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1 Introduction

Pseudospectral methods for PDE’s [6, 13] approximate the solution by classical polynomials
(usually Chebyshev or Legendre) or trigonometric polynomials. The main reason for their
success is the spectral accuracy, i.e., the convergence rate depends only on the smoothness
of the functions being approximated. This comes at a price, however, as the norm of the
differentiation matrix is proportional to the square of the number, N, of interpolation points
(or the order of the polynomials), resulting in small time steps (~ N~?) [14], when using an
explicit schemes for time integration.

This stringent restriction on the time-step can be attributed to the basis functions be-
ing classical orthogonal polynomials, the roots of which cluster near the boundaries of the
interval, e.g., the smallest distance between any two roots of a Chebyshev polynomial of
degree N is O(N~2). In [18], it was suggested to use a singular mapping to change the basis
functions to overcome this restriction and this technique has been successfully used by many
people (e.g. [1, 2, 10, 16, 20, 21]). However, as shown in [16, 20] this mapping only allows for
doubling the time-step for practical N. If N is large, however, the time step can be increased
to scale as O(N ') [18, 10] without sacrifyzing the accuracy as the impact of the singular
mapping becomes dominated by the finite precision. The mapping destroys the quadrature
properties of the roots of the classical polynomials which may be a disadvantage in certain
applications, e.g., when filtering is needed or if integrals must be computed as part of the
solution, e.g., in spectral element methods.

In this paper we assess the performance of pseudospectral methods based on prolate
spheroidal wave functions (PSWF - ¢f) rather than on polynomials. In [25], the authors
demonstrate the merits of using PSWFs for the interpolation, integration (quadrature), and
differentiation of band-limited functions. They show, among other things, that for a pre-
scribed accuracy less grid points are required for interpolation and integration than with
Chebyshev polynomials. Furthermore, the differentiation matrix has a smaller condition

number, approaching O(N?®/2) which suggest the possibility of increasing the timestep sig-



nificantly for large values of N.

These basic observations have led to a surge of recent activity in the development of
methods based on PSWF’s, although the topic itself remains in its infancy. In [4, 5], the
author studied the feasibility of using PSWFs as the basis functions in spectral element
methods. More recently, in [3] Beylkin and Sandberg developed a two-dimensional solver
for the acoustic wave equation by using a basis of approximate prolate spheroidal wave
functions. However, even basic aspects of approximation and stability theory for methods
based on PSWF’s remain unknown.

In this work we consider some of these issues, in particular in the context of solving
hyperbolic partial differential equations by constructing pseudospectral methods based on
quadrature points and roots associated with the PSWE’s. The first step in this direction is
to review and expand the relevant approximation theory. We discuss basic approximation
properties such as the number of points per wavelength required to recover a meaningful
result and show that only two points per wavelength are needed. Thus, the PSWEF expansion
recovers the Nyquist limit from Fourier theory, although defined on a finite interval. This
should be contrasted with polynomial expansions where asymptotic estimates show that at
least 7 points per wavelength are needed [14]. We derive a new result that demonstrates
the spectral accuracy of approximations of smooth functions by the prolate spheroidal wave
functions.

Several variants of pseudospectral PSWF methods based on different interpolation points
are subsequently discussed, the main differences being in the definition of the interpolation
points, e.g., we consider genuine Gauss-type quadrature points as well as Gauss-Lobatto like
points defined as the roots of (1—z?)(1%¢)’, where ¢3¢ is the Nth order PSWF with bandwidth
2¢ — this approach is clearly inspired by results from classical polynomials although they are
in this case not associated with a quadrature. The performance of these sligthly different
methods are essentially equivalent although the latter choice is more appropriate for solving

initial-boundary value problems. We finally consider the performance of these methods for



solving a scalar hyperbolic equation as well as hyperbolic systems.

The results of our study can be summarized as follows.

e A practical relation between the two parameters, ¢ and N, is N = ¢ to allow conver-

gence.

e With this choice one observes spectral accuracy. When the solution is broad-band and
marginally resolved, the PSWF based method is more accurate than the Chebyshev

method with the same number of terms, i.e., generally more efficient.

e Theoretically the time step At can be taken as O(N=2) if N ~ 2c. However, the

accuracy deteriorates significantly in this case.

