, where k > 0. These 4 cases are all obtained in Theorem 6.1 the
forms of the limits depend on the choice of Kn → Kc(β) but are independent of
the choice of βn → β.

In order to determine the forms of the scaling limits of Sn/n1−γ with respect to
Pn,βn ,Kn , we start by recalling the Taylor expansion given in part (b) of Theorem 4.3.
For any γ > 0 and R > 0 and for all x ∈ R satisfying |x/nγ | < R there exists
ξ ∈ [−x/nγ , x/nγ ] such that

nGβn ,Kn (x/nγ ) = 1

n2γ−1

G(2)
βn ,Kn

(0)

2!
x2 + 1

n4γ−1

G(4)
βn ,Kn

(0)

4!
x4

+ 1

n5γ−1
Bn(ξ (x/nγ ))x5. (6.1)
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The error terms Bn(ξ (x/nγ )) are uniformly bounded over n ∈ N and x ∈
(−Rnγ , Rnγ ). According to part (b) of Theorem 4.2, the unique global mini-
mum point of Gβ,Kc(β) at 0 has type 2. Hence by continuity, as n → ∞,

G(2)
βn ,Kn

(0) = 2βn Kn[K (βn) − Kn]

K (βn)
→ G(2)

β,Kc(β)(0) = 0

while G(4)
βn ,Kn

(0) → G(4)
β,Kc(β)(0) > 0. We recall that in the last display K (β) =

(eβ + 2)/(4β) for β > 0.
Fixing β ∈ (0, βc), we let βn be an arbitrary positive sequence that converges

to β, and we let θ be a positive number. The key insight is to choose Kn so
that G(2)

βn ,Kn
(0) → 0 at a rate 1/nθ , where 1/nθ counterbalances the term 1/n2γ−1

appearing in (6.1). Since 2βn Kn/K (βn) has the positive limit 2β as n → ∞, we
achieve this by choosing k �= 0 and defining

Kn = K (βn) − k/nθ . (6.2)

Since βn → β and K (·) is continuous, it follows that Kn → K (β) = Kc(β). Hence

G(2)
βn ,Kn

(0) = k

nθ
· 2βn Kn

K (βn)
= k

nθ
· C (2)

n , where C (2)
n > 0 and C (2)

n → 2β.

With these choices (6.1) becomes

nGβn ,Kn (x/nγ ) = 1

n2γ+θ−1

kC (2)
n

2!
x2 + 1

n4γ−1

G(4)
βn ,Kn

(0)

4!
x4

+ 1

n5γ−1
Bn(ξ (x/nγ ))x5. (6.3)

As we will see in Theorem 6.1, the scaling limits depend on the value of γ and on
Kn through the value of θ , but are independent of the sequence βn → β.

In the last display we assume that the coefficients multiplying x2 and x4 both
appear with nonnegative powers of n and that at least one of these two coefficients
has n to the power 0. Then in the limit n → ∞ any coefficient including the error
term that has a positive power of n will vanish while any coefficient that has n to
the power 0 will converge to a positive constant. This preliminary analysis shows
the possibility of multiple scaling limits for different choices of γ and θ . In order
to confirm this possibility, we define

v = min{2γ + θ − 1, 4γ − 1}
and focus on the cases in which v = 0. As we will see in the final section of the
paper, v < 0 corresponds to 4 different MDPs for Sn/n1−γ . On the other hand, if
v > 0, then one obtains neither scaling limits nor MDPs.

In the next theorem we show that v = 0 corresponds to 3 different choices
of γ and θ , which in turn correspond to 4 different sequences Kn in (6.2). The
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Fig. 4. Influence of A and B on scaling limits when (βn, Kn) → (β, Kc(β)) ∈ B.

additional sequence arises because when x2 is not the highest order term in the
scaling limit (cases 3–4), k can be chosen to be either positive or negative. As
shown in Table III in part (b) of the theorem, for each of these 4 different sequences
we obtain 4 different scaling limits of Sn/n1−γ . In case 1 we can also choose k
to be any real number; this affects only the definition of the sequence Kn , not the
form of the scaling limit.

The results of the theorem confirm one’s intuition concerning the influence
of the regions on the scaling limits. Of the 4 cases, case 1 corresponds to the
largest values of θ—namely, θ > 1/2—and thus the most rapid convergence of
Kn → Kc(β). In this case only B influences the form of the limiting density, which
is proportional to exp(−c4x4); c4 defined in (6.5) is positive since eβ < eβc = 4. By
contrast, case 2 corresponds to the smallest values of θ—namely, θ ∈ (0, 1/2)—
and thus the slowest convergence of Kn → Kc(β). In this case only A influences
the form of the limiting density, which is proportional to exp(−βx2); thus we
have Sn/n1−γ converging in distribution to a normal random variable even though
the non-classical scaling is given by n1−γ , where γ = (1 − θ )/2 ∈ (1/4, 1/2).
Finally, cases 3 and 4 correspond to the critical speed θ = 1/2. In this case both
A and B influence the form of the limiting density, which is proportional to
exp(−kβx2 − c4x4) with c4 > 0 and either k > 0 or k < 0. In Fig. 4 we indicate
the subsets of the positive quadrant of the θ -γ plane leading to the 4 cases just
discussed. Using Table III, one easily checks that as θ increases through the critical
value 1/2, the values of γ in the scaling limit change continuously while the forms
of the limiting densities change discontinuously.

Theorem 6.1. For fixed β ∈ (0, βc), let βn be an arbitrary positive sequence that
converges to β. Given θ > 0 and k �= 0, define

Kn = K (βn) − k/nθ ,
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Table III. Values of θ and γ and scaling limits in part (b) of Theorem 6.1

Case Influence Values of θ Values of γ Scaling limit of Sn/n1−γ

1 B θ > 1
2 γ = 1

4 exp(−c4x4) dx, c4 > 0, k ∈ R

2 A θ ∈ (0, 1
2 ) γ = 1−θ

2 ∈ ( 1
4 , 1

2 ) exp(−kβx2) dx, k > 0

3–4 A + B θ = 1
2 γ = 1

4 exp(−kβx2 − c4x4) dx, k �= 0

where K (β) = (eβ + 2)/(4β) for β > 0. Then (βn, Kn) → (β, Kc(β)) ∈ B. Given
γ ∈ (0, 1), we also define

G(x) = δ(v, 2γ + θ − 1)kβx2 + δ(v, 4γ − 1)c4x4, (6.4)

where δ(a, b) equals 1 if a = b and equals 0 if a �= b and c4 > 0 is given by

c4 = G(4)
β,Kc(β)(0)

4!
= 2[2βKc(β)]4(4 − eβ)

4!(eβ + 2)2
= (eβ + 2)2(4 − eβ)

23 · 4!
. (6.5)

The following conclusions hold.
(a) Assume that v = min{2γ + θ − 1, 4γ − 1} equals 0. Then

Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ exp[−G(x)] dx . (6.6)

(b) We have v = 0 if and only if one of the 4 cases enumerated in Table III
holds. Each of the 4 cases corresponds to a set of values of θ and γ , to the influence
of one or more sets B and A, and to a particular scaling limit in (6.6). In case 1
the choice of k ∈ R does not affect the form of the scaling limit.

Note. Let βn = β for all n. The constant sequence (βn, Kn) = (β, Kc(β)) for all
n corresponds to the choice θ = ∞ in case 1. As in the proof of case 1, one
shows that Pn,β,Kc(β){Sn/n1−1/4 ∈ dx} =⇒ exp(−c4x4)dx . This scaling limit was
mentioned in (2.6).

