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Abstract

In this paper, we compute partitions of the tetrahedron for up to the fourth-order
spectral volume reconstruction. Certain optimization is made to these partitions and
previously obtained partitions of lower dimensional simplex. These optimized parti-
tions have the smallest Lebesgue constants among currently known spectral volume
partitions.
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1 Introduction

Spectral volume reconstruction is a key element of the recently proposed spectral volume
method [9, 10] for hyperbolic conservation laws. Analogous to the well known fact that the
quality of polynomial interpolation depends on the interpolation points set, the quality of
spectral volume reconstruction in the simplex is determined by the partition of the simplex
[3]. Since the development of the spectral volume method, some research has been done on
the partition generation. For example, by following the idea of Chen and Babuska [1, 2],
Wang and Liu computed the so called mean L? optimal partitions for up to the seventh
order spectral volume reconstruction of the one-dimensional simplex [11]. Several systematic
techniques based on the Voronoi diagram and its variants have also been developed in [3] for
both the one and two-dimensional simplex. More recently, a linear partition and a quadratic
partition of the tetrahedron were constructed in [7].

However, partitions for high order spectral volume reconstruction on the tetrahedron are
still unavailable. In this paper we compute up to the fourth-order partitions of the three-
dimensional simplex, S®. These partitions are based on the idea we proposed in [3], i.e.,
building the partition through extensive use of the geometry structure of the interpolation
points in the simplex, such as the symmetry and layering structure. The idea can be extended
to generate higher order partitions of the tetrahedron. Optimization within the framework
of building these partitions is also made for these partitions and the previously obtained
partitions of the one and two-dimensional simplex.

Denote P"(S®) as the space of polynomials of degree up to n in three variables. The

dimension of this approximation space is

N, = dim P"(5%) = <3+n) _ (n+1)(n+2)(n—|—3).

3 6

N = N, and P" = P"(S®) will be used to simplify the notations if there is no confusion.
Assume {pi(z,y,2), -+, pn(2,y, 2)} forms a complete basis of P™(S?).

Given any continuous function u(z,y,z) on S i.e., u € C(S®), the computation of its



n-th order spectral volume reconstruction on S® consists of two steps:

1. Construct a partition II, of S* with N non-overlapping sub-cells (only polyhedron
sub-cells are considered):

S3=CLU---UCy.

2. Find a projection Zy, u = Zi\i L a; pi(z,y, z) € P", which shares the same average as

u on all the sub-cells, i.e.,

1 1
Vi‘/Ci(InnU) dV = VZ/Q u(z,y, 2)dV, i=1,---,N, (1)

where V; denotes the area of sub-cell C;.

Denote u; as the average of u(z,y, z) over sub-cell Cj, i.e.,

1
ﬂi:—/ u(z,y, z) dV, i=1,---,N.

Rewrite the system (1) into a matrix form: Aa = u with a = (a;,---,ay)? and u =
(U1, - ,uy)". The reconstruction matrix A takes the form
Vllfcl pl('/'v’y’ z)dv e VLlfcl pN(x, y, Z)dv
A = A A A ) (2)
% ch p(z,y,2)dV .- % fCN pn(x,y,2)dV

Assuming the reconstruction matrix is nonsingular, the projection Zy;, u can be expressed
in the Lagrange form, Zpy u = Zf\il u; Li(z,y, z), where the cardinal basis functions L =
(L1,-++, Ly) = (p1,--+ ,pn) A7L.

Then we equip the space P" and C(S?) with an L*® norm (supremum-norm, denoted as

I - I) and the induced functional norm

[ L, ul]
12, || =
o lull
Since |u;| < ||u|| for i =1,---, N, one can show that

|70, || = max ZIL T,y 2

2)€S3 £



From the linearity of the projection operator Zy;, and the fact that Zy, f = f,Vf € P*(S?),

it is easy to verify that the error of spectral volume reconstruction can be bounded as

e = Tl < (14 A(L) flu = w]], 3)
where u* is the optimal approximating polynomial whose existence is guaranteed by the
continuity of u(z,y, z) [4]. And

A(Tn) = |[Zn, || = max ZIL T, Y, 2 (4)

y)€S3 £

is called the Lebesgue constant of the operator Zy,.

