Worksheet 2.6 (Part 2) - Math 455

- 1. A diagonal of a convex polygon is a line segment connecting two non-adjacent vertices of the polygon. Let p_n denote the number of ways to decompose a convex polygon having n vertices by drawing n-3 diagonals that do not cross inside the polygon. Assume that the vertices of the polygon are labeled, so that triangulations with different orientations are counted separately. Determine p_3 , p_4 , p_5 and p_6 by showing all possible triangulations, and then find and prove a recursive formula for p_n .
- 2. A Dyck path of length 2n is a staircase walk from (0,0) to (n,n) that never rises above y = x. Let p_n denote the number of Dyck paths of length 2n. Determine p_3 , p_4 , p_5 and p_6 by showing all possible Dyck paths, and then find and prove a recursive formula for p_n .
- 3. Let p_n be the number of rooted (strictly) binary trees with *n* internal vertices (i.e., non-leaves). Determine p_3 , p_4 , p_5 and p_6 by showing all possible trees, and then find and prove a recursive formula for p_n .
- 4. The Fibonacci numbers are defined recursively as follows: set $F_0 = F_1 = 1$ and for $n \ge 2$, set $F_n = F_{n-1} + F_{n-2}$. The sequence begins with 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, Consider the chain of inequalities $a_1 \le a_2 \ge a_3 \le a_4 \ge a_5 \ldots$ with *n* variables. You would like to assign values 0 or 1 to each of a_1 through a_n satisfying these inequalities. For example, if n = 5, one solution is $1 \le 1 \ge 0 \le 1 \ge 0$. Prove that the number of ways to do it is F_{n+1} .
- 5. Show that any positive integer can be written as a sum of distinct Fibonacci numbers.
- 6. Let F_k be the kth Fibonacci number. Find and prove a general formula for
 - (a) $\sum_{k=0}^{n} F_k$, (b) $\sum_{k=0}^{n} F_{2k}$, (c) $\sum_{k=1}^{n} F_{2k-1}$ if $n \ge 1$,
 - (d) $F_{n+1}F_{n-1} F_n^2$ if $n \ge 1$.

Hints:

- 1. Let v be a fixed vertex of your polygon. Consider two cases: either v is the end point of one of the n-3 diagonals, or it is not.
- 2. Think about the first place where a path meets the line y = x.
- 3. How many internal vertices are to the right of the root and how many are to the left?
- 4. How can you make a valid solution longer by one? By two?
- 5. Suppose not and consider the smallest positive integer that cannot be written as a sum of distinct Fibonacci numbers.
- 6. Use induction.