Proof of Theorem 6.1. We first prove part (b) assuming part (a), and then we
prove part (a).

(b) v = min{2γ + θ − 1, 4γ − 1} equals 0 if and only if each of the quantities
in this minimum is nonnegative and one or more of the quantities equals 0. As (6.4)
makes clear, 4γ − 1 = 0 corresponds to the influence of B and 2γ + θ − 1 = 0
to the influence of A. We have the following 4 mutually exclusive and exhaustive
cases, which correspond to the 4 cases in Table III.

• Case 1: Influence of B alone. 2γ + θ − 1 > 0, 4γ − 1 = 0, and k ∈ R.
In this case γ = 1/4 and θ > 1 − 2γ = 1/2, which corresponds to the
second and third columns for case 1 in Table III.
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• Case 2: Influence of A alone. 2γ + θ − 1 = 0, 4γ − 1 > 0, and k > 0. In
this case γ > 1/4 and θ = 1 − 2γ < 1/2. Since θ must be positive, we
have γ = (1 − θ )/2 ∈ (1/4, 1/2). Hence case 2 corresponds to the second
and third columns for case 2 in Table III.

• Cases 3–4: Influence of A and B. 2γ + θ − 1 = 0, 4γ − 1 = 0, k > 0 for
case 3, and k < 0 for case 4. In these 2 cases γ = 1/4 and θ = 1 − 2γ =
1/2, which corresponds to the second and third columns for cases 3 and 4
in Table III.

In cases 1, 2, 3, and 4 we have, respectively, G(x) = c4x4, G(x) = kβx2 with
k > 0, G(x) = kβx2 + c4x4 with k > 0, and G(x) = kβx2 + c4x4 with k < 0. In
combination with part (a), we obtain the 4 forms of the scaling limits listed in the
last column of Table III.

(a) We prove the 4 scaling limits corresponding to the 4 cases listed in
Table III. As the discussion prior to the statement of the theorem indicates, the
quantity v = min{2γ + θ − 1, 4γ − 1} is defined in such a way that in each of the
4 cases defined by the choices of θ , γ , and k in Table III, we have for each x ∈ R

lim
n→∞ nGβn ,Kn (x/nγ ) = G(x).

Since in each case we have γ ∈ [1/4, 1/2), the term Wn/n1/2−γ in (4.1) does
not contribute to the limit n → ∞. Hence we can determine the scaling limits
of Sn/n1−γ by using (4.2). In order to justify taking the limit inside the integrals
on the right hand side of (4.2), we return to (6.3) and use the fact that for all
sufficiently large n, C (2)

n > 0 and G(4)
βn ,Kn

(0) > 0. It follows that R > 0 can be
chosen to be sufficiently small so that for all sufficiently large n and all x ∈ R

satisfying |x/nγ | < R there exists a polynomial H (x) satisfying

nGβn ,Kn (x/nγ ) ≥ H (x) (6.7)

and
∫

R
exp[−H (x)]dx < ∞. In case 1 when k ≥ 0 as well as in cases 2 and 3,

H (x) = G(x)/2; in case 1 when k < 0 and in case 4, which corresponds to k < 0,

H (x) = −2|k|βx2 + c4x4/2. (6.8)

The last two displays in combination with the dominated convergence theorem
imply that for any bounded, continuous function f

lim
n→∞

∫

{|x |<Rnγ }
f (x) exp[−nGβn ,Kn (x/nγ )] dx =

∫

R

f (x) exp[−G(x)] dx .

The existence of this limit implies that the sequence yn = ∫
{|x |<Rnγ }

exp[−nGβn ,Kn (x/nγ )]dx is bounded. Hence, combining this limit with part (c) of
Lemma 4.4 yields

lim
n→∞

∫

R

f (x) exp[−nGβn ,Kn (x/nγ )] dx =
∫

R

f (x) exp[−G(x)] dx .
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If we augment this limit with the same limit for f = 1 and use (4.2), then we
conclude that in each of the 4 cases

lim
n→∞

∫

�n

f (Sn/n1−γ ) dPn,βn ,Kn = 1
∫

R
exp[−G(x)] dx

·
∫

R

f (x) exp[−G(x)] dx .

This yields the scaling limits in part (a). The proof of the theorem is complete. �

This finishes our analysis of scaling limits for Sn/n1−γ with respect to
Pn,βn ,Kn , where the sequence (βn, Kn) converging to (β, Kc(β)) ∈ B is defined
in Theorem 6.1. This analysis is a warm-up for the even more interesting analysis
of the scaling limits for sequences (βn, Kn) converging to the tricritical point.

7. 13 SCALING LIMITS FOR (βn, Kn)→ (βc, Kc(βc))

In Theorem 6.1 we obtained 4 forms of scaling limits for Sn/n1−γ using se-
quences (βn, Kn) converging to a second-order point (β, Kc(β)) ∈ B. The limiting
densities are proportional to exp[−G(x)], where G takes of the 4 forms of an even
polynomial of degree 4 or 2 satisfying G(0) = 0 and G(x) → ∞ as |x | → ∞.
In each case the form of the limit is independent of the choice of βn → β but
depends on the choice of Kn → Kc(β). Like the BEG model at (β, Kc(β)) ∈ B,
the Curie–Weiss model has a second-order phase transition at a critical inverse
temperature β̄c. The 4 scaling limits and the 4 MDPs analyzed in Theorem 8.1
are analogous to the scaling limits and MDPs that hold in the Curie–Weiss model
when the inverse temperature converges to β̄c along appropriate sequences βn . (19)

However, the 13 scaling limits proved in the present section and the 13 analogous
MDPs obtained in Theorem 8.3 depend on the nature of the tricritical point, a
feature not shared with the Curie–Weiss model.

We now use the insights gained in the preceding section to study the more
complicated problem of scaling limits for Sn/n1−γ using sequences (βn, Kn)
converging to the tricritical point (βc, Kc(βc)) = (log 4, 3/[2 log 4]). As in the
preceding section, we choose θ > 0, k �= 0, and

Kn = K (βn) − k/nθ , (7.1)

where K (β) = (eβ + 2)/(4β) for β > 0. In contrast to the preceding section, we
now also have to pick the sequence βn appropriately. Theorem 7.1 shows that 13
scaling limits arise for different choices of θ , γ , and the parameter appearing in
the definition of βn . The limiting densities are proportional to exp[−G(x)], where
G takes one of the 13 forms of an even polynomial of degree 6, 4, or 2 satisfying
G(0) = 0 and G(x) → ∞ as |x | → ∞.

In order to determine the forms of the scaling limits for Sn/n1−γ with respect
to Pn,βn ,Kn , we use the Taylor expansion given in part (c) of Theorem 4.3. For
any γ > 0 and R > 0 and for all x ∈ R satisfying |x/nγ | < R there exists ξ ∈
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[−x/nγ , x/nγ ] such that

nGβn ,Kn (x/nγ ) = 1

n2γ−1

G(2)
βn ,Kn

(0)

2!
x2 + 1

n4γ−1

G(4)
βn ,Kn

(0)

4!
x4

+ 1

n6γ−1

G(6)
βn ,Kn

(0)

6!
x6 + 1

n7γ−1
Cn(ξ (x/nγ ))x7. (7.2)

The error terms Cn(ξ (x/nγ )) are uniformly bounded over n ∈ N and x ∈
(−Rnγ , Rnγ ). According to part (c) of Theorem 4.2, the unique global mini-
mum point of Gβc,Kc(βc) at 0 has type 3. Hence by continuity, as n → ∞,

G(2)
βn ,Kn

(0) = 2βn Kn[K (βn) − Kn]

K (βn)
→ G(2)

βc,Kc(βc)(0) = 0,

G(4)
βn ,Kn

(0) = 2(2βn Kn)4(4 − eβn )

(eβn + 2)2
→ G(4)

βc,Kc(βc)(0) = 0,

while G(6)
βn ,Kn

(0) → G(6)
βc,Kc(βc)(0) = 2 · 34.