According to (3), the partitions with small Lebesgue constants are preferred. It is rather
difficult to directly build good high order partitions, specially for three dimensional spectral
volume reconstructions, because there are too many parameters such as the position of
points, the number of edges for each sub-cell and the topology of the sub-cells. For another
reconstruction problem, the polynomial interpolation, several almost optimal sets have been
obtained (see [8, 5, 1, 2] and reference therein). At a glimpse, it seems that the methodology
of [1, 2] can be used to optimize the spectral volume partition. However, as shown in [11], the
mean L? optimal partitions are even not very satisfactory for the one-dimensional case. So
in this paper we do not compute the mean L? optimal partitions. Instead, we only compute
partitions based on the polynomial interpolation points, and try to optimize these partitions
within the framework of constructing them. In addition, we try to minimize the number of
total faces of the partition whenever it is possible.

The rest of the paper includes three sections. In Sec. 2, we describe the algorithm of
computing up to the fourth order partition of the tetrahedron. Section 3 is devoted to the
optimization of the partitions in Sec. 2 and the partitions of the lower dimensional simplex

developed in [3]. Finally we summarize the paper in Sec. 4.



2 Partitions of the Tetrahedron

In this section, we propose an algorithm to compute symmetric partitions for the spectral
volume reconstruction in the tetrahedron. Similar to the technique developed in [3] for the
lower dimensional simplex, this algorithm exploits the geometry structure of interpolation
points on the tetrahedron (points from [6] are used in this paper). The algorithm is described
in a recursive fashion in the sense of high order partitions being based on lower order par-
titions. In specific, when building high order partitions, we first group all the interpolation
points except those on a single tetrahedron face into a new points set. Then we construct
some sub-cells from the new points set with the algorithm for the one-order lower partition.
We will explain it in detail in the following.

The symmetry property of the partitions is extensively used in the algorithm. But unlike
polynomial interpolation, we cannot first compute the possible number of different symmetric
points such as four-fold or six-fold symmetric points, as the authors did in [2]. It is because
the total number of vertices for any order partition is not a fixed number, which is a direct
consequence of the fact that a face can have any number (> 3) of vertices. For a similar
reason, the total number of faces is also not a fixed number for a given order partition of
the tetrahedron. So in the following, we will try to minimize, besides the Lebesgue constant,

the number of faces as that is proportional to the work load of the spectral volume method

[10, 9].
2.1 The First Order Partition

Our first order partition is the same as that given in [7]. But we describe our algorithm
within a more general setting so that the algorithm can be used to generate higher order
partitions.

Follow the idea of [3], we build the partition from the polynomial interpolation points
on the tetrahedron in a certain way such that each sub-cell contains an input point. For

the first order partition, the input points are simply the vertices of the tetrahedron. So a
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Figure 1: First order partition of the tetrahedron.

sub-cell is needed for each vertex of the tetrahedron. The four sub-cells can be computed
in the exactly same way because of symmetry. Hence we only describe how to construct
the sub-cell for one vertex. Figure 1 shows the sub-cell for vertex A in tetrahedron ABC' D
(point D is behind the scene). This sub-cell consists of three interior faces’ and three faces
which are on the faces of the tetrahedron. Again by symmetry, the three interior faces can
be constructed in a similar way. One such interior face is FHOG, in which O is inside the
tetrahedron, F is on the edge AB, and G and H are on the face ABD and ABC respectively.
In this face, we require that point G has the same barycenter coordinates in AABD as the
point H in AABC. Moreover, as shown in Fig. 1, the three remaining faces will be fixed
after building the interior faces. So it suffices to specify how to choose points O, E and G,
in order to compute the sub-cell for vertex A, thus the whole first order partition. In the
following, bold symbols represent the coordinates of points in column vector form.