The remaining part of the paper is organized as follows. In Sec. 2, we present some
mathematical background and define the prolate spheroidal wave functions. Section 3 con-
tains some approximation results while Sec. 4 deals with the construction of pseudospectral
methods based on PSWFs. We discuss their stability and solve scalar hyperbolic equations
as well as hyperbolic systems. In the Appendix, we give the details of the proof of the main

approximation result.



2 Preliminaries

In this section, we shall summarize the notation and some general results regarding the

prolate spheroidal wave functions.

2.1 Prolate spheroidal wave functions

A function f(z) : [-1,1] — [—1,1] is band-limited if there exists a ¢ > 0 and a function

o(t) € L?[—1,1] such that

It is easy to see that F,: L?[—1,1] — L?[—1,1] is a compact operator, i.e., that it has
eigenvalues Ao, A1, Ag, - -+, with the property [Ai_i[ > [\;], Vi > 0. We shall denote by 1%(x)

the eigenfunction corresponding to A;. Then,

1
A S(x) = / eet ety dt, e [-1,1] 1)
—1
and the eigenfunctions, {¢¢}°f, are the prolate spheroidal wave functions (PSWFs). We

choose to normalize them so that [|¢§||z2;—1,1) = 1.

One easily checks that the PSWFs also satisfy

i) = [ sin(e (= 0) yey ar, x e [-1,1),

1 xr — t
where
c
=\
/'LJ 2'/T | J|
The following theorem gives some properties of the prolate spheroidal wave functions (see

[22], [25], and references therein):

Theorem 1 For all ¢ > 0,

o 5, V§,- -+, are real, orthonormal, smooth, and complete in L*[—1,1], and they form a

Chebyshev system [17] on [—1,1].



o The 1 with even k are even functions, those with odd k are odd.
o )\, =|\;| #0, where i is the complex unit.

o Among {11;}52,, about 2¢/m are very close to 1; order log(c) decay exponentially from

1 to nearly 0; the remaining ones are very close to zero.

Furthermore, there exists a strictly increasing positive sequence o, X1, - - -, such that

’

(=) @5(@)) + (x5 = a?)es(a) =0, )

When ¢ = 0, the above equation reduces to the classic singular Sturm-Liouville problem
with p(z) =1 — 22, ¢(z) =0, w(z) = 1, and x; = j(j + 1), i.e., the PSWFs with ¢ = 0 are
the normalized Legendre polynomials [13, 6].

Following [25], one can evaluate ¢§ by expressing it as
k=0

where Py is the normalized Legendre polynomial of degree k. Substituting (3) into (2) and

using the properties of the Legendre polynomials one obtains an eigenvalue problem,

(A=x;-1)B =0. (4)
Here A has the form [25]
2%k (k+1)—1
Ak,k :k(k+1)+mc2
A _ (k+2)(k+1) 2
kik+2 (2k+3)y/(2k+1)(2k+5)

Apvor = Ak

for k=0,1,2,---, where the remaining entries of A are zeros.

Since 9§ is smooth, the coefficients 6{; decay superalgebraically with respect to k. The
following theorem [25] offers guidelines on where to truncate (3) to ensure a certain accuracy

in the approximation of ¢{.
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Figure 1: ¢§(z) for different values of ¢

Theorem 2 Assume ¢, is the m'™" PSWF with band-limit ¢, and \,, is the corresponding
eigenvalue. If

k>2(le-c] + 1), (5)
()

Solving (4) and using the corresponding eigenvector in the truncated version of (3) allows

then Ye > 0,

/ B

for the computation of one prolate spheroidal wave function (Fig. 1) for different values of
the band-limit, c¢. In Fig. 1 we note that the zeros of the PSWF move towards the center as
¢ increases, approaching a uniform distribution. This observation suggests that by choosing
a suitable ¢ > 0 the PSWF method needs less points per wavelength to accurately resolve
a wave problem as compared to approximations based on classical orthogonal polynomials.
However, it also suggests that if one chooses ¢ too large for a fixed N the PSWF is unable

to represent functions defined on the whole interval.