As in the preceding section, we choose Kn as in (7.1) so that G(2)
βn ,Kn

(0) → 0 at
a rate 1/nθ , where 1/nθ counterbalances the term 1/n2γ−1 appearing in (7.2). We
also choose βn so that G(4)

βn ,Kn
(0) → 0 at a rate 1/nα , where 1/nα counterbalances

the term 1/n4γ−1 appearing in (7.2). This is achieved by choosing α > 0 and either
b > 0 or b < 0 and then defining βn by the logarithmic formula

βn = log(4 − b/nα) = log(eβc − b/nα); (7.3)

if b > 0, then βn is well defined for all sufficiently large n. Since βn → β and
K (·) is continuous, it follows that (βn, Kn) → (βc, Kc(βc)). With this choice of
(βn, Kn) we have

G(2)
βn ,Kn

(0) = k

nθ
· 2βn Kn

K (βn)
= k

nθ
· C (2)

n , where C (2)
n → 2βc, (7.4)

and

G(4)
βn ,Kn

(0) = b

nα
· 2(2βn Kn)4

(eβn + 2)2
= b

nα
· C (4)

n ,

where C (4)
n → 2(2βc Kc(βc))4

(eβc + 2)2
= 9

2
> 0. (7.5)

The dependence of (βn, Kn) in (7.1) and (7.3) upon α and θ is complicated;
because βn is a function of α, Kn is both a function of θ and, through βn , a function
of α. However, the α and θ decouple nicely when (7.4) and (7.5) are substituted
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into (7.2), yielding

nGβn ,Kn (x/nγ ) = 1

n2γ+θ−1

kC (2)
n

2!
x2 + 1

n4γ+α−1

bC (4)
n

4!
x4

+ 1

n6γ−1

G(6)
βn ,Kn

(0)

6!
x6 + 1

n7γ−1
Cn(ξ (x/nγ ))x7. (7.6)

We continue the analysis as in the preceding section. Let us suppose that in the
last display the coefficients multiplying x2, x4, and x6 all appear with nonnegative
powers of n and that at least one of the coefficients has n to the power 0. Then in
the limit n → ∞ any coefficient including the error term that has a positive power
of n will vanish while any coefficient that has n to the power 0 will converge to a
positive constant. In order to analyze the various cases, we define

w = min{2γ + θ − 1, 4γ + α − 1, 6γ − 1}, (7.7)

and focus on the cases in which w = 0. As we will see in the final section of the
paper, w < 0 corresponds to 13 different MDPs for Sn/n1−γ . On the other hand,
if w > 0, then one obtains neither scaling limits nor MDPs.

In the next theorem we show that w = 0 corresponds to 7 different choices of
γ , θ , and α, which in turn correspond to 13 different sequences (βn, Kn) defined in
(7.1) and (7.3). The additional sequences arise because when x4 is not the highest
order term in the scaling limit (cases 4–5, 8–13), b can be chosen to be either
positive or negative; similarly, when x2 is not the highest order term in the scaling
limit (cases 6–13), k can be chosen to be either positive or negative. As shown in
Table IV in part (b) of the theorem, for each of these 13 different sequences we
obtain a different scaling limit of Sn/n1−γ .

The limiting densities in cases 1, 4–7, and 10–13 are new. In cases 2, 3b,
8, and 9 we obtain the same forms of the limiting densities as in Theorem 6.1,
where we considered (βn, Kn) → (β, K ) ∈ B. However, the values of γ in the
corresponding scaling limits in the two theorems are different. By contrast, the
values of γ and θ as well as the forms of the limiting densities are the same in
case 3a in Theorem 7.1 and in case 2 in Theorem 6.1.

There are yet further possibilities concerning the sign of b and k. In all the
cases in which no x4 term appears in the scaling limit (cases 1, 3, 6, 7), we can
choose b to be any real number. Similarly, in all the cases in which no x2 term
appears in the scaling limit (cases 1, 2, 4, 5), we can choose k to be any real number.
Although the choice of b or k affects the definition of the sequence (βn, Kn), it
does not affect the form of the scaling limit.

Through the terms x6, x4, and x2 appearing in the limiting densities, the
scaling limits correspond to the influence of one or more of the sets C , B, and
A. The influence of the various sets upon the form of the scaling limits is shown
in Fig. 2 in the introduction, and details are given in Table IV, which is included
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Table IV. Values of α, θ , and γ and scaling limits in part (b) of Theorem 7.1.

Case Values of α

Influence Values of θ Values of γ Scaling limit of Sn/n1−γ

1 α > 1
3 γ = 1

6 exp(−c6x6) dx

C θ > 2
3 c6 > 0, b ∈ R, k ∈ R

2 α ∈ (0, 1
3 ) γ = 1−α

4 ∈ ( 1
6 , 1

4 ) exp(−bc̄4x4) dx

B θ > α+1
2 c̄4 > 0, b > 0, k ∈ R

3a α > 0 γ = 1−θ
2 ∈ ( 1

4 , 1
2 ) exp(−kβcx2) dx

A θ ∈ (0, 1
2 ) k > 0, b ∈ R

3b θ ∈ [ 1
2 , 2

3 ) γ = 1−θ
2 ∈ ( 1

6 , 1
4 ] exp(−kβcx2) dx

A α > 2θ − 1 k > 0, b ∈ R

4–5 α = 1
3 γ = 1

6 exp(−bc̄4x4 − c6x6) dx

B + C θ > 2
3 b �= 0, k ∈ R

6–7 α > 1
3 γ = 1

6 exp(−kβcx2 − c6x6) dx

A + C θ = 2
3 k �= 0, b ∈ R

8–9 α ∈ (0, 1
3 ) γ = 1−α

4 ∈ ( 1
6 , 1

4 ) exp(−kβcx2 − bc̄4x4) dx

A + B θ = α+1
2 ∈ ( 1

2 , 2
3 ) k �= 0, b > 0

10–13 α = 1
3 γ = 1

6 exp(−kβcx2 − bc̄4x4 − c6x6) dx

A + B + C θ = 2
3 k �= 0, b �= 0

in part (b) of the next theorem. Case 3, which corresponds to the influence of A
alone, has two subcases, labeled 3a and 3b in Table IV. Case 3a corresponds to the
lower region labeled A in Fig. 2 and case 3b to the upper region labeled A in Fig. 2.
Using Table IV, one easily checks that as (α, θ ) crosses any of the lines in Fig. 2
labeled A + B, A + C , or B + C , the values of γ in the scaling limits change
continuously while the forms of the limiting densities change discontinuously.

Theorem 7.1. Given α > 0, θ > 0, b �= 0, and k �= 0, define

βn = log(4 − b/nα) = log(eβc − b/nα) and Kn = K (βn) − k/nθ ,

where K (β) = (eβ + 2)/(4β) for β > 0. Then (βn, Kn) → (βc, Kc(βc)). Given
γ ∈ (0, 1), we also define

G(x) = δ(w, 2γ + θ − 1)kβcx2 + δ(w, 4γ + α − 1)bc̄4x4 + δ(w, 6γ − 1)c6x6,

(7.8)
where c̄4 = 3/16 and c6 = 9/40. The following conclusions hold.
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(a) Assume that w = min{2γ + θ − 1, 4γ + α − 1, 6γ − 1} equals 0. Then

Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ exp[−G(x)] dx . (7.9)

(b) We have w = 0 if and only if one of the 13 cases enumerated in Table IV
holds. Each of the 13 cases corresponds to a set of values of θ , α, and γ , to the
influence of one or more sets C, B, A, and to a particular scaling limit in (7.9).
The form of the scaling limit is not affected by the choice of b ∈ R in cases 1, 3,
6, and 7 and by the choice of k ∈ R in cases 1, 2, 4, and 5.

