Deceptively Uninspiring Homework 5

Due Wednesday May 10th at the beginning of class
You may handwrite or type your answers/solutions/proofs. I highly encourage the use of a mathematical typesetting language (like $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$). If you handwrite, please make sure that your work is legible, and please staple your homework when you turn them in.

1. (a) Show that $4 x \equiv 3(\bmod 6)$ has no solutions with $0 \leq x<6$.
(b) Determine all solutions of $3 x \equiv 7(\bmod 8)$ with $0 \leq x<8$.
2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be functions such that $f \circ g$ is the identity function I_{Y} on Y. This is to say that I_{Y} is the unique function with the property that $I_{Y}(y)=y$ for all $y \in Y$. Show that f is a surjection.
3. Is it possible for an equivalence relation to be a function? If so, under what conditions? If not, prove it.
4. Give an example of functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that f and g are not bijections, but $g \circ f$ is a bijection.
5. Let $f: \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ be the function defined by $f(x)=\{z \in \mathbb{R}:|z| \leq x\}$.
(a) Is f injective?
(b) Is f surjective?