3 Approximation

In this section, we consider in more detail the properties of approximations based on prolate
spheroidal wave functions. We first show that for the single wave cos(Mrz), with the optimal
¢ = M, the continuous PSWF expansion converges exponentially fast when at least two
PSWFs are retained per wavelength. Equivalently, two points per wavelength are required
for exponential convergence of the discrete approximation. This should be contrasted with
about 7 points per wavelength needed for methods using classical orthogonal polynomials
The second result pertains to the approximation of a general smooth function with a
finite series of prolate spheroidal wave functions. Recall that, for an unknown function, the
optimal choice of the bandwidth parameter, ¢, is unknown and the approximation depends
on two parameters, ¢ and N. A natural approach is assume that the parameters are related
and our experiments show that ¢ = N is a good choice if we want to maintain the full
accuracy (16 digits) We explain why we cannot use ¢ > (7/2)N and illustrate that there can

be benefits in taking ¢ ~ (7/2) N, albeit at the price of a lower accuracy.

3.1 Approximation of waves - points per wavelength

Let us consider the wave u(z) = e*™™. Tt follows directly from (1) and Theorem 1 that its

PSWEF expansion is

“+00

giMmz _ Z ()\jT/)JC-(l)) . w;(x), (6)

J=0

where ¢ = M.

Note that
IS (D12 = (Al 05(1)7),
where the term X;1)§(1)* is the j” term in the expansion of ™ (c.f. (6)) and, thus,

bounded - in fact it tends to zero with growing j. From [19], we know that |);| decays

exponentially with j if 7 > % = 2M. This establishes the result: The accurate resolution of



L2 error for continuous approximation of cos( M mx) with PSWF
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Figure 2: L%-error of the PSWF expansion (truncated after N terms) of cos(Mmx) versus
N/M. x: M =10;0: M =20; O: M =30; 7 : M = 40.

a wave requires two PSWFs per wave. We recall here that expansions based on Chebyshev
or Legendre polynomials require about 7 points per wave. Only mapped methods [20] may
achieve similar resolution results for sufficiently high values of N.

In Fig. 2, we plot the L? error of the truncated PSWF expansion of the function cos(M7z)
versus 2 (I is the number of terms in the expansion). It clearly confirms that when
N/M > 2 the error decays exponentially.

In the above discussion we took ¢ = M which is optimal. However, for general functions,
we do not have a simple optimal ¢, see Fig. 3, where we display the interpolation results
with the prolate spheroidal wave functions for two different functions. Clearly, the optimal
¢ depends on the required accuracy and the function being approximated. This is due to

the fact that an arbitrary function has many different modes and each mode has a distinct

optimal c.
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Figure 3: Demonstration that the optimal ¢, if it exists, depends on the specific problem
and the required accuracy. Left: L., error for the interpolation of e®3(>7(z=0-5) " For an error
around 10%, ¢ = 100 is the best choice. For an error as small as 107! ¢ = 160 is optimal.
Right: L..-error for the interpolation of e«**(*(@=0-5)  Clearly, ¢ = 0 (Legendre basis) is the
best among the four choices.

3.2 Error estimates

In this section, we consider the error estimates, in a Sobolev norm, of the PSWF expansion
of a smooth function. Let x € [~1,1], and consider the expansion u(z) = 320 @x1f ().

The order of the convergence of the partial sum uy(z) = S~ dixb§(x) is determined by

o
e —unllZepory < D lal®
k=N+1

i.e., it depends solely on the decay rate of the coefficients {y}.
Using the standard notation of H*[—1,1] for the Sobolev space of functions with dis-
tributional derivatives up to order s being square integrable in L?*[—1,1], we prove in the

appendix the following theorem.

Theorem 3 Assume u € H*[—1,1] with the PSWF exzpansion u(x) = Y% @;9¢(z).

[qu:,/;—;<1, then

. _2
il < D (N5 ullmsran + (@)™ ullzzan) (7)
where both 6 and D are positive constants. O

10



From (7) it is evident that the expansion coefficients, @y, may exhibit spectral conver-

gence when ¢y < 1. In [23], it is shown that if n grows with ¢ as

for some b, then

Xn ~ ¢+ 2bc+ O(1).