Note. The constant sequence (βn, Kn) = (βc, Kc(βc)) for all n corresponds to
the choices α = θ = ∞ in case 1. As in the proof of case 1, one shows
that Pn,βc,Kc(βc){Sn/n1−1/6 ∈ dx} =⇒ exp(−c6x6)dx . This scaling limit was men-
tioned in (2.7).

Proof of Theorem 7.1. We first prove part (b) from part (a) and then prove part
(a).

(b) w = min{2γ + θ − 1, 4γ + α − 1, 6γ − 1} equals 0 if and only if each
of the quantities in this minimum is nonnegative and one or more of the quantities
equals 0. As (7.8) makes clear, 6γ − 1 = 0 corresponds to the influence of C ,
4γ + α − 1 = 0 to the influence of B, and 2γ + θ − 1 = 0 to the influence of
A. We have the following 13 mutually exclusive and exhaustive cases, which
correspond to the 13 cases in Table IV. In each of the cases the equalities and
inequalities expressing the influence of one or more sets C , B, and A are easily
verified to be equivalent to the equalities and inequalities involving α, θ , and γ

given in the second and third columns of Table IV. Case 3, the most complicated,
divides into two subcases depending on the value of α.

• Case 1: Influence of C alone. 2γ + θ − 1 > 0, 4γ + α − 1 > 0, 6γ − 1 =
0, b ∈ R, and k ∈ R.

• Case 2: Influence of B alone. 2γ + θ − 1 > 0, 4γ + α − 1 = 0, 6γ − 1 >

0, b > 0, and k ∈ R.
• Case 3: Influence of A alone. 2γ + θ − 1 = 0, 4γ + α − 1 > 0, 6γ − 1 >

0, k > 0, and b ∈ R.
• Cases 4–5: Influence of B and C. 2γ + θ − 1 > 0, 4γ + α − 1 = 0, 6γ −

1 = 0, b > 0 for case 4 and b < 0 for case 5, and k ∈ R.
• Cases 6–7: Influence of A and C. 2γ + θ − 1 = 0, 4γ + α − 1 > 0, 6γ −

1 = 0, k > 0 for case 6 and k < 0 for case 7, and b ∈ R.
• Cases 8–9: Influence of A and B. 2γ + θ − 1 = 0, 4γ + α − 1 = 0, 6γ −

1 > 0, k > 0 for case 8, k < 0 for case 9, and b > 0.
• Cases 10–13: Influence of A, B, and C. 2γ + θ − 1 = 0, 4γ + α − 1 = 0,

6γ − 1 = 0, k > 0 and b > 0 for case 10, k < 0 and b > 0 for case 11,
k > 0 and b < 0 for case 12, and k < 0 and b < 0 for case 13.
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In each of the 13 cases the form of G(x) follows from (7.8). In combination
with part (a), we obtain the 13 forms of the scaling limits listed in the last column
of Table IV.

(a) The proof of the 13 scaling limits follows precisely the pattern of the
proof of the 4 scaling limits listed in part (b) of Theorem 6.1. As the discussion
preceding the statement of Theorem 7.1 indicates, the quantity w = min{2γ +
θ − 1, 4γ + α − 1, 6γ − 1} is defined in such a way that in each of the 13 cases
defined by the choices of α, θ , γ , k, and b in Table IV, we have for each x ∈ R

lim
n→∞ nGβn ,Kn (x/nγ ) = G(x).

Since in each case we have γ ∈ [1/6, 1/2), the term Wn/n1/2−γ in (4.1) does
not contribute to the limit n → ∞. Hence we can determine the scaling limits
of Sn/n1−γ by using (4.2). In order to justify taking the limit inside the integrals
on the right hand side of (4.2), we return to (7.6) and use the fact that for all
sufficiently large n, C (2)

n > 0, C (4)
n > 0, and G(6)

βn ,Kn
(0) > 0. It follows that R > 0

can be chosen to be sufficiently small so that for all sufficiently large n and all
x ∈ R satisfying |x/nγ | < R there exists a polynomial H (x) satisfying

nGβn ,Kn (x/nγ ) ≥ H (x) (7.10)

and
∫

R
exp[−H (x)] < ∞. We define H (x) = G(x)/2 in all the cases in which

both b ≥ 0 and k ≥ 0 (cases 1–4, 6, 8, 10). Otherwise, a suitable polynomial H
can be found as in (6.8); the details are omitted. As in the proof of Theorem 6.1,
the dominated convergence theorem and part (c) of Lemma 4.4 imply that for any
bounded, continuous function f

lim
n→∞

∫

R

f (x) exp[−nGβn ,Kn (x/nγ )] dx =
∫

R

f (x) exp[−G(x)] dx .

From (4.2) we conclude that in each of the 13 cases in part (b)

Pn,βn ,Kn

{
Sn/n1−γ ∈ dx

} =⇒ exp[−G(x)] dx .

This completes the proof of the theorem. �

Two special cases of the scaling limits in Theorem 7.1 are worth pointing out.
Given θ > 0 and k �= 0, the sequence

βn = βc and Kn = K (βc) − k/nθ

corresponds to the choice α = ∞ in Theorem 7.1. With this sequence and with the
same proofs, one obtains exactly the same limits as in cases 1, 3, 6, and 7 in this
theorem with the same choices of θ , γ , and k. Similarly, given α > 0 and b �= 0,
the sequence

βn = log(4 − b/nα) and Kn = K (βc)
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corresponds to the choice θ = ∞ in Theorem 7.1. With this sequence and with
the same proofs, one obtains exactly the same limits as in cases 1, 2, 4, and 5 in
this theorem with the same choices of α, γ , and b.

This completes our analysis of scaling limits for Sn/n1−γ with respect to
Pn,βn ,Kn , where the sequence (βn, Kn) converging to (βc, Kc(βc)) is defined in
Theorem 7.1. In the next section we study MDPs for Sn/n1−γ for appropriate
sequences (βn, Kn) converging to (β, K ) ∈ A ∪ B ∪ C and for appropriate choices
of γ . We obtain 1 MDP for (β, K ) ∈ A, 4 MDPs for (β, Kc(β)) ∈ B, and 13 MDPs
for (βc, Kc(βc)) ∈ C .

8. 18 MDPS FOR (βn, Kn)→ (β, K ) ∈ A ∪ B ∪ C

In this section we turn to a new problem, which is to formulate MDPs for
Sn/n1−γ with respect to Pn,βn ,Kn , first for appropriate sequences (βn, Kn) converg-
ing to (β, Kc(β)) ∈ B, then for (βn, Kn) converging to (β, K ) ∈ A, and finally for
(βn, Kn) converging to (βc, Kc(βc)) ∈ C . These results are stated, respectively, in
Theorems 8.1–8.3. In proving the first result, we introduce the methods that are
also used to prove the third. The proof of the MDP when (βn, Kn) → (β, K ) ∈ A
proceeds differently from the proofs of the other MDPs in this section, relying on
the Gärtner–Ellis Theorem. After the proof of that MDP, we will remark on why
the same method cannot be used to prove all the MDPs in this section. Although
an MDP is an LDP, we shall follow the example of Ref. 19, who in their study of
Curie–Weiss-type models speak about an MDP whenever the exponential speed
an of the large deviation probabilities satisfies an/n → 0 as n → ∞. Also see
(Ref. 17, Sec. 3.7).