Note that the points E, H, O and G are not always coplanar. We choose the points O, F

and G with form
O =rB+rC+rD+(1-3r)A,

E =sB+(1-3)A, (5)
G =tB+tD+ (120 A,

where 0 < r,s,t < 1. For the first order partition, we have r = 1/4,s = 1/2 and t = 1/3

according to the symmetry property. So O, E and GG are the mass center of the tetrahedron



ABCD, edge AB and face ABD respectively. The partition consists of four hexahedrons,
each of which has six quadrilateral faces as shown in Fig. 1. (From Lemma 1, one can
verify that the points O, G, E and H are coplanar.) The data set of the partition is given in

Table 1-3. The Lebesgue constant for such partition is 95/26 (see [7]).
Lemma 1 The points O,G, E and H are coplanar if and only if (st + rt — 2rs) = 0.

Proof: According to symmetry, H=¢t B+t C + (1 — 2¢) A. So

1-3r 1-2t 1—s 1-2¢

T t ] t
(O G E H=(A B C D) . 0 0 .
T t 0 0

The points O,G, E and H are coplanar if and only if the above matrix is singular. The

determinant of the above matrix is equal to ¢(st + rt — 2rs), which finishes the proof. |

2.2 The Second Order Partition

Second-order polynomial interpolation on the tetrahedron needs ten interpolation points. We
choose four tetrahedron vertices and six tetrahedron edge middle points as the interpolation
points (see Fig. 2). For the four tetrahedron vertices, we construct a sub-cell for each of
them as we did for the first order partition in the last section. For example, when building
the sub-cell for vertex A, we treat A as a vertex of a small tetrahedron AIJH (Fig. 2), and
employ the algorithm described in the last section to construct the sub-cell containing A.
Note that the three parameters r, s and ¢ are not constant this time. We consider only the
parameters which ensure that each of these four sub-cells has six quadrilateral faces (i.e.,
condition of Lemma 1 is satisfied). In Sec. 3.3, we will vary r, s, ¢ with the above constraint
to minimize the Lebesgue constant of the partition.

For the six remaining points, it is enough to explain how to compute the sub-cell for one
point (e.g., point I) as we will build the other five sub-cells in a symmetric way. In our
second order partition, the sub-cell (Fig. 2) for point I has eight faces: two quadrilateral

faces, two pentagon faces, and four more symmetric quadrilateral faces’. Among those faces,
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Figure 2: The second order partition. Left: a tetrahedron with input points; Right: the
sub-cell that includes point 1.

the two quadrilateral faces also separately belong to the sub-cell including point A and B.
The two pentagon faces are on the tetrahedron face ABC and ABD respectively, and they
will be fixed after building the four symmetric faces. In Fig. 2, we mark one of these four
faces as UOVW. In this face, the point U is also on the triangle face AI.J, and O is inside
the small tetrahedron AIJH. In fact, these two points have already been specified when
building the sub-cell for vertex A. So the only remaining work is to choose points W and
V. We put point W inside the triangle IJG and V inside the octahedron IJHEFG. In

particular, we choose

_ I+J+G
W ===

_ I4+J+G+E+H+F
V=

O =rI+rJ+rH+(1-3r)A,
U =tI+tJ+(1-2t) A,

(6)

where the specification of O and U are also included for completeness. These four points

always form a quadrilateral according to the following lemma.
Lemma 2 The four points, W,V,0, and U as defined in (6), are always coplanar.

Proof: According to the distribution of the input points, there exists A, n such that
I =XA+(1-)) B, (B+C)+ (1 —-2n)A,

G=n
J =XA+(1-))C, E=17n(C+D)+(1—2p)A, (7)
H =)A+(1-))D, F=7(B+D)+(1-2n)A.



