Deceptively Uninspiring Homework 5 Due Wednesday May 21th at the beginning of class

You may handwrite or type your answers/solutions/proofs. I highly encourage the use of a mathematical typesetting language (like IAT_EX). If you handwrite, please make sure that your work is legible, and please staple your homework when you turn them in.

- 1. Given a positive integer n, a finite sequence of positive integers (a_1, \ldots, a_k) is said to be *coherent* if $\sum_{i=1}^k a_i = n$. Show that the number of coherent sequences of n is 2^{n-1} . For instance, here are the $4 = 2^{3-1}$ coherent sequences of 3: (3), (2, 1), (1, 2) and (1, 1, 1).
- 2. Prove using induction that $n! > n^2$ for $n \ge 4$.
- 3. In a *labeled* tournament, the vertices are numbered from 1 to n. The labeling matters, but which vertex is drawn where doesn't matter. Find (and prove) a formula for the number of labeled tournaments with n vertices.
- 4. For $k \ge 3$, a k-cycle in a tournament is a sequence of vertices v_1, v_2, \ldots, v_k with arcs $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$. Prove that if a tournament contains a k-cycle for some k > 3, then it also contains a 3-cycle.