When (βn, Kn) → (β, Kc(β)) ∈ B ∪ C , we will prove the MDPs by a method
that is closely related to the proofs of the scaling limits earlier in this paper.
Thus, rather than focus on the large deviation probabilities directly, we prove that
Sn/n1−γ satisfies an equivalent Laplace principle. Despite the similarity in the
proof of the scaling limits and the Laplace principles, the proof of the latter is much
more delicate, requiring additional estimates not needed in the proof of the former.

We start by considering the MDPs when (βn, Kn) converges to (β, Kc(β)) ∈
B. In order to formulate these limit theorems, we adapt the methods used in Sec. 6,
where we proved scaling limits for such sequences (βn, Kn). For β ∈ (0, βc) let
βn be an arbitrary positive sequence that converges to β. Given θ > 0 and k �= 0,
we then define Kn → Kc(β) as in (6.2). With this choice, part (b) of Theorem 4.3
implies that for any γ > 0 and R > 0 and for all x ∈ R satisfying |x/nγ | < R
there exists ξ ∈ [−x/nγ , x/nγ ] such that [see (6.3)]

nGβn ,Kn (x/nγ ) = 1

n2γ+θ−1

C (2)
n

2!
x2 + 1

n4γ−1

G(4)
βn ,Kn

(0)

4!
x4

+ 1

n5γ−1
Bn(ξ (x/nγ ))x5. (8.1)
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The error terms Bn(ξ (x/nγ )) are uniformly bounded over n ∈ N and x ∈
(−Rnγ , Rnγ ), C (2)

n → 2β, and G(4)
βn ,Kn

(0) → G(4)
β,K (0) > 0.

Given γ ∈ (0, 1), we define

v = min{2γ + θ − 1, 4γ − 1}. (8.2)

In Theorem 6.1 we prove that when v = 0, Sn/n1−γ satisfies the scaling limit

Pn,βn ,Kn {Sn/n1−γ ∈ dx} =⇒ exp[−G(x)]dx,

where

G(x) = δ(v, 2γ + θ − 1)kβx2 + δ(v, 4γ − 1)c4x4

and c4 is defined in (6.5). As enumerated in Table III, the 4 different forms of the
limiting density depend on the values of γ and θ and the sign of k.

In Theorem 8.1 we prove the analogous results on the level of MDPs. Assume
that the quantity v defined in (8.2) is negative. Then, when (βn, Kn) is chosen as
in Theorem 6.1, Sn/n1−γ satisfies the MDP with exponential speed n−v and rate
function �(x) = G(x) − inf y∈R G(y), where G is defined in the last display. We
prove the MDP in Theorem 8.1 by showing that when v < 0, Sn/n1−γ satisfies
the Laplace principle with speed n−v and rate function �; i.e., for any bounded,
continuous function ψ

lim
n→∞

1

n−v
log

∫

�n

exp[n−v ψ(Sn/n1−γ )] dPn,βn ,Kn = sup
x∈R

{ψ(x) − �(x)}.

By Theorem 1.2.3 in Ref. 18 the fact that Sn/n1−γ satisfies the Laplace principle
implies that Sn/n1−γ satisfies the LDP with the same speed n−v and the same rate
function �; i.e., for any closed subset F in R

lim sup
n→∞

1

n−v
log Pn,βn ,Kn {Sn/n1−γ ∈ F} ≤ − inf

x∈F
�(x)

and for any open subset � in R

lim inf
n→∞

1

n−v
log Pn,βn ,Kn {Sn/n1−γ ∈ �} ≥ − inf

x∈�
�(x).

� is obviously a rate function. One easily checks that in all 4 cases given in part
(b) of Theorem 8.1 −v < 1. Hence n−v/n → 0 as n → ∞, and so we have an
MDP. In cases 1, 2, and 3, we have inf y∈R G(y) = 0 and thus � = G; in case 4,
inf y∈R G(y) < 0.

As in the scaling limits in Theorem 6.1, the rate function in Theorem 8.1
takes the 4 forms enumerated in cases 1, 2, 3, and 4 in Table V. In case 2 the
requirement that G(x) → ∞ as |x | → ∞ forces k > 0. By contrast, in case 4,
k < 0 is allowed. In case 1 we can also choose k to be any real number; this affects
only the definition of the sequence Kn , not the form of the rate function.
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Fig. 5. Influence of B and A on MDPs when (βn, Kn) → (β, Kc(β)) ∈ B.

The forms of the rate functions reflect the influence, respectively, of B, of A,
and of A and B. In each case the particular set or sets that influence the form of G
depend on the speed at which (βn, Kn) approaches (β, Kc(β)) and the direction of
approach. Case 2, which corresponds to the influence of A alone, has two subcases,
labeled 2a and 2b in Table V.

In Fig. 5 and in Table V we indicate the subsets of the positive quadrant of
the θ -γ plane leading to the 4 cases of the MDPs in Theorem 8.1. Subcases 2a
and 2b correspond, respectively, to the left half and the right half of the triangle
labeled A in Fig. 5. An interesting connection between the MDPs in Theorem 8.1
and the scaling limits in Theorem 6.1 is revealed by comparing Figs. 4 with 5,
which exhibits the subsets of the positive quadrant of the θ − γ plane leading to
the 4 cases of the scaling limits in Theorem 6.1. The subsets labeled A, B, and
A + B in Fig. 4 are each a subset of the boundary of the set having the same label
in Fig. 5. The relevant boundaries in Fig. 5 are labeled ∂+A, ∂+B, and ∂+(A + B),
the first two of which are indicated by dotted lines. This relationship between the
two figures is not a surprise because the sets labeled A, B, and A + B in Fig. 4
are determined by solving v = 0 while the sets having the same labels in Fig. 5
are determined by solving v < 0.

Theorem 8.1. For fixed β ∈ (0, βc), let βn be an arbitrary positive sequence that
converges to β. Given θ > 0 and k �= 0, define

Kn = K (βn) − k/nθ ,

where K (β) = (eβ + 2)/(4β) for β > 0. Then (βn, Kn) → (β, Kc(β)) ∈ B. Given
γ ∈ (0, 1), we also define

G(x) = δ(v, 2γ + θ − 1)kβx2 + δ(v, 4γ − 1)c4x4, (8.3)
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Table V. Values of γ and θ , exponential speeds, and rate functions in

part (b) of Theorem 8.1

Case Exp’l Function G in
Influence Values of γ Values of θ speed rate function �

1 γ ∈ (0, 1
4 ) θ > 2γ n1−4γ c4x4

B c4 > 0, k ∈ R

2a γ ∈ (0, 1
4 ] θ ∈ (0, 2γ ) n1−2γ−θ kβx2

A k > 0

2b γ ∈ ( 1
4 , 1

2 ) θ ∈ (0, 1 − 2γ ) n1−2γ−θ kβx2

A k > 0

3–4 γ ∈ (0, 1
4 ) θ = 2γ n1−4γ kβx2 + c4x4

A + B k �= 0

where c4 > 0 is given by

c4 = G(4)
β,Kc(β)(0)

4!
= 2[2βKc(β)]4(4 − eβ)

4!(eβ + 2)2
= (eβ + 2)2(4 − eβ )

23 · 4!
.