Figure 3: The third order partition of the tetrahedron: a sub-cell.

Substitute the above formula into (6) to obtain

1—-2t4+2tA 1—3r+3r 1*2g+2>\ 34+3XA—6n

6
t(1—N) r(1—\) LA 1242
(U OW V)=(A B C D) 11— ) 1=\ 1+§f,\ HZ“"
1-A42
0 r(1 =) 0 o
The matrix in the above is singular, which proves the lemma. [ |

Remark 1 For the points which are used to compute the second order partition in this
section, one have A\ = 1/2,n = 1/3. These special values for A and n are not used in the
proof. So the lemma also applies to certain faces of the third and fourth-order partitions

which are generated with the algorithm in this section.

2.3 The Third Order Partition

To compute the third order partition, we choose the interpolation points from [6]. All these

points are on the surface of the tetrahedron. In the upper left part of Fig. 3, we plot the



points which are on one tetrahedron face. Using the algorithm to compute the second order
partition, a sub-cell can be constructed for all the points shown in the picture except P. For
example, when building sub-cells for the three points on the top of the picture, we ignore all
the interpolation points on the lowest layer (i.e., the ten points on the bottom tetrahedron
face). Then the number of remaining points will be ten, which is exactly the number of
second order interpolation points. Treat these ten points as the input points and use the
algorithm in Sec. 2.2 to construct the sub-cells for the three top points shown in the picture.
Similar procedure can be done for all other points except P.

So the only additional work is to build a sub-cell containing point P for each tetrahedron
face. We compute these four sub-cells as follows. Observing that a single connected volume
will be left after excluding those sub-cells which have already been built, we choose the
mass center of the original tetrahedron as a new vertex, and then connect this new vertex
to certain vertices of the single volume to divide it into four identical sub-cells. One of such
sub-cell is shown in Fig. 3. In the upper right, it shows a view from the side with point
P. In the lower left, it is a view after rotating the tetrahedron from right to left for a small
angle, where point O is the mass center of the tetrahedron. Finally in the lower right, we
rotate it a little more to show the sub-cell from the opposite side. This sub-cell has one
hexagonal face and 18 triangular faces. Till now we have computed a third order partition
of the tetrahedron. In Sec. 3.3, we will optimize the partition by moving the input points

around.

2.4 The Fourth Order Partition

The fourth order interpolation points set [6] has 35 points, only one of which is inside the
tetrahedron. Figure 4 shows the points which are on one face of the tetrahedron. For
each surface point, a sub-cell can be constructed with the algorithm for the third-order
partition. For example, for the six points shown in the top left of Fig. 4, we can simply

apply the algorithm for the third-order partition on the points set which includes all the

10
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Figure 4: The interior sub-cell of the fourth order partition of the tetrahedron.

original interpolation points except those on the bottom tetrahedron face. So it seems that
we only need a new technique to construct a sub-cell for the interior point. However, even
this new technique is not necessary because after building all the other sub-cells, there will
be left a single connected volume which is just the sub-cell for the interior point. Figure 4
shows this sub-cell from different perspective. On the top right, it is a view from the reader’s
side. The bottom left shows a view after rotating the tetrahedron from right to left for a
certain angle. The bottom right is another view after further rotation. This sub-cell has 24

triangular faces. In Sec. 3.3, we will optimize the partition.

Remark 2 The recursive algorithm can be used to compute higher order partitions of the

tetrahedron.
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3 Partition Optimization

In this section, we optimize the partitions given in [3] and the three-dimensional partitions

computed in Sec.2.

3.1 One Dimensional Partitions

In [3], we developed several one-dimensional partitions from the Chebyshev and Legendre
Gauss-Lobatto points by using middle points of two neighboring input points as partition
vertices. However, those partitions have larger Lebesgue constants than the partitions given
in [11].

