Deceptively Uninspiring Homework 2

Due Wednesday April 12th at the beginning of class

You may handwrite or type your answers/solutions/proofs. I highly encourage the use of a mathematical typesetting language (like IAT_EX). If you handwrite, please make sure that your work is legible, and please staple your homework when you turn them in.

- 1. Prove each of the following. For this exercise only, write your proofs in table form (like in Example 1.2 in the Conroy-Taggart) with a column for each **Step** and its **Justification**. Your Justifications may be any of the Axioms of the Integers or a previous part of this exercise.
 - (a) If a and b are integers, then $(-a) \cdot b = -(ab)$.
 - (b) If a and b are integers, then $(a + b)^2 = a^2 + 2ab + b^2$.
 - (c) If a + b = a, then b = 0.
 - (d) If a is an integer, then $a \cdot 0 = 0$.
- 2. Suppose a and b are integers. Prove each of the following.
 - (a) If a is even and b is odd, then a + b is odd.
 - (b) If a and b are both odd, then a + b is even.
 - (c) If a + b is odd, then a and b have opposite parity.
- 3. Suppose a and b are **negative** integers. Prove that, if a < b, then $a^2 > b^2$.
- 4. Suppose a and b are **positive** integers. Prove that, if $a \mid b$, then $a \leq b$.
- 5. Suppose a > 0 and $b \ge 0$ are integers such that $a \mid b$. Prove that, if b < a, then b = 0.