The following conclusions hold.
(a) Assume that v = min{2γ + θ − 1, 4γ − 1} satisfies v < 0. Then with

respect to Pn,βn ,Kn , Sn/n1−γ satisfies the Laplace principle, and thus the MDP,
with exponential speed n−v and rate function �(x) = G(x) − inf y∈R G(y).

(b) We have v < 0 if and only if one of the 4 cases enumerated in Table V
holds. Each of the 4 cases corresponds to a set of values of γ and θ , a choice of sign
of k, the influence of one or more sets B and A, and a particular exponential speed
and a particular form of the rate function in part (a). The function G appearing
in the definition of the rate function is shown in column 5 in Table V; in case 4 the
nonzero constant inf y∈R G(y) in the definition of the rate function is not shown.
In case 1 the choice of k ∈ R does not affect the form of the rate function.

Proof: We first prove part (b) from part (a) and then prove part (a).
(b) We have v < 0 in the following 4 mutually exclusive and exhaustive

cases. As (8.3) makes clear, v = 4γ − 1 < 0 corresponds to the influence of B
and v = 2γ + θ − 1 < 0 to the influence of A.

• Case 1: Influence of B alone. v = 4γ − 1 < 0, 4γ − 1 < 2γ + θ − 1,
and k ∈ R. In this case γ ∈ (0, 1/4) and θ > 2γ , which corresponds to the
second and third columns for case 1 in Table V.

• Case 2: Influence of A alone. v = 2γ + θ − 1 < 0, 2γ + θ − 1 < 4γ − 1,
and k > 0. In this case 0 < θ < min{2γ, 1 − 2γ }. Since 0 < 2γ ≤
1 − 2γ ⇔ γ ∈ (0, 1/4] and 0 < 1 − 2γ < 2γ ⇔ γ ∈ (1/4, 1/2), case 2
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corresponds to the second and third columns for case 2a and case 2b in
Table V.

• Cases 3–4: Influence of A and B. v = 4γ − 1 = 2γ + θ − 1 < 0, k > 0
for case 3, and k < 0 for case 4. In these cases 0 < γ < 1/4 and θ = 2γ .
Hence case 3–4 correspond to the second and third columns for cases 3–4
in Table V.

In cases 1, 2, 3, and 4 we have, respectively, G(x) = c4x4, G(x) = kβx2 with
k > 0, G(x) = kβx2 + c4x4 with k > 0, and G(x) = kβx2 + c4x4 with k < 0. In
combination with part (a), we obtain the 4 rate functions given in the last column
of Table V.

(a) Our strategy is to prove that with respect to Pn,βn ,Kn × Q, Sn/n1−γ +
Wn/n1/2−γ satisfies the Laplace principle with exponential speed n−v and rate
function �. In order to prove the Laplace principle for Sn/n1−γ alone, we need
the following estimate, which shows that Wn/n1/2−γ is superexponentially small
relative to exp(n−v): for any δ > 0

lim sup
n→∞

1

n−v
log Q{|Wn/n1/2−γ | > δ} = −∞. (8.4)

According to Theorem 1.3.3 in Ref. 18, if with respect to Pn,βn ,Kn × Q,
Wn/n1/2−γ + Sn/n1−γ satisfies the Laplace principle with speed n−v and rate
function �, then with respect to Pn,βn ,Kn , Sn/n1−γ satisfies the Laplace princi-
ple with speed n−v and rate function �. Since the Laplace principle implies the
MDP(18) (Thm. 1.2.3), part (a) of the present theorem will be proved.

We now prove (8.4). Denote the variance (2βn Kn)−1 of Wn by σ 2
n . Since βn

and Kn are bounded and uniformly positive over n, the sequence σ 2
n is bounded

and uniformly positive over n. We have the inequality

Q{|Wn/n1/2−γ | > δ} = Q{|N (0, σ 2
n )| > n1/2−γ δ}

≤
√

2σn√
πn1/2−γ δ

· exp
( − n1−2γ δ2

/[
2σ 2

n

])
.

Hence (8.4) follows if 1 − 2γ > −v. Since γ and θ are both positive, this is easily
verified to hold when either v = 4γ − 1 or v = 2γ + θ − 1.

We now turn to the Laplace principle for Sn/n1−γ + Wn/n1/2−γ . Let ψ be an
arbitrary bounded, continuous function. Choosing f = exp[n−vψ] in Lemma 4.1
yields

∫

�n×�

exp

[

n−v ψ

(
Sn

n1−γ
+ Wn

n1/2−γ

)]

d(Pn,βn ,Kn × Q) (8.5)

= 1
∫

R
exp[−nGβn ,Kn (x/nγ )] dx

·
∫

R

exp[n−vψ(x) − nGβn ,Kn (x/nγ )] dx .
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In order to obtain the appropriate expansion of nGβn ,Kn (x/nγ ) in this display, we
multiply the numerator and denominator of the right hand side of (8.1) by n−v ,
obtaining

nGβn ,Kn (x/nγ ) = n−vGn(x),

where

Gn(x) = 1

n2γ+θ−1−v

C (2)
n

2!
x2 + 1

n4γ−1−v

G(4)
βn ,Kn

(0)

4!
x4 + 1

n5γ−1−v
Bn(ξ (x/nγ ))x5.

The proof of the Laplace principle for Sn/n1−γ + Wn/n1/2−γ rests on the fol-
lowing properties of nGβn ,Kn (x/nγ ) = n−vGn(x), which in turn are consequences
of the Taylor expansion of Gn(x) just given. Because of the estimate (8.4) on
Wn/n1/2−γ , the inequality in (8.6), and the uniform convergence of Gn to G ex-
pressed in item 3 below, the proof of the MDPs, though analogous, is more delicate
than the proof of the scaling limits in Sec. 6, for which the a.s. convergence of
Wn/n1/2−γ to 0, the pointwise convergence of Gβn ,Kn (x/nγ ) to G(x), and the
lower bound (6.7) suffice.

1. There exists R > 0 and a polynomial H with the properties that H (x) →
∞ as |x | → ∞ and for all sufficiently large n and all x ∈ R satisfying
|x/nγ | < R

nGβn ,Kn (x/nγ ) ≥ n−v H (x).

In case 1 when k ≥ 0 as well as in cases 2 and 3, H (x) = G(x)/2; in
case 1 when k < 0 and in case 4, which corresponds to k < 0, H (x) =
−2|k|βx2 + c4x4/2.

2. Let � = supx∈R
{ψ(x) − G(x)}. Since H (x) → ∞ and G(x) → ∞, there

exists M > 0 with the properties that

sup
|x |>M

{ψ(x) − H (x)} ≤ −|�| − 1,

the supremum of ψ − G on R is attained on the interval [−M, M], and
the supremum of −G on R is attained on the interval [−M, M]. In com-
bination with item 1, we see that for all n ∈ N satisfying Rnγ > M

sup
M<|x |<Rnγ

{n−vψ(x) − nGβn ,Kn (x/nγ )} ≤ −n−v(|�| + 1). (8.6)

3. Let M be the number selected in item 2. Then for all x ∈ R satisfying |x | ≤
M , Gn(x) = n1+vGβn ,Kn (x/nγ ) converges uniformly to G(x) as n → ∞.
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Since nGβn ,Kn (x/nγ ) = n−vGn(x), item 3 implies that for any δ > 0 and all
sufficiently large n

exp(−n−vδ)
∫

{|x |≤M}
exp[n−v(ψ(x) − G(x))] dx

≤
∫

{|x |≤M}
exp[n−vψ(x) − nGβn ,Kn (x/nγ )] dx

≤ exp(n−vδ)
∫

{|x |≤M}
exp[n−v(ψ(x) − G(x))] dx .