So in this paper, instead of simply using middle points of two neighboring input points as
endpoints of sub-cells, we construct a partition in which most input points sit at the center
of the sub-cells and the sub-cells have increasing size from the boundary to the interior. In
specific, consider an even order partition with input points —1 =2y < 1 < - -+ < T9, = 1.
Take d; = ; — ;1,1 = 1,---,2n. Assume r be the portion of interval [z, 1,z,] that is
allocated to the sub-cell including z,,. So the (1—r)d,, of [z, 1, ;] is allocated to the sub-cell
Tn_1, 1€, Yo = Tn_1 + (1 — r)d, is a vertex of the partition. In order to make z,_; be the
center of a sub-cell, y, 1 = 2, 1 — (1 — r)d,, should also be a vertex of the partition. Hence
(1 — r)d, of the interval [z,_o,2,_1] is allocated to the sub-cell including z,_;. Since we

require the sub-cells closer to the middle have larger size, one can have

>r 2>

N | —

dn—l :> ]_ -
(1=r)d, > = 2d,

{rdn > (1-r)d, s

Continue the above process until we get yo such that z is the middle point of [yo, y1]. Repeat
it for the other half interpolation points, {Z,41, -, Z2,}, to get the whole partition. Note
that the partition will cover a region larger than the original domain [—1,1]. A partition of
[—1,1] can be easily obtained by a linear mapping. Similar procedure can be done for odd
order partitions.

In the algorithm, r is the only parameter to be optimized. With the above algorithm,

12
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Figure 5: The second order partition of the triangle.

we compute the optimal partitions from the Legendre-Gauss-Lobatto, Chebyshev-Gauss-
Lobatto points, and the optimal polynomial interpolation set [1]. These optimized partitions
are denoted as Il;gr, legr, and Ilp, respectively, among which Il is the smallest for

partitions of most order. The results are shown in Tab. 4-5.

3.2 Two Dimensional Partitions

We only optimize the partitions of up to the fourth order in the triangle which are given in

[3]. Different constraint will be applied when optimizing partitions of different order.
3.2.1 The Second Order Partition of the Triangle

Figure 5 shows the second order partition from [3]. We seek an optimal partition whose ver-
tices on each triangle edge are just the vertices of the one-dimensional second-order partition
computed in Sec. 3.1. So only three vertices of the partition, points F, F', G, are not fixed.
Because of symmetry, points F, F, G’ are determined by a single parameter. Specially, their
barycenter coordinates can be expressed as (r,r,1 — 2r),(r,1 — 2r,7), (1 — 2r,r,r). Under
the above constraint, the optimal partition (Fig. 6) has Lebesgue constant 3.0630, and the
partition data is listed in Tab. 6-7. We also tried to move around the partition vertices

which are on the triangle edges. There is little difference in the optimal Lebesgue constant.

13



3.2.2 The Third Order Partition of the Triangle

In [3], we propose a technique to compute the partitions from the layering structure of the
input points. In that algorithm, we first generate a triangulation from the input points. The
centroids of the triangles in the triangulation are then used as the vertices of the partition.
(See [3] for further details.) Here we apply the same algorithm to compute the third order
partition except that a different point instead of the centroid in each triangle is chosen to be
a vertex of the partition. In particular, we choose a weighted average of the triangle vertices,
with the weight being the largest barycenter coordinate of each triangle vertex. Within the
above algorithm, we move around the input points while keeping its symmetry property to
obtain a partition with the smallest Lebesgue constant. The optimal partition obtained this
way is shown in Fig. 6, and its Lebesgue constant is 3.2129. The partition data is given in
Tab.8-9. We also tried to compute the optimal partition under the constraint similar to Sec.

