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Abstract

In this paper, we present several systematic techniques, based on the Voronoi diagram
and its variants, to partition a one and two-dimensional simplex. The Fekete points are used
as input to generate the Voronoi diagram, as they concentrate near the edges and are almost
optimal for polynomial interpolation in a simplex.

Spectral (finite) volume reconstructions on the resulted partitions have small Lebesgue con-
stants. When using the Dubiner basis, the reconstruction matrix is well conditioned. Moreover,
the total number of edges of the partitions (the total work when being used in spectral volume
methods) is shown to be at most twice the minimum number of edges of all partitions for re-
constructions of the same order accuracy. These suggest that the obtained partitions are well
suited for spectral volume methods and other numerical methods which rely on reconstructions
from cell averages.
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1 Introduction

In [10], Wang proposed a new finite volume (FV) method, named spectral volume (SV) method,

for hyperbolic conservation laws. The spectral volume method has several good properties: high-

order accurate, conservative, geometrically flexible, and computationally efficient. (A comparison

with the discontinuous Galerkin methods is given in [12].) In the spectral volume method, a vol-

ume or a cell (named spectral volume) is partitioned into non-overlapping sub-cells named control

volumes (CVs). Then cell-averaged solutions on the control volumes are used to perform high

order reconstructions, i.e., spectral volume reconstructions. The spectral volume reconstruction

is different from the reconstruction procedure of previous finite volume methods, which employs

cell-averaged solutions on neighbour cells to perform the reconstruction.

The spectral volume reconstruction is basically an approximation problem. Given a smooth

function and an approximation space, the accuracy of the spectral volume reconstructions only

depends on the partition of the spectral volume. Not all partitions produce good results. For

example, uniform partitions [11] yield bad results for high-order reconstructions because of the

Runge phenomenon. As far as we know, no systematic technique has been developed to partition

an � -dimensional simplex,
���������

, except that in [11] Wang gave a few partitions for up to the

fourth-order reconstruction on a standard equilateral triangle. It is difficult to directly build good

high order partitions because there are too many parameters such as the position of points, the

number of edges for each subcell and the topology of the subcells. Of course, one can compute the

so called 	�
 optimal partitions as [1]. But even for one-dimensional case, the 	�
 optimal partitions

are not as satisfactory as the correspondents for the interpolation [9].

However, another approximation problem on a simplex, the interpolation based on node values,

has been extensively studied in the past (see [6] and the references therein). Some almost optimal

nodal sets for polynomial interpolation on a two-dimensional simplex are given in [1], [6] and

[8]. In this paper, we develop several systematic techniques, based on the well-known Voronoi

diagram and its variants with those optimal nodal sets as the input, to generate partitions of a one

and two-dimensional simplex. Using these techniques, we obtained partitions for up to the 
�� -th
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order polynomial reconstruction on an equilateral triangle.

The remaining of the paper is organized as follows. In Sec. 2, we restate the spectral volume

reconstruction problem on a two-dimensional simplex. The Lebesgue constant is introduced as one

measurement of the quality of spectral volume reconstructions. Section 3 describes the systematic

techniques to partition a one and two-dimensional simplex. Finally, we summarize the paper and

make some concluding remarks in Sec. 4.
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2 Spectral Volume Reconstruction

In this section, we define the spectral volume reconstruction problem on an equilateral triangle,
� 
 . Some issues related to the quality of spectral volume reconstructions are also addressed.

The spectral volume reconstruction is a key element of the recently proposed spectral volume

method [10, 11], in which a target cell is divided into non-overlapping sub-cells. The cell-averaged

solutions on the sub-cells are then used to reconstruct an approximate solution on the target cell.

The number of sub-cells is the same as the dimension of the approximation space. In general, the

approximation space can consist of any functions. Here, we focus on the space of polynomials of

degree up to � , denoted as
���

 . The dimension of this approximation space is� 
��� dim

� �

 � �	��
 �� ��
 (1)� � � 
� and

��� � ���

 will be used to simplify the notations if there is no confusion.

Then the spectral volume reconstruction problem can be formally stated as follows.

SV Reconstruction Problem on
� 
 : Given any continuous function ����������� on

� 
 , i.e., ������ � � 
�� , the spectral volume reconstruction is to

1. Construct a partition  � of
� 
 :

� 
 � �"!$#&%'%'%'#(�*) �
where + �,! � %'%'% � �*).- are

�
non-overlapping sub-cells;

2. Compute the projection /'0213�(45� ���
such that687:9 ��/;0 1 �	�=<?> � 687:9 ���@�����8�A<?>B� C � 
:� %'%'% � � � (2)

i.e., � and /;0 1 � have the same average on all the sub-cells.