In addition, item 2 implies that
∫

{M<|x |<Rnγ }
exp[n−vψ(x) − nGβn ,Kn (x/nγ )] dx ≤ 2Rnγ exp[−n−v(|�| + 1)].

Since ψ is bounded, the last two displays show that there exist a5 > 0 and a6 ∈ R

such that for all sufficiently large n
∫

{|x |<Rnγ }
exp[−nGβn ,Kn (x/nγ )] dx ≤ a5 exp(n−va6).

Since −v ∈ (0, 1), we conclude from part (d) of Lemma 4.4 the existence of a7 > 0
such that for all sufficiently large n

∫

{|x |≥Rnγ }
exp[−nGβn ,Kn (x/nγ )] dx ≤ 2a5 exp(−na7).

We now put these three estimates together. For all sufficiently large n we have

exp(−n−vδ)
∫

{|x |≤M}
exp[n−v(ψ(x) − G(x))] dx

≤
∫

R

exp[n−vψ(x) − nGβn ,Kn (x/nγ )] dx

≤ exp(n−vδ)
∫

{|x |≤M}
exp[n−v(ψ(x) − G(x))] dx + δn,

where

δn ≤ 2Rnγ exp[−n−v(|�| + 1)] + 2a5 exp(−na7 + n−v‖ψ‖∞).

Since −v < 1 and since by item 2

lim
n→∞

1

n−v
log

∫

{|x |≤M}
exp[n−v(ψ(x) − G(x))] dx

= sup
|x |≤M

{ψ(x) − G(x)} = sup
x∈R

{ψ(x) − G(x)},
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we have

sup
x∈R

{ψ(x) − G(x)} − δ

≤ lim inf
n→∞

1

n−v
log

∫

R

exp[n−vψ(x) − nGβn ,Kn (x/nγ )] dx

≤ lim sup
n→∞

1

n−v
log

∫

R

exp[n−vψ(x) − nGβn ,Kn (x/nγ )] dx

≤ sup
x∈R

{ψ(x) − G(x)} + δ,

and because δ > 0 is arbitrary, it follows that

lim
n→∞

1

n−v
log

∫

R

exp[n−vψ(x) − nGβn ,Kn (x/nγ )] dx = sup
x∈R

{ψ(x) − G(x)}.

Combining this limit with the same limit for ψ = 0, we conclude from (8.5) that

lim
n→∞

1

n−v
log

∫

�n×�

exp

[

n−v ψ

(
Sn

n1−γ
+ Wn

n1/2−γ

)]

d(Pn,βn ,Kn × Q)

= sup
x∈R

{ψ(x) − G(x)} + inf
y∈R

G(y) = sup
x∈R

{ψ(x) − �(x)}.

This completes the proof that with respect to Pn,βn ,Kn × Q, Sn/n1−γ + Wn/n1/2−γ

satisfies the Laplace principle with exponential speed n−v and rate function �.
Since Wn/n1/2−γ is superexponentially small, we obtain the desired Laplace
principle for Sn/n1−γ with respect to Pn,βn ,Kn . The proof of the theorem is
complete. �

We next formulate the MDP for Sn/n1−γ when (βn, Kn) is an arbitrary posi-
tive sequence that converges to (β, K ) ∈ A; thus β and K satisfy 0 < β ≤ βc and
0 < K < Kc(β). Because in this case the normal random variable Wn contributes
to the limit, we are not able to prove the MDP as we proved Theorem 8.1. Instead
we use the Gärtner–Ellis Theorem. The following theorem is also valid for β > βc

and 0 < K < Kc(β), and the proof is essentially the same. The key observation
is that for β > βc, we have K (β) = (eβ + 2)/(4β) > Kc(β) (Ref. 27, Thm. 3.8).
Hence if K < Kc(β), then also K < K (β) and thus G(2)

β,K (0) in (8.7) is positive.

Theorem 8.2. Let (βn, Kn) be an arbitrary positive sequence that converges
to (β, K ) ∈ A. Let γ be any number in (0, 1/2). Then with respect to Pn,βn ,Kn ,
Sn/n1−γ satisfies the MDP with exponential speed n1−2γ and rate function
β[K (β) − K ]x2. Thus the limit is independent of the particular sequence (βn, Kn)
that is chosen.
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Proof: For n ∈ N and t ∈ R we use the monotone convergence theorem to
replace f in Lemma 4.1 by exp(n1−2γ t x). We then use the Taylor expansion in
part (a) of Theorem 4.3 and the fact that G(2)

βn ,Kn
(0) given in (4.9) converges to

G(2)
β,K (0) = 2βK [K (β) − K ]

K (β)
, (8.7)

which is positive since 0 < K < Kc(β) = K (β). As in the proof of part (a) of
Theorem 8.1, there exists M > 0 such that the supremum of t x − G(2)

β,K (0)x2/2 is
attained on the interval [−M, M] and the following calculation is valid:

lim
n→∞

1

n1−2γ
log

∫

�n×�

exp

[

n1−2γ t

(
Sn

n1−γ
+ Wn

n1/2−γ

)]

d(Pn,βn ,Kn × Q)

= lim
n→∞

1

n1−2γ
log

∫

R

exp
[
n1−2γ t x − nGβn ,Kn (x/nγ )

]
dx

− lim
n→∞

1

n1−2γ
log

∫

R

exp
[−nGβn ,Kn (x/nγ )

]
dx

= lim
n→∞

1

n1−2γ
log

∫

{|x |≤M}
exp

[
n1−2γ

(
t x − G(2)

β,K (0)x2/2
)]

dx

− lim
n→∞

1

n1−2γ
log

∫

{|x |≤M}
exp

[ − G(2)
β,K (0)x2/2

]
dx

= sup
{|x |≤M}

{
t x − G(2)

β,K (0)x2/2
} + inf

{|x |≤M}
{
G(2)

β,K (0)x2/2
}

= t2

2G(2)
β,K (0)

.

Since Wn is an N (0, (2βn Kn)−1) random variable and is independent of Sn ,

lim
n→∞

1

n1−2γ
log

∫

�n

exp

[

n1−2γ t · Sn

n1−γ

]

d Pn,βn ,Kn

= lim
n→∞

1

n1−2γ
log

∫

�n×�

exp

[

n1−2γ t

(
Sn

n1−γ
+ Wn

n1/2−γ

)]

d(Pn,βn ,Kn × Q)

− lim
n→∞

1

n1−2γ
log

∫

�

exp
[
n1/2−γ tWn

]
d Q

= t2

2G(2)
β,K (0)

− t2

4βK
= t2

2
· 1

2β[K (β) − K ]
.
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The Gärtner–Ellis Theorem(21) now implies that Sn/n1−γ satisfies the MDP with
exponential speed n1−2γ and rate function

I (x) = sup
t∈R

{

t x − t2

2
· 1

2β[K (β) − K ]

}

= β[K (β) − K ]x2.

