Chapter 2

which yields the solution \(u = 23 \), in agreement with the result of Example 2 of

\[
505.997 \approx 730 \log 2
\]

or taking logarithms of both sides we obtain

\[
2 \leq \left(\frac{730}{(1-u)u} \right)^{30}
\]

is equivalent to

\[
\left(\frac{0.730}{(1-u)u} \right)^{30} \leq 2
\]

To determine the smallest integer \(u \) for which this probability is less than \(\frac{1}{2} \) note that

\[
\left(\frac{0.730}{(1-u)u} \right)^{30} \leq \left(\frac{1}{2} \right)^{30} = \left(\frac{1}{2} \right)^{30} \frac{1}{2} = 365 \frac{1}{2}
\]

Therefore

\[
\left(1 \right)^{30} \frac{1}{2} = 365 \frac{1}{2}
\]

The number of successes should approximately have a Poisson distribution with mean

Theoretical Exercise 21. As \(P \{ E \}_{i} = P \{ F \}_{i} = \frac{1}{2} \) the event \(E \) is thus uncorrelated to suppose that \(P \{ E \}_{i} \) and \(P \{ F \}_{j} \) are independent (see Theorem Exercise 21). Here we define the event \(E \) as for the case \(E \). Enneus \(E \) is a success then whereas the \(F \) is a failure. The number of successes is then equal to the number of \(E \) events. If \(i \neq j \), and say that to have a success in position \(i \) and have the same birthday. If

We approximate the above probability by using the Poisson approximation when \(n \) is a large value. A combinatorial argument was used to determine this probability and it was
determined that the probability that at least \(m \) people are in the same month. We consider the problem of selecting a random sample of 30 people from 365 people. The probability that at least 2 people have the same birthday is

\[
\exp \left(-\frac{365}{365} \right) = \exp \left(-\frac{365}{365} \right)
\]

On p. 164 of The Text. We have

\[
\exp \left(-\frac{365}{365} \right)
\]

The Poisson Approximation To get the same answer

The Birthday Problem, Exponential Approximation, and Poisson Approx

Let \(g \) denote the probability that in a group of \(m \) people no 2 people have a birthday on the same day. Then

\[
g = \frac{365}{365} \frac{364}{365} \frac{363}{365} \cdots \frac{365-m+1}{365} = \exp \left(-\frac{m}{365} \right)
\]

Two for \(m = 2 \) people compared to \(\frac{365}{365} \) we expect that

On p. 164 of The Text. We have

\[
\exp \left(-\frac{365}{365} \right)
\]

The Poisson Approximation To get the same answer