The projection, /D0 1 � , can be computed once the partition  � is known. Express /D0 1 � as a

series sum of a complete basis of
���

, +FE ! �@������� , %'%'% , E ) �@������� - ,/G0�1H� � )I JLK !&M J E J ��������� 
 (3)
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Denote �� J as the average of ����������� over the sub-cell
� J

, i.e.,

�� J � 
> J 6 7:9 � �@������� <?>B� C � 
:� %'%'% � � � (4)

where > J is the area of
� J

. Plug (3) and (4) into (2), and rewrite the new equation into a matrix

form � M � �� � (5)

where �� � ���� ! � %'%'% ���� ) ��� , M � � M ! � %'%'% � M ) ��� , and the reconstruction matrix
�

takes the form

� � �� !	�

� 7 
 E ! �@������� <?> %'%'% !	�

� 7 
 E ) ����� �8�A<2>%'%'% %'%'% %'%'%!	���� 7 � E ! ��������� <?> %'%'% !	���� 7 � E ) �@������� <?>
�� 
 (6)

When the partition is non-singular, i.e., the matrix
�

is non-singular, we solve Eq. (5) and substitute

the solution M back into the expression (3) to obtain/;0 1 � � )I JLK ! �� J 	 J ����������� (7)

where the cardinal basis functions 	 � � 	 ! ����������� %'%'% � 	 ) �@�����8� � are given as

	 � � E ! �@�����8� � %'%'% � E ) �@������� � ��� ! 
 (8)

Then we equip the space
���

and
��� � � 
F� with an 	�� norm (supremum-norm, denoted as � % � )

and the induced functional norm

� /;0�1�� � sup�������K � � /G0 1 � �� � � 

Since !"�� J !$#%� � � for C � 
 � %'%'% � � , one can show that

� /G0�1�� � max&('*) +-,�.*/10
)I J K ! ! 	 J ����������! 
 (9)

2.1 Error of Spectral Volume Reconstruction

One measurement of the quality of spectral volume reconstruction is the error. Similar to that of

polynomial interpolation, the error of spectral volume reconstruction is bounded from below as

� �32 �546�7#%� �82 /G0�1 � �H� (10)
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where � 4 is the optimal approximating polynomial whose existence is guaranteed by the conti-

nuity of ������� �8� [2]. Although it is difficult to determine such optimal approximation for general

functions, it enables us to evaluate the quality of other approximations. From the linearity of the

projection operator /D021 and the fact that /D021�� � � ����� � � � � � 
 � , one can verify that

� � 2 /;0 1 � �7# � 
 
�� �  � � �7� �82 � 4 �H� (11)

where
� �  � � � � /G0�1�� � max& '*) +-,�.*/60

)I JLK ! ! 	 J ����������! (12)

is called the Lebesgue constant of the operator /'021 .
From the way to compute /D0 1 � as previously described, one can show that the Lebesgue con-

stant only depends on the partition  � when the approximation space is fixed.

Lemma 1 When the approximation space is fixed, the partition determines the Lebesgue constant.

Proof: From the definition of the Lebesgue constant (c.f. (12)), it is enough to show that the same

cardinal basis functions will be obtained for two different basis sets of the approximation space.

Choose another basis set, ��� ! ����������� %'%'% �	� ) ��������� � � � E ! �@�����8� � %'%'% � E ) �@������� � %�
 , where



is

a constant non-singular matrix. According to Eq. (6), the new reconstruction matrix is

�� � � %

 

So the new cardinal basis is

�
	 � ��� ! � %'%'% �	� ) � %�� ���� � ! � �LE ! � %'%'% � E ) � %

 %

 � ! � � ! � 	*�

which proves the lemma.

According to (11) and (10), the magnitude of the Lebesgue constant reflects how close the

spectral volume reconstruction is to the optimal polynomial approximation. Therefore, spectral

volume reconstructions with small Lebesgue constant are preferred. For simplicity, we only con-

sider partitions with sub-cells being convex polygons with straight edges. However, this might
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keep us from obtaining spectral volume reconstructions with Lebesgue constant as small as those

of polynomial interpolation in [8] and [6].