Thus

2
m<lewm>deb>0n> "c
Vs

Consequently, the finite PSWF expansion of a smooth function, v € C*[—1, 1],

k=0

is spectrally accurate if and only if
N > gc.
T

In Fig. 4 we display the relationship between N and c¢ ensuring that gy < 1, obtained
directly by solving the eigenvalue problem. This clearly confirms the above result. Figure
5 shows the loss of accuracy as N approaches %c. The loss of accuracy partially confirms
Theorem 3. More precisely, the second term in Eq. (7) is dominant as N approaches %c, ie.,
gn approaches one. When ¢y is very close to one, (qN)‘SN cannot be small for any moderate
N.

We notice that ¢ = N (which guarantees that ¢y is bounded away from one) appears
to be a good choice if we one requires maximum accuracy, although larger values of ¢ may
also work if a reduced accuracy is acceptable. In Sec. 4, we will further discuss the issue of
choosing ¢ when also considering the time-step and discrete stability.

Similar results are obtained when we use the prolate spheroidal wave functions to interpo-
late a smooth function. In Fig. 6 we compare interpolations based on PSWF and Chebyshev
polynomials. Here we choose the number of grid points N = c¢. The results indicate that

the PSWF interpolation is superior for functions with fine structures.

11
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4 Solving partial differential equations

In the following we shall discuss the use of the PSWE’s as a basis in spectral methods for
solving wave problems. Particular attention shall be paid to issues of semi-discrete and fully

discrete stability.

4.1 First order wave equation

Consider the first order one-way wave equation

Uy = Uy, x € [-1,1]
u(l,t) =gt (8)
u(z,0) = f(x)

for which we shall seek a numerical solution.

Consider the interpolation points {xg, ..., zx } which will be specified later. We define the
Prolate-Lagrange function as Lj(z) = Sn_ L5 (x) such that Lj(zx) = ;5. The existence
of Prolate-Lagrange functions follows from the fact that the prolate spheroidal wave functions
form a Chebyshev system [17].

In a penalty Galerkin approximation we seek an approximation to the wave problem of

the form

such that the vector U = (uy(2o,t), ..., un(zy, 1))’ satisfies the equation

MC;—[Z = SU — 7(uy(1,t) — g(t))en. (9)

Here, the boundary condition is imposed in a penalty way [7, 12, 15]. The matrices M =

(m,) and S = (s;i) are defined as
1
my = / L; () L (x) e, (10)

s = / L)L), (1)

14



Theorem 4 (Stability) The semi-discrete method described in (9) is stable for T > 1/2.

Proof: For the stability proof it suffices to assume that g(¢) = 0. Multiplying (9) by UT,

we get

1d /=~ -
2dt <UTMU> - ZUN(QTj,t)SkjuN(xk,t)—TuN(l,t)2

- Z/l uN(xj’t)uN(xk7t)Lj(x)L;c($)d$—TuN(l,t)Q

! Oun (x,t) )
= /1 uN(m,t)T —tun(1,1)

_ % (un(1,8)? — un(—1,8) — 2run(1,)?).

Thus, if 7 > % then

d 1
%Z/ ww (a5, ) (. £) Ly () Ly () dex < 0,
gk 71
or
d [! )
— un(x,t))" de <0.
Ly )

This proves the theorem. O.

One way to implement the pseudospectral (collocation) method is to replace the integrals
in Eq. (10) and (11) by quadrature formulas based on the points {z;}. Alternatively, one can
substitute the approximation uy(x,t) for u into the PDE (8) and require that the obtained
equation is satisfied at certain collocation points (in most cases {x)} are used as collocation
points as well).

For the PSWF collocation method, we do not have a stability proof. The difficulty is
caused by the fact that the product of any two of the first N PSWFs with band-limit c is
not in the space spanned by the first 2N PSWFs with band-limit 2¢, for which the PSWF
quadrature is exact. However, when using {x;} as the collocation points, we numerically
verify that the eigenvalues of the differentiation matrix have negative real parts.

We shall consider two sets of grid points as {z;}: the Gauss Lobatto PSWF points (one

way to compute them is given in [8]) and the zeros of (1 — z%)(1)%¢)". Note that these points

15



must be computed from PSWF with band-limit 2¢ (see [25]). As we find the performance
of the methods based on these two sets of points to be almost equivalent, the latter will be
used for the PSWF collocation method if not specified otherwise.

