3. Two dice are thrown. Let E be the event that the sum of the dice is odd; let F be the event that at least one of the dice lands on 1; and let G be the event that the sum is 5. Describe the events $EF, E \cup F, FG, EF^c,$ and EFG.

6. A hospital administrator codes incoming patients suffering gunshot wounds according to whether they have insurance (coding 1 if they do and 0 if they do not) and according to their condition, which is rated as good (g), fair (f), or serious (s). Consider an experiment that consists of the coding of such a patient.
 (a) Give the sample space of this experiment.
 (b) Let A be the event that the patient is in serious condition. Specify the outcomes in A.
 (c) Let B be the event that the patient is uninsured. Specify the outcomes in B.
 (d) Give all the outcomes in the event $B^c \cup A$.

8. Suppose that A and B are mutually exclusive events for which $P(A) = .3$ and $P(B) = .5$. What is the probability that
 (a) either A or B occurs;
 (b) A occurs but B does not;
 (c) both A and B occur?

Prove the following relations.

1. $EF \subseteq E \cap E \cup F$.
2. If $E \subseteq F$, then $E^c \subseteq F^c$.
3. $F = FE \cup FE^c$, and $E \cup F = E \cup E^c$.

6. Let E, F, and G be three events. Find expressions for the events so that of E, F, and G:
 (a) only E occurs;
 (b) both E and G but not F occur;
 (c) at least one of the events occurs;
 (d) at least two of the events occur;
 (e) all three occur;
 (f) none of the events occurs;
 (g) at most one of them occurs;
 (h) at most two of them occur;
 (i) exactly two of them occur;
 (j) at most three of them occur.

12. Show that the probability that exactly one of the events E or F occurs equals
 $P(E) + P(F) - 2P(EF)$.

13. Prove that $P(EF^c) = P(E) - P(EF)$.