Another important issue is the work load when the spectral volume reconstruction procedure

is used in solving partial differential equations. As shown in [11, 10], the work load is roughly

proportional to the total number of edges of the partition. Hence the optimal partition should have

minimum number of edges and lead to the smallest Lebesgue constant. If one wants to optimize

the partition, one needs to minimize both the number of edges and the Lebesgue constant at the

same time, which apparently is not an easy task. We made no such effort in this paper.

We also want to emphasize that it is necessary that the reconstruction matrix
�

is well-conditioned

for high-order spectral volume reconstructions because of the finite precision of computers. For

polynomial interpolation on a triangle, this is usually achieved by choosing the Dubiner basis [4]

instead of the notorious monomials, provided the nodal set is good.
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3 Partitions from Voronoi Diagram and Its Variants

In this section, we describe a few systematic techniques to partition a one and two-dimensional

simplex by using the Voronoi diagram and its variants.

3.1 The Voronoi Diagram and Its Variants

The following definition is a generalization of the two-dimensional Voronoi diagram [7, 3].

Definition 1 (Voronoi Diagram) Given
�

distinct input points
� � +FE ! , %'%'% , E )�- in

���
, the

Voronoi diagram is a partition of
� �

into
�

non-overlapping polyhedral regions: +3> ! , %'%'% , > )*- ,
such that E J � > J , C � 
 , %'%'% , � , and the Voronoi cell > J is the set of points in

� �
which are closer

to E J than to any other points in
�

, i.e.,

> J � +'� � � � 4 ! �32 E J !$#%! ��2 ��! � � � � � 2 E J - � (13)

where ! � 2 � ! represents the Euclidean distance between � and � (other distance functions can also

be used).

All Voronoi cells and faces form a cell complex whose vertices and edges are called Voronoi

vertices and Voronoi edges. The unbounded edges are also called Voronoi rays. When the input

points, +FE ! , %'%'% , E )�- , are in the plane (m=2), we can bound the number of the Voronoi vertices and

Voronoi edges by the following theorem [7, 3].

Theorem 1 For
� ���

, in the Voronoi diagram of
�

distinct points on the plane, the number of

Voronoi vertices is at most
� � 2�� ; the number of Voronoi edges is at most

� � 2�� .
When the input points are on a triangle, it is straightforward to generate a partition of the

triangle from the Voronoi diagram, e.g., Fig. 1. So we can partition a triangle by choosing the

input points and computing the Voronoi diagram. Furthermore, each Voronoi vertex (the circles in

Fig. 1) is the circumcenter of one triangle with vertices being three input points. One can get a few

variants of the Voronoi diagram, and thus different partitions, by replacing each Voronoi vertex
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Figure 1: Partition of a triangle from the Voronoi diagram of given points on the triangle. On the
left graph, the dark dots are the input points; the circles are the Voronoi vertices; the thin solid lines
are the Voronoi edges. The right graph displays the partition.

(circumcenter) with the corresponding incenter, centroid or any other point related to that triangle.

We recall that for a triangle, the circumcenter is the center of its circumcircle, the incenter is the

center of its incircle, and the centroid is the intersection of the triangle’s three triangle medians.

3.2 Partitions of ���
� !

is simply a line segment. Without loss of generality, let
� ! � � 2 
:��
�� . One can generate a

partition from any given input points set as follows. Suppose 2 
 � � ��� � ! � %'%'% � � � � 
 are

the input points. Take � � � � � ��� �	� ! � � � and � J � ��� J 
 � J � ! ��
 � ��C � 
 � %'%'% ��� . The points +H� J -
then define a partition: > J ��� � J � � J � ! � ��C ��
 � %'%'% ��� . A different points set will yield a different

partition. Table 1 includes the Lebesgue constants corresponding to the Legendre Gauss-Lobatto

(LGL) and Chebyshev Gauss-Lobatto (CGL) quadrature points. Note that the Legendre Gauss-

Lobatto points are actually the Fekete points in the interval [5]. � LGL and � CGL represent the

Lebesgue constants of polynomial interpolation with the Legendre Gauss-Lobatto and Chebyshev

Gauss-Lobatto points. � LGL
V and � CGL

V represent the Lebesgue constants for the spectral vol-

ume reconstruction on the partitions with LGL and CGL points being the input. � Eq
V denotes the

Lebesgue constant for spectral volume reconstruction on the uniform mesh, i.e., all sub-cells have

the same size.
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Note that the Lebesgue constants of spectral volume reconstruction on the partitions from both

