Deceptively Uninspiring Homework 4

Due Wednesday April 26th at the beginning of class
You may handwrite or type your answers/solutions/proofs. I highly encourage the use of a mathematical typesetting language (like $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$). If you handwrite, please make sure that your work is legible, and please staple your homework when you turn them in.

1. Give an example of a set S that contains an element x such that $x \in S$ and $x \subseteq S$.
2. Let A and B be sets. Prove that $A \backslash(A \cap B)=A \backslash B$.
3. Let A and B be sets. Prove that $A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A)$.
4. Let A, B, and C be sets. Prove that if $A \cup C \subseteq B \cup C$, then $A \backslash C \subseteq B$.
5. Let A and B be sets. Prove each of the following.
(a) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(b) There exist sets A and B such that $\mathcal{P}(A \cup B) \nsubseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.
6. List all equivalence relations on $\{a, b, c\}$. How many are there? How many relations are there on $\{a, b, c\}$?
7. Determine whether each of the following relations on \mathbb{Z} is a partial ordering. Prove all your answers.
(a) $R=\{(a, b):|a-1| \leq|b-1|\}$
(b) $R=\left\{(a, b): a^{2} \leq b^{2}\right\}$
(c) $R=\{(a, b): 2 a<b\}$
8. Suppose A is a nonempty set and R is a relation with the property that, for all $a \in A$, there exists $b \in A$ such that $a R b$. Is R an equivalence relation on A ? If yes, prove it; otherwise, state explicitly what fails.
