1. Find the minimum size of a maximal matching in C_n. If n is even, you can take every other edge.

2. Let G be a bipartite graph. Show that G has a matching of size at least $\frac{|E(G)|}{\Delta(G)}$.

3. Let k be some fixed integer between 1 and n. Let G be some subgraph of $K_{n,n}$ with more than $(k - 1)n$ edges. Prove that G has a matching of size at least k.

4. Draw a connected, 3-regular graph that has both a cut vertex and a perfect matching.

5. Determine how many different perfect matchings there are in $K_{n,n}$.

Hints:

1. Your answer should depend on n. How many edges in a row can you not have in a maximal matching?

2. Use König’s theorem. How many edges can a single vertex cover? So how many vertices must there be in any edge cover?

3. Use König’s theorem. How many edges can a single vertex cover? So how many vertices must there be in any edge cover?

4. Look at figure 1.106 in the book. Can you modify that figure to obtain the desired outcome?

5. Start building a matching. To how many vertices can you match the first vertex? The second?