LGL and CGL points are less than twice those of polynomial interpolation, which are very close

to the Lebesgue constants of the optimal nodal set [6]. In summary,

� Eq
V �

� LGL
V �

� CGL
V �

� CGL
�

� LGL 
 (14)

Table 1: Lebesgue constants for one-dimensional spectral volume reconstruction and interpolation.� : the order of spectral volume reconstruction or interpolation.

n
� LGL � LGL

V
� CGL � CGL

V
� Eq

V
2 1.2500 2.6667 1.2500 2.6667 3.3333
3 1.5000 3.0299 1.6667 2.8095 5.3333
4 1.6359 3.2702 1.7987 2.8607 8.5333
5 1.7786 3.4451 1.9889 2.8846 13.8666
6 1.8737 3.5800 2.0825 2.8976 23.0095
7 1.9724 3.6881 2.2022 2.9054 39.0095
8 2.0456 3.7773 2.2747 2.9106 67.4539
9 2.1210 3.8526 2.3619 2.9141 118.6539

10 2.1805 3.9172 2.4210 2.9439 211.7448
11 2.2415 3.9735 2.4894 3.0627 382.4115
12 2.2917 4.0230 2.5393 3.1503 697.4884
13 2.3428 4.0671 2.5957 3.2478 1282.6313
14 2.3862 4.1067 2.6388 3.3229 2374.8979
15 2.4303 4.1424 2.6867 3.4054 4422.8979
16 2.4684 4.1749 2.7247 3.4709 8227.9568
17 2.5072 4.2047 2.7664 3.5422 15559.7345
18 2.5412 4.2320 2.8003 3.6004 29356.7872
19 2.5758 4.2573 2.8371 3.6631 55571.1872
20 2.6066 4.2807 2.8678 3.7154 105503.3776

3.3 Partitions of �
�

We only study the standard equilateral triangle
� 
 (c.f. Fig. 1) because any other triangle can be

obtained from a linear transformation of this triangle. The linear transformation will not change

the Lebesgue constant of spectral volume reconstruction, which will be shown as below.

Lemma 2 Suppose the standard equilateral triangle
� 
 has a partition  � � + �"! � %'%'% � �*).- .

Let
��

be a triangle defined on �32�� plane, which can be obtained from a non-singular linear
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transformation of
� 
 . If the partition of

��
,
� � � + ��"! � %'%'% � ��*).- , is obtained from  � by the

same linear transformation, then the spectral volume reconstructions on
��

and
� 
 have the same

Lebesgue constant.

Proof: Denote
�> J as the area of sub-cell

�� J
. Use

��
and

�
	 to represent the reconstruction matrix

and cardinal basis set on
��
. For

� 
 , the same notations will be used as those in Sec.2.

From the definition of the Lebesgue constant, it suffices to show that

�
	"� �8� ��� � 	 �@�����8� � �=� �8� ��� � ��

or ��������� � � 
 

According to (8), �

	 ��������� � � E ! ����� �8� � %'%'% � E ) �@�����8� � � � !�
	 � ��� �8� � �LE ! � �8� �8� � %'%'% � E ) � �8� ��� � �� � ! 


Since the transformation, � �8� �8��� ��������� , is linear, there exists a constant matrix



such that

�LE ! � ��� �8� � %'%'% � E ) � �8� ��� � � �LE ! ����������� %'%'% � E ) ��������� � %

 
 (15)



is also non-singular as the transformation is non-singular. (The non-singularity of



can be

proved by evaluating Eq. (15) at
�

distinct points.) Plug Eq. (15) into the reconstruction matrix

�� � ��� !�	�
 � �7 
 �E ! � �8� ��� < �> %'%'% !�	�
 � �7 
 �E ) � �8� �8�A< �>%'%'% %'%'% %'%'%!�	�� � �7 � �E ! � ��� �8�A< �> %'%'% !�	�� � �7 � �E ) � ��� ��� < �>
����

to obtain �� � � %

 

Hence,

�
	,� �8� ��� � � E ! � �8� ����� %'%'% � E � � ��� �8� � �� � ! � �LE ! �@�����8� � %'%'% � E ) �@������� � %

 % � � %

 � � ! � 	 ����� �8� 

The first kind of partitions, denoted as � F

out, are from the Voronoi diagram1 of the two-

dimensional Fekete points [8] on the triangle. As previously mentioned, each Voronoi vertex is

