## Deceptively Uninspiring Homework 5

Due Wednesday May 21th at the beginning of class
You may handwrite or type your answers/solutions/proofs. I highly encourage the use of a mathematical typesetting language (like $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ ). If you handwrite, please make sure that your work is legible, and please staple your homework when you turn them in.

1. Given a positive integer $n$, a finite sequence of positive integers $\left(a_{1}, \ldots, a_{k}\right)$ is said to be coherent if $\sum_{i=1}^{k} a_{i}=n$. Show that the number of coherent sequences of $n$ is $2^{n-1}$. For instance, here are the $4=2^{3-1}$ coherent sequences of $3:(3),(2,1),(1,2)$ and $(1,1,1)$.
2. Prove using induction that $n!>n^{2}$ for $n \geq 4$.
3. In a labeled tournament, the vertices are numbered from 1 to $n$. The labeling matters, but which vertex is drawn where doesn't matter. Find (and prove) a formula for the number of labeled tournaments with $n$ vertices.
4. For $k \geq 3$, a $k$-cycle in a tournament is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{k}$ with arcs $v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{1}$. Prove that if a tournament contains a $k$-cycle for some $k>3$, then it also contains a 3 -cycle.