3.2.1. The result is not as good as the one we give here.
3.2.3 The Fourth Order Partition of the Triangle

For the fourth order partition, we follow the similar idea of Sec. 3.2.1, i.e., using the optimal
one-dimensional partition from Sec. 3.1 on the edge of triangle, and then moving around
the other partition vertices to get a small Lebesgue constant. The partition shown in Fig. 6
has Lebesgue constant 4.0563. Note that this partition is not optimal. But when perturbing
the partition vertices, only a few percent change is observed in the Lebesgue constant. The

partition data is given in Tab. 10-11.

3.3 The Three Dimensional Partitions

For the second order partition, we use the optimized second order partition of the triangle
computed in Sec. 3.2.1 on the faces of the tetrahedron. In order to minimize the number of
total faces, the partition vertices inside the tetrahedron are chosen such that the condition

of Lemma 1 is satisfied. Then the partition is actually fixed, which is shown in Fig. 7. The

14
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Figure 6: Several two-dimensional partitions. Left: second order; Middle: third order; Right:
fourth order.

Figure 7: Second order partition of tetrahedron.

partition has 37 vertices and 48 faces, and its Lebesgue constant is 5.0814.

For the third and fourth order partitions, we simple employ the algorithm given in Sec.
2.3 and 2.4 to compute the partition, and try to find the one with minimal Lebesgue constant
by moving the input points around. The smallest Lebesgue constants we found for the third
and fourth order partitions are 6.8725 and 7.9940 respectively. The obtained third order
partition has 73 vertices and 130 faces, while the fourth order partition has 126 vertices and
252 faces. Note that this fourth order partition has some non-convex sub-cells.

The data for the second, third, and fourth-order partitions are not included in the paper
as large tables are needed to describe them. All the partitions in the paper can be downloaded

from the author’s homepage at "http://www.ima.umn.edu/~qchen”.

15



4  Conclusions

We have computed the partitions of up to the fourth order for the tetrahedron. The partitions
are constructed in a hierarchy way so that higher order partitions are based on lower order
partitions. Therefore, when building a certain order partition, we only need to specify how
to construct one particular type of sub-cells as all other sub-cells can be obtained in the way
generating the one order lower partition.

Optimization within the framework of generating the partitions are also made to both
the partitions of tetrahedron obtained in this paper and the previously reported partitions
for lower dimensional simplex. The resulted partitions have the smallest Lebesgue constant

among the currently known partitions.
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Appendix A

Table 1: The first order partition of the tetrahedron: the barycenter coordinates of the

vertices.

Table 2: The first order partition of the tetrahedron: the faces. Each row lists the indices of

=R e R e
AR P D D ©00 O Ul W |

0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.2500000000
0.3333333333
0.3333333333
0.3333333333
0.5000000000
0.5000000000
0.5000000000
1.0000000000

0.0000000000
0.0000000000
0.5000000000
0.3333333333
1.0000000000
0.5000000000
0.0000000000
0.2500000000
0.3333333333
0.0000000000
0.3333333333
0.5000000000
0.0000000000
0.0000000000
0.0000000000

1.0000000000
0.5000000000
0.5000000000
0.3333333333
0.0000000000
0.0000000000
0.0000000000
0.2500000000
0.3333333333
0.3333333333
0.0000000000
0.0000000000
0.5000000000
0.0000000000
0.0000000000

0.0000000000
0.5000000000
0.0000000000
0.3333333333
0.0000000000
0.5000000000
1.0000000000
0.2500000000
0.0000000000
0.3333333333
0.3333333333
0.0000000000
0.0000000000
0.5000000000
0.0000000000

vertices for one face. M denotes the number of vertices of each individual face.

