Law of Large Numbers, Normal Approximation, and Stirling’s Formula

Let \(X_1, X_2, \ldots, X_{2n} \) be independent Bernoulli r.v.'s with
\[P(X_i = 0) = P(X_i = 1) = \frac{1}{2} \text{ for all } i = 1, 2, \ldots, 2n. \]
Define \(S_{2n} = \sum_{i=1}^{2n} X_i. \)

Law of Large Numbers. For any \(\varepsilon > 0 \)
\[\lim_{n \to \infty} P\left\{ \left| \frac{S_{2n}}{2n} - \frac{1}{2} \right| \geq \varepsilon \right\} = 0 \text{ or } \lim_{n \to \infty} P\left\{ \left| \frac{S_{2n}}{2n} - \frac{1}{2} \right| < \varepsilon \right\} = 1. \]

Central Limit Theorem (p.225). Since \(p = \frac{1}{2} \) and \(p(1-p) = \frac{1}{4} \),
\[\lim_{n \to \infty} P\left\{ \frac{n \cdot S_{2n} - n}{\sqrt{2n}} \leq b \right\} = P\left\{ a \leq N(0,1) \leq b \right\}. \]

Normal Approximation. For large \(n \)
\[P\left\{ a \leq \frac{S_{2n} - n}{\sqrt{n/2}} \leq b \right\} \approx P\left\{ a \leq N(0,1) \leq b \right\}. \]

Question. Does \(P\left\{ \frac{S_{2n}}{2n} = \frac{1}{2} \right\} \to 1 \text{ or } \to 0 \text{ as } n \to \infty? \)

Answer 1. Use normal approximation: \(P\left\{ \frac{S_{2n}}{2n} = \frac{1}{2} \right\} \approx \frac{1}{\sqrt{\pi n}}. \)
\[P\left\{ \frac{S_{2n}}{2n} = \frac{1}{2} \right\} = P\left\{ S_{2n} = n \right\} = P\left\{ n - \frac{1}{2} \leq S_{2n} \leq n + \frac{1}{2} \right\} \]
\[= P\left\{ \frac{n - \frac{1}{2} - n}{\sqrt{2n}} \leq \frac{S_{2n} - n}{\sqrt{2n}} \leq \frac{n + \frac{1}{2} - n}{\sqrt{2n}} \right\} \approx P\left\{ \frac{-1}{\sqrt{2n}} \leq N(0,1) \leq \frac{1}{\sqrt{2n}} \right\} \]
\[= \frac{1}{\sqrt{2\pi}} \int_{-1/\sqrt{2n}}^{1/\sqrt{2n}} e^{-x^2/2} \, dx \leq \frac{1}{\sqrt{2\pi}} \int_{-1/\sqrt{2n}}^{1/\sqrt{2n}} 1 \, dx \leq \frac{1}{\sqrt{2\pi}} \frac{2}{\sqrt{2n}} = \frac{1}{\sqrt{\pi n}}. \]

Answer 2. Use Stirling's formula: \(P\left\{ \frac{S_{2n}}{2n} = \frac{1}{2} \right\} \approx \frac{1}{\sqrt{\pi n}}. \)
\[P\left\{ \frac{S_{2n}}{2n} = \frac{1}{2} \right\} = P\left\{ S_{2n} = n \right\} = \binom{2n}{n} \frac{2^{-2n}}{n^n n!} \]
\[\approx \frac{(2n)^{2n} e^{-2n} \sqrt{2\pi n}}{n^n e^{-n} \sqrt{2\pi n} n^n e^{-n} \sqrt{2\pi n}} \cdot \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{\pi n}}. \] Same as in Answer 1.

Example 48. Does \(n = 40 \).
\[P\left(S_{40} = 20 \right) = \frac{1}{2} \approx 0.125 \% \text{ while normal approximation gives } 0.1272. \text{ See Ross, pp. 274-276.} \]
Although one cannot apply the normal approximation to prove the law of large numbers, they are consistent in the following sense:

\[
P\left(\left| \frac{S_n - n}{\sqrt{n}} \right| > \frac{3}{2} \right) = P\left(\left| \frac{S_n - n}{\sqrt{n}} \right| > \frac{2 \sqrt{n} \varepsilon}{\varepsilon} \right)
\]

\[
= P\left(\left| \frac{S_n - n}{\sqrt{n}} \right| > \frac{2 \sqrt{n} \varepsilon}{\sqrt{n}} \right)
\]

\[
\approx P\left(|N(0,1)| > 2\sqrt{n} \varepsilon \right)
\]

\[
= \frac{2}{\sqrt{2\pi}} \int_{2\sqrt{n} \varepsilon}^{\infty} e^{-x^2/2} dx \to 0 \text{ as } n \to \infty.
\]

One cannot apply the normal approximation in this way to study the \(n \to \infty\) behavior of \(P\left(\left| \frac{S_n - n}{\sqrt{n}} \right| > \frac{2 \sqrt{n} \varepsilon}{\varepsilon} \right)\).

How accurate is the normal approximation?

Let \(X_1, X_2, \ldots, X_n\) be independent, i.i.d. r.v.'s having the same distribution function. Assume that \(E[X_i] = \mu\) and \(\text{Var}(X_i) = \sigma^2\) for all \(i = 1, 2, \ldots, n\). Then for any \(b\)

\[
\left| P\left(\frac{S_n - n\mu}{\sigma \sqrt{n}} \leq b \right) - P\left(|N(0,1)| \leq b \right) \right| \leq \frac{C \sigma}{\sigma^3 \sqrt{n}}
\]

where \(C\) is a fixed positive constant and for all \(i\)

\[
y = E(|X_i|^3).
\]

This is called the Berry–Esseen Theorem. One can prove that \(0 < C \leq 4\).

Example. To make the error less than \(\varepsilon\), choose \(\frac{C \sigma}{\sigma^3 \sqrt{n}} \leq \varepsilon\) or \(n \geq \left(\frac{C \sigma}{\sigma^3 \varepsilon} \right)^2\).