1Fortune’s code is used to compute the 2-D Voronoi Diagram
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Figure 2: The � -th order partition from the Voronoi diagram of given Fekete points. On the left
graph, the thin solid lines are the Voronoi rays; the circles are the Voronoi vertices. The right graph
is the partition. The outside Voronoi vertices are also plotted for clarity.

the circumcenter of one triangle with vertices being three input points. So there might be some

Voronoi vertices which are outside the big equilateral triangle. When this happens, the partition

is not as obvious as shown in Fig. 1. But as demonstrated in Fig. 2, we can obtain a partition

by replacing each outside Voronoi vertex with the intersection point of the corresponding Voronoi

ray and the edge of the big equilateral triangle. With this strategy, we generate partitions up to the


�� -th order (Fig. 3). The Lebesgue constants of spectral volume reconstruction are listed in Tab.

2. The number of distinct edges is bounded as follows.

Theorem 2 The total number of edges in the partition,  F
out, is less than twice the minimum

number of edges of any partition leading to the same order spectral volume reconstruction.

Proof: For the � -th order partition  F
out, according to Theorem 1, the Voronoi diagram contributes

at most � � � 2�� � to the total number of edges, where
� ��� 
 ���



�

(c.f. Eq. (1)) is the total number

of input points on the triangle. Besides that, there are
� � � 
 
H� edges which lie on the edges of the

big equilateral triangle. So the total number of edges of the � -th partition  F
out is at most

� � 2�� 
 � ��� 
 
H� � � � � � 
 
 �3� � 
 (16)

Consider an arbitrary partition leading to an � -th order spectral volume reconstruction. Denote
�

as the number of edges of the partition which are on the edges of the big equilateral triangle, and
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�
as the number of remaining edges (called inside edges since they are inside the big equilateral

triangle). Clearly,
� � � ��� 
 
H� . Since an � -th order reconstruction needs

�
polygons, each of

which has at least three edges, one can show that

� 
 � � � � � �
where the coefficient before

�
is due to the fact that each inside edge belongs to two polygons.

Thus, the minimum number of distinct edges for any � -th order partition satisfies

� 
 � � � 
 � � 2 �� � � ��� 
 
H� 
 � � 2 � ��� 
 
H�� � �� � � 
 
 � � 
 � � 

Comparing the above equation with (16) proves the theorem.

However, this simple usage of the Voronoi diagram does not yield very small Lebesgue con-

stants, as shown in Fig 7, for high order spectral volume reconstructions.

We derive the second kind of partitions (denoted as � F
in) from one variant of the Voronoi

diagram in which each Voronoi vertex is replaced by the corresponding incenter. By doing that,

the structure of the partitions is more similar to the structure of the input points in the sense of

layered structures and concentration near the edges (see Fig. 3 and 4). This is due to the fact that

the incenter of a triangle is always inside the triangle. We believe that the layered structure and

being concentrated near the edges of the sub-cells are crucial for the partition to produce small

Lebesgue constants. As expected, the partition  F
in produces smaller Lebesgue constants than F

out for most cases of the spectral volume reconstructions of order up to 14 (Tab. 2).

Unfortunately, as shown in Fig. 7, there is a sudden increase in the Lebesgue constants of the
�
-th or higher order  F

in partitions. By examining Fig. 4 more carefully, we notice that the layered

structure is a bit “distorted” in the place close to the edges of the big triangle. The “distortion” is

responsible for the sudden increase of the Lebesgue constants.

The Fekete points set itself has a very nice structure (Fig. 5), based on which we come up

with the third kind of partitions, denoted as � F
mass. There are three steps to build the partition,

which are demonstrated in Fig. 5. At first, we concatenate the input points layer by layer (see the

left graph of Fig. 5). Then we construct a triangular mesh as shown in the middle graph of Fig.
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Figure 3: Partition  F
out. n: Order of SV reconstruction; N: Number of sub-cells; ’.’: input Fekete

points on the triangle.
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Figure 4: Partition  F
in. n: Order of SV reconstruction; N: Number of sub-cells; ’.’: input Fekete

points on the triangle.
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Figure 5: Three steps to construct the partition  F
out. ’.’: input Fekete points. Left: the layered

structure of Fekete points; Middle: the triangular mesh; Right: the method to build the polygon
(thick line) for one input point. ’o’: vertices of the polygon.