? M

1 4 9 13 15 12
2 4 10 14 15 13
3 4 11 14 15 12
4 4 8§ 11 14 10
) 4 8§ 11 12 9
6 4 8§ 10 13 9
7 4 1 13 10 2
8 4 1 13 9 3
9 4 1 3 4 2
10 4 39 8 4
11 4 2 10 8 4
12 4 3 5 6 4
13 4 5 12 11 6
14 4 3 9 12 5
15 4 4 8 11 6
16 4 6 11 14 7
17 4 2 7 6 4

17



Table 2 (Contd.)
1 M
18 4 2 10 14 7

Table 3: The first order partition of the tetrahedron: the sub-cells. Each row lists the indices
of faces of one sub-cell. M denotes the number of faces of each individual sub-cell.

1 M

1 61 2 3 4 5 6
2 6,7 8 9 10 11 6
3 6|12 13 14 5 10 15
4 6 |16 17 18 11 4 15

Table 4: Lebesgue constants for several one-dimensional partitions.

order HLGL T HCGL r HT1 r
2 1.685 0.877 1.685 0.877 1.685 0.877
3 1.823 0.884 1.823 0.872 1.823 0.890
4 1.950 0.533 2.132 0.656 2.674 0.500
) 2.108 0.562 2.416 0.542 2.337 0.500
6 2.291 0.542 2.560 0.500 2.241 0.593
7
8
9

2.449 0.554 2.666 0.500 2.387 0.602

2545 0.514 2.834 0.571 3.898 0.500

2.644 0.521 3.015 0.518 3.514 0.500
10 2,748 0.512 3.105 0.500 3.190 0.541
11 2.840 0.519 3.180 0.500 2.920 0.552
12 2918 0.509 3.268 0.534 4.711 0.500
13 2991 0.511 3.384 0.509 4.343 0.500
14 3.063 0.504 3.450 0.500 4.020 0.522
15 3.124 0.507 3.509 0.500 3.738 0.529
16 3.190 0.507 3.571 0.519 5.312 0.500
17 3.248 0.507 3.653 0.505 4.969 0.500
18 3.303 0.500 3.705 0.500 4.661 0.513
19 3.354 0.505 3.753 0.500 4.384 0.519
20  3.404 0.507 3.801 0.512

Table 5: Node sets of the partitions II;g;. Only positive interior points are listed.

order T;
2 0.7812757765
3 0.8797040574
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Table 6:
vertices.

Table 5 (Contd.)

order

X

4

10

0.3358143267
0.9232452092
0.5414344225
0.9518023783
0.2485522653
0.6680769262
0.9550635604
0.4131856053
0.7482430030
0.9628667435
0.1837943613
0.5315587191
0.8025200275
0.9700321565
0.3247408153
0.6207881103
0.8408055127
0.9784046134
0.1498237400
0.4354893164
0.6831261231
0.8693871112
0.9790260552

The second order partition of the triangle:

the barycenter coordinates of the

D © 00~ O TR W .

—_ =
W N =

1.0000000000
0.8906378883
0.8269977508
0.8906378883
0.1093621117
0.0865011246
0.3333333334
0.0865011246
0.1093621117
0.0000000000
0.0000000000
0.0000000000
0.0000000000

0.0000000000
0.1093621117
0.0865011246
0.0000000000
0.8906378883
0.8269977508
0.3333333334
0.0865011246
0.0000000000
1.0000000000
0.8906378883
0.1093621117
0.0000000000

0.0000000000
0.0000000000
0.0865011246
0.1093621117
0.0000000000
0.0865011246
0.3333333331
0.8269977508
0.8906378883
0.0000000000
0.1093621117
0.8906378883
1.0000000000
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Table 7: The second order partition of the triangle: the sub-cells. Each row lists the indices
of vertices in counterclockwise direction for one sub-cell. M denotes the number of vertices

of each individual face.

Table 8: The third order partition of the triangle: the barycenter coordinates of the vertices.