This completes the proof. �

In the context of the proof of the preceding theorem, it is worthwhile pointing
out that the Gärtner–Ellis Theorem cannot be used to prove all the other MDPs
for Sn/n1−γ in this section. For example, consider the MDPs in Theorem 8.1. For
any t ∈ R one calculates

g(t) = lim
n→∞

1

n−v
log

∫

�n×�

exp

[

n−v t

(
Sn

n1−γ
+ Wn

n1/2−γ

)]

d(Pn,βn ,Kn × Q)

= sup
x∈R

{t x − G(x)} + inf
y∈R

G(y) = sup
x∈R

{t x − [G(x) − Ḡ]},

where Ḡ = inf y∈R G(y). Thus g equals the Legendre-Fenchel transform of G − Ḡ.
If G − Ḡ is strictly convex on R, as it is in cases 1, 2, and 3 in Theorem 8.1, then
g is differentiable on R [Ref. 40, p. 253]. Hence by the Gärtner–Ellis Theorem,
Sn/n1−γ satisfies the MDP with exponential speed n−v and rate function given
by the Legendre-Fenchel transform of g, which is G − Ḡ. In cases 1, 2, and 3 in
Theorem 8.1, Ḡ equals 0, and we recover the form of the rate function in column
5 of Table V. However, the situation is different in the MDP in case 4, in which
G(x) = kβx2 + c4x4 with k < 0. Here Ḡ < 0, G is not convex on all of R, and
g is not differentiable on R. As a result, the Gärtner–Ellis Theorem cannot be
applied to obtain the lower large deviation bound for all open sets and thus to
obtain the MDP. In addition, the Legendre–Fenchel transform of g equals 0 on a
symmetric interval containing the origin, and thus it does not coincide with G − Ḡ
on this interval. A similar situation holds in Theorem 8.3, in which we derive 13
MDPs for suitable sequences (βn, Kn) → (βc, Kc(βc)). In cases 1–4, 6, 8, and 10
in that theorem, the coefficients in the polynomial G are all positive, and so G is
strictly convex and Ḡ = 0. Hence the corresponding MDPs can be derived via the
Gärtner–Ellis Theorem. However, in all the other cases except for case 12 with
k sufficiently large, the polynomial G is not convex on all of R; as in case 4 in
Theorem 8.1, the Gärtner–Ellis Theorem cannot be applied to obtain the MDP.

We now consider the final class of MDPs in this section. This class arises
when (βn, Kn) converges to (βc, Kc(βc)) along the same sequences considered in
Theorem 7.1, where we proved scaling limits for Sn/n1−γ for γ ∈ (0, 1/2). Given
α > 0, θ > 0, b �= 0, and k �= 0, these sequences are defined by

βn = log(4 − b/nα) = log(eβc − b/nα) and Kn = K (βn) − k/nθ . (8.8)



Critical Behavior of Probabilistic Limit Theorems 549

For these sequences the parameter that plays the role of v in Theorem 8.1 is

w = min{2γ + θ − 1, 4γ + α − 1, 6γ − 1}.
The 13 forms of the scaling limits of Sn/n1−γ are proved in Theorem 7.1 under
the assumption that w = 0. We now assume that w < 0. Using the same Taylor
expansion that was used to deduce these scaling limits [Thm. 4.3(c)], one deduces
the 13 forms of the Laplace principles for Sn/n1−γ . These Laplace principles and
the equivalent MDPs are stated in the next theorem along with the choices of γ , α,
b, θ , and k leading to the 13 forms of the rate function. The only requirement on b
and k is that G(x) → ∞ as |x | → ∞. This requirement forces b > 0 in case 2 and
k > 0 in case 3. The proof of the MDPs in the next theorem is omitted because it
follows the same pattern of proof of Theorem 8.1.

As in Theorem 7.1, there are further possibilities concerning the sign of b
and k. In all the cases in which no x4 term appears in the scaling limit (cases 1, 3,
6, 7), we can choose b to be any real number. Similarly, in all the cases in which
no x2 term appears in the scaling limit (cases 1, 2, 4, 5), we can choose k to be any
real number. Although the choice of b or k affects the definition of the sequence
(βn, Kn), it does not affect the form of the rate function.

Theorem 8.3. Given α > 0, θ > 0, b �= 0, and k �= 0, consider the sequence
(βn, Kn) defined in (8.8). Then (βn, Kn) → (βc, Kc(βc)). Given γ ∈ (0, 1), we
also define

G(x) = δ(w, 2γ + θ − 1)kβcx2 + δ(w, 4γ + α − 1)bc̄4x4 + δ(w, 6γ − 1)c6x6,

where c̄4 = 3/16 and c6 = 9/40. The following conclusions hold.
(a) Assume that w = min{2γ + θ − 1, 4γ + α − 1, 6γ − 1} satisfies w < 0.

Then with respect to Pn,βn ,Kn , Sn/n1−γ satisfies the Laplace principle, and thus the
MDP, with exponential speed n−w and rate function �(x) = G(x) − inf y∈R G(y).

(b) We have w < 0 if and only if one of the 13 cases enumerated in Table VI
holds. Each of the 13 cases corresponds to a set of values of γ , α, and θ ; a
choice of signs of b and k; the influence of one or more sets C, B, A; and a
particular exponential speed and a particular form of the rate function in part (a).
The function G appearing in the definition of the rate function is shown in column
5 in Table VI; when inf y∈R G(y) �= 0, this additive constant in the definition of
the rate function is not shown. The form of the rate function is not affected by the
choice of b ∈ R in cases 1, 3, 6, and 7 and by the choice of k ∈ R in cases 1, 2, 4,
and 5.

As discussed in Sec. 2, the MDPs listed in Table VI yield a new class of
distribution limits for Sn/n1−γ in those cases in which the set of global minimum
points of G contains nonzero points. These are the cases in which the coefficients
of G are not all positive: cases 5 (b < 0), 7 (k < 0), 9 (k < 0), 11 (k < 0, b > 0),
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Table VI. Values of γ , α, and θ , exponential speeds, and rate functions in part (b) of

Theorem 8.3.

Case Values of α Exp’l Function G in
Influence Values of γ Values of θ speed rate function �

1 γ ∈ (0, 1
6 ) α > 2γ n1−6γ c6x6

C θ > 4γ c6 > 0, b ∈ R, k ∈ R

2 γ ∈ (0, 1
4 ) α ∈ (0, min{2γ, 1 − 4γ }) n1−4γ−α bc̄4x4

B θ > 2γ + α b > 0, c̄4 > 0, k ∈ R

3 γ ∈ (0, 1
2 ) θ ∈ (0, min{4γ, 1 − 2γ }) n1−2γ−θ kβcx2

A α > max(θ − 2γ, 0) k > 0, b ∈ R

4–5 γ ∈ (0, 1
6 ) α = 2γ n1−6γ bc̄4x4 + c6x6

B + C θ > 4γ b �= 0, k ∈ R

6–7 γ ∈ (0, 1
6 ) α > 2γ n1−6γ kβcx2 + c6x6

A + C θ = 4γ k �= 0, b ∈ R

8–9 γ = (0, 1
4 ) α ∈ (0, min{2γ, 1 − 4γ }) n1−4γ−α kβcx2 + bc̄4x4

A + B θ = 2γ + α k �= 0, b > 0

10–13 γ ∈ (0, 1
6 ) α = 2γ n1−6γ kβcx2 + bc̄4x4 + c6x6

A + B + C θ = 4γ k �= 0, b �= 0

12 (k > 0, b < 0), and 13 (k < 0, b < 0). In all these cases except for case 12,
we obtain the limit (2.13). Case 12 exhibits the most complicated behavior, giving
rise to the limit (2.14) for the critical value k = 5b2/[27βc]. These limits and
the underlying physical phenomena are now being investigated for a class of
non-mean-field models, including the Blume–Emery–Griffiths model. (24)

This completes our study of limit theorems for the BEG model in the
neighborhood of the tricritical point (βc, Kc(βc)) ∈ C , in the neighborhood of
second-order points (β, Kc(β)) ∈ B, and in the neighborhood of single-phase
points (β, K ) ∈ A. It is an unexpectedly rich and fruitful area of research, one that
we hope will inspire similar investigations for other statistical mechanical models.
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