Worksheet 2.6 (Part 2) - Math 455

1. A diagonal of a convex polygon is a line segment connecting two non-adjacent vertices of the polygon. Let p_{n} denote the number of ways to decompose a convex polygon having n vertices by drawing $n-3$ diagonals that do not cross inside the polygon. Assume that the vertices of the polygon are labeled, so that triangulations with different orientations are counted separately. Determine p_{3}, p_{4}, p_{5} and p_{6} by showing all possible triangulations, and then find and prove a recursive formula for p_{n}.
2. A Dyck path of length $2 n$ is a staircase walk from $(0,0)$ to (n, n) that never rises above $y=x$. Let p_{n} denote the number of Dyck paths of length $2 n$. Determine p_{3}, p_{4}, p_{5} and p_{6} by showing all possible Dyck paths, and then find and prove a recursive formula for p_{n}.
3. Let p_{n} be the number of rooted (strictly) binary trees with n internal vertices (i.e., non-leaves). Determine p_{3}, p_{4}, p_{5} and p_{6} by showing all possible trees, and then find and prove a recursive formula for p_{n}.
4. The Fibonacci numbers are defined recursively as follows: set $F_{0}=F_{1}=1$ and for $n \geq 2$, set $F_{n}=$ $F_{n-1}+F_{n-2}$. The sequence begins with $1,1,2,3,5,8,13,21,34,55,89,144, \ldots$ Consider the chain of inequalities $a_{1} \leq a_{2} \geq a_{3} \leq a_{4} \geq a_{5} \ldots$ with n variables. You would like to assign values 0 or 1 to each of a_{1} through a_{n} satisfying these inequalities. For example, if $n=5$, one solution is $1 \leq 1 \geq 0 \leq 1 \geq 0$. Prove that the number of ways to do it is F_{n+1}.
5. Show that any positive integer can be written as a sum of distinct Fibonacci numbers.
6. Let F_{k} be the k th Fibonacci number. Find and prove a general formula for
(a) $\sum_{k=0}^{n} F_{k}$,
(b) $\sum_{k=0}^{n} F_{2 k}$,
(c) $\sum_{k=1}^{n} F_{2 k-1}$ if $n \geq 1$,
(d) $F_{n+1} F_{n-1}-F_{n}^{2}$ if $n \geq 1$.

Hints:

1. Let v be a fixed vertex of your polygon. Consider two cases: either v is the end point of one of the $n-3$ diagonals, or it is not.
2. Think about the first place where a path meets the line $y=x$.
3. How many internal vertices are to the right of the root and how many are to the left?
4. How can you make a valid solution longer by one? By two?
5. Suppose not and consider the smallest positive integer that cannot be written as a sum of distinct Fibonacci numbers.
6. Use induction.