T M

1 419 8 12 13

2 514 3 7 8 9
3 518 7 6 11 12
4 411 2 3 4

5 5|3 2 5 6 7
6 4|6 5 10 11

00 ~I O Ui W N | =

NeJ

10
11
12
13
14
15
16
17
18
19
20
21

0.9574919119
0.4747800545
0.8437475098
0.4747800545
0.0212540441
0.0781262451
0.0504398911
0.0781262451
0.0212540441
1.0000000000
0.0000000000
0.0000000000
0.9673771699
0.5000000000
0.0326228301
0.9673771699
0.5000000000
0.0326228301
0.0000000000
0.0000000000
0.0000000000

0.0212540441
0.4747800545
0.0781262451
0.0504398911
0.9574919119
0.8437475098
0.4747800545
0.0781262451
0.0212540441
0.0000000000
0.0000000000
1.0000000000
0.0326228301
0.5000000000
0.9673771699
0.0000000000
0.0000000000
0.0000000000
0.9673771699
0.5000000000
0.0326228301

0.0212540441
0.0504398910
0.0781262451
0.4747800544
0.0212540441
0.0781262451
0.4747800544
0.8437475097
0.9574919119
0.0000000000
1.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0326228301
0.5000000000
0.9673771699
0.0326228301
0.5000000000
0.9673771699

Table 9: The third order partition of the triangle: the sub-cells.

1 M

1 41710 13 1 16
2 5|1 13 14 2
3 5|16 1 3 4
4 5|2 14 15 5




Table 9 (Contd.)

i M

5 64 3 2 6 7 8
6 5 |17 4 8 9 18

7T 4|5 15 12 19

8 5|7 6 5 19 20

9 519 8 7 20 21

10 4 |11 18 9 21

Table 10: The fourth order partition of the triangle:

vertices.

the barycenter coordinates of the

0 © 00~ O TR W .

QW DN DN DN DNDNDNDDNNDLDN M = = =
—_ O © 00 IO ULk WN O OO =TO O i W -

1.0000000000
0.9616226046
0.9488301395
0.9616226046
0.6679071634
0.6422746261
0.8568233902
0.6422746261
0.6679071634
0.3320928367
0.3193479785
0.4616226046
0.3333333334
0.4616226046
0.3193479785
0.3320928367
0.0383773954
0.0255849303
0.0715883049
0.0383773954
0.0767547908
0.0383773954
0.0715883049
0.0255849303
0.0383773954
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000

0.0000000000
0.0383773954
0.0255849303
0.0000000000
0.3320928367
0.3193479785
0.0715883049
0.0383773954
0.0000000000
0.6679071634
0.6422746261
0.4616226046
0.3333333334
0.0767547908
0.0383773954
0.0000000000
0.9616226046
0.9488301395
0.8568233902
0.6422746261
0.4616226046
0.3193479785
0.0715883049
0.0255849303
0.0000000000
1.0000000000
0.9616226046
0.6679071634
0.3320928367
0.0383773954
0.0000000000

0.0000000000
0.0000000000
0.0255849303
0.0383773954
0.0000000000
0.0383773954
0.0715883049
0.3193479785
0.3320928367
0.0000000000
0.0383773954
0.0767547908
0.3333333331
0.4616226046
0.6422746261
0.6679071634
0.0000000000
0.0255849303
0.0715883049
0.3193479785
0.4616226046
0.6422746261
0.8568233902
0.9488301395
0.9616226046
0.0000000000
0.0383773954
0.3320928367
0.6679071634
0.9616226046
1.0000000000
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Table 11: The fourth order partition of the triangle: the sub-cells.

1 M

1 4125 24 30 31

2 5|16 15 23 24 25

3 5 124 23 22 29 30

4 519 8 14 15 16

5 6 |14 13 21 22 23 15
6 5 |22 21 20 28 29

7T 5|4 3 7 8 9

8 6|7 6 12 13 14 8
9 6 |13 12 11 19 20 21
10 5 (20 19 18 27 28
1 411 2 3 4

12 512 5 6 7 3

13 516 5 10 11 12
14 5 |10 17 18 19 11
15 4 |18 17 26 27
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