5. Finally, for each input point inside the big triangle, we construct a polygon by connecting the

centroid (or any other point) of the small triangles those share the input point (see the right graph

of Fig. 5). When an input point is on the edge of the big triangle, one can construct a polygon

containing it by using two more points on the edges of the big equilateral triangle. Some examples

of the partitions are displayed in Fig. 6. We also tried to use the incenter instead of centroid of

those small triangles. It leads to almost the same Lebesgue constants as the centroid does.

The same upper bound holds for the number of edges of the partitions  F
in and  F

mass.

Theorem 3 The total number of edges in the partition  F
in or  F

mass, is less than twice the mini-

mum number of edges for any partition leading to the same order SV reconstruction.

The proof is omitted as it is basically the same as that of Theorem 2.

For comparison, we also compute the Lebesgue constants of the partition � Eq
V , which is from

the Voronoi diagram of equispaced (in the area coordinate system) points on the equilateral tri-

angle. The Lebesgue constants for all partitions are listed in Tab. 2. And Table 3 contains the

2-norm condition numbers of the reconstruction matrix when the Dubiner basis is used. Figure 7

displays the ratios of the Lebesgue constants from the above partitions to those of the polynomial

interpolations based on the Fekete points.
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Figure 6: Partition  F
mass. n: Order of SV reconstruction; N: Number of sub-cells; ’.’: input

Fekete points on the triangle.
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Table 2: Lebesgue constants for two-dimensional spectral volume reconstruction and interpolation.

� F stands for the Lebesgue constant for the interpolations with Fekete points. � F
out, � F

in, � F
mass,

and � Eq
V represent the Lebesgue constants for the SV reconstruction on the partition  F

out,  F
in, F

mass and  Eq
V respectively.

n
� � � F � F

out
� F

in
� F

mass
� Eq

V
2 6 1.6600 4.1673 4.1673 4.1673 4.167
3 10 2.1053 4.8374 4.8999 4.8797 6.031
4 15 2.7227 6.5407 5.6978 5.7719 8.768
5 21 3.5950 9.5786 7.2547 7.3822 12.911
6 28 4.1706 12.3091 8.3994 8.5399 19.384
7 36 4.9271 17.1220 10.1359 10.3084 29.774
8 45 5.8785 21.1783 21.3010 11.8001 46.859
9 55 6.8006 27.4297 24.8328 13.9493 75.523

10 66 7.9620 33.2994 28.0529 16.2751 124.448
11 78 9.4765 42.1511 33.6964 19.6389 209.165
12 91 11.0552 52.5173 39.8890 23.3799 357.725
13 105 13.2040 67.9809 49.9275 29.3272 620.707
14 120 15.9693 87.1305 61.5641 36.1131 1090.979

Table 3: The
�
-norm condition numbers of the spectral volume reconstruction matrix on the two-

dimensional partitions.

n
� �  F

out  F
in  F

mass  Eq
V

2 6 1.8556 1.8556 1.8556 1.8556
3 10 3.4387 3.2403 3.2541 2.7936
4 15 4.4622 4.1734 4.1895 3.2358
5 21 5.9947 5.2375 5.2674 3.8526
6 28 8.0695 6.8737 6.9193 4.7738
7 36 9.8388 8.5045 8.5158 6.2232
8 45 12.0599 14.2730 10.9258 8.5089
9 55 15.0423 16.9076 13.6832 12.3057

10 66 19.2063 21.3786 17.7896 18.5947
11 78 25.3897 26.9520 23.3292 29.2915
12 91 34.1437 35.6501 31.4112 47.5801
13 105 47.1800 47.8854 42.8654 79.2277
14 120 65.8074 66.3107 59.6859 134.6209
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4 Conclusions

We have developed several systematic techniques to partition a one and two-dimensional simplex

by using the well-known Voronoi diagram and its variants. The resulted partitions have layered

structure and the sub-cells concentrate near the edges. These two properties are found to be crucial

for the partitions which lead to spectral volume reconstructions with small Lebesgue constants.

The spectral volume reconstructions on those partitions have small Lebesgue constants, one

of which is roughly twice the Lebesgue constant of the same order interpolation based on the

almost optimal nodal sets. The total number of edges (the total work when being used in spectral

volume method) of the partitions is showed to be at most twice the minimum number of edges of

all partitions for the reconstructions of the same order accuracy. When using the Dubiner basis,

the spectral volume reconstruction matrix is very well-conditioned. All of these suggest that the

partitions are a good choice for the spectral volume methods and other numerical methods which

rely on reconstructions from cell averages.
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