Deceptively Uninspiring Homework 4

Due Wednesday April 26th at the beginning of class

You may handwrite or type your answers/solutions/proofs. I highly encourage the use of a mathematical typesetting language (like IAT_EX). If you handwrite, please make sure that your work is legible, and please staple your homework when you turn them in.

- 1. Give an example of a set S that contains an element x such that $x \in S$ and $x \subseteq S$.
- 2. Let A and B be sets. Prove that $A \setminus (A \cap B) = A \setminus B$.
- 3. Let A and B be sets. Prove that $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$.
- 4. Let A, B, and C be sets. Prove that if $A \cup C \subseteq B \cup C$, then $A \setminus C \subseteq B$.
- 5. Let A and B be sets. Prove each of the following.
 - (a) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
 - (b) There exist sets A and B such that $\mathcal{P}(A \cup B) \nsubseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.
- 6. List all equivalence relations on $\{a, b, c\}$. How many are there? How many relations are there on $\{a, b, c\}$?
- 7. Determine whether each of the following relations on \mathbb{Z} is a partial ordering. Prove all your answers.
 - (a) $R = \{(a, b) : |a 1| \le |b 1|\}$
 - (b) $R = \{(a, b) : a^2 \le b^2\}$
 - (c) $R = \{(a, b) : 2a < b\}$
- 8. Suppose A is a nonempty set and R is a relation with the property that, for all $a \in A$, there exists $b \in A$ such that aRb. Is R an equivalence relation on A? If yes, prove it; otherwise, state explicitly what fails.