When using explicit time discretization, e.g., Runge-Kutta schemes, one faces a stability
limit on the time step At. A necessary condition for stability is that the product of At
and the largest eigenvalue of the differential matrix, being M ~1(S — réyé% ) in the current
scheme, is inside the stability region of the time stepping scheme.

In Fig. 7, we observe that for fixed N the magnitude of the largest eigenvalue A of the
PSWF collocation method decreases when ¢/N increases. So without violating the stability
condition, a larger ¢ leads to larger At, as confirmed by Fig. 8. When computing the largest

stable time-step, we implemented a 10th order explicit RK scheme, the general form (m-th

order) for u; = Au with constant matrix A being given as [6]

At
u = u" + — Au",
m
At
k +m+1—k k—1, ) ) )

u" = u™ + At Auyy_g.

This ensures that the errors from the time integration are negligible.

In Fig. 8, the largest stable time-step approaches a growth rate O(N_%), when ¢ goes to
(r/2)N. This suggests that one can use a time-step of order O(N~2) by letting ¢ = (/2)N.
However, this choice of ¢ causes a loss of accuracy as demonstrated in Fig. 5. In Tab. 1, we
list the errors for the time-steps shown in Fig. 8. It is evident that the accuracy is decreasing
when ¢ approaches (7/2)N. This is consistent with our analysis for the approximation using
prolate spheroidal wave functions.

The PSWF method offers a systematic way of balancing accuracy and stability. As a
compromise, ¢ = N is used in all subsequent numerical tests. This yields a time-step which

is twice the one obtained by a Legendre collocation method, without sacrifyzing accuracy.

Similar results can be obtained by using a mapping technique [16]. In some cases it may

16
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Table 1: L-error when solving u; = u, for u(z,t) = cos(2n(xz +t — 0.5)) with collocation
methods. A 10th order explicit Runge-Kutta is used. For each N of each method, At is the
largest stable time-step shown in Fig. 8.

N 80 120 160 200
Chebyshev 3.453 x 1071 [ 4.952 x 107 | 1.521 x 10713 [ 1.115 x 1013
Legendre 7.361 x 1071 | 1.117 x 10712 | 1.274 x 10712 | 1.592 x 102
PSWF(c=N) | 9.770 x 107" | 9.104 x 107" | 2.081 x 107'* | 1.482 x 10~
PSWF(c=1.3N) | 3.638 x 10~! | 2.860 x 1077 | 7.133 x 1072 | 9.137 x 10~
PSWF(c=1.5N) | 5.022 x 1072 | 2.968 x 107! | 8.051 x 10=2 | 1.649 x 10~*
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be beneficial to use a different value of ¢, e.g., in Fig. 5, ¢ = 1.1 N could be used if only
about 1077 accuracy was required. Similar improvements over the traditional Chebyshev
collocation methods can also be achieved by the mapping technique which was first presented
in [18], albeit at loss of the quadrature. However, it will be impractical to use the PSWF
collocation method if one wants to change ¢ very often, as both the interpolation points and

the differentiation matrix have to be recomputed when ¢ is changed.

4.1.1 Numerical tests

The following numerical tests were carried out with a collocation method that determines a
nodal approximation uy(z,t) = Z;.V:O un(z;,t)L;(x) such that the equation

8uN 8uN
_ 2N 12
ot ox 0 (12)

is satisfied at the grid points {x;}. The boundary condition is applied either strongly or by
a penalty procedure as discussed above.

We considered three different initial conditions, listed in Table 2.

Table 2: Initial condition f(x)

smooth non-smooth
cos(2m(x — 0.5))
cos(207(z — 0.5)) | sin(207(z — 0.5)) + H(z — 0.5)

The Heaviside function H(x) is defined as:

H@=q bt =0 (13
Tr) =
-1, otherwise.

In Fig. 9 we show the errors from solving (12) with these smooth initial conditions. The
Chebyshev method performs better for functions with small wave numbers, whereas the
PSWF method is clearly better for functions with large wave numbers.

In Fig. 10 we present the errors for the discontinuous initial condition. In this case the

solution is discontinuous and the point of discontinuity propagates towards the boundary

18



o T = 2 mwhere u(x,0)=cos(2 Tt (x-0.5) ). At=2/ NZ in 10th order R-K T = 2m, where u(x,0)=cos(20 1t (x-0.5) ). At=2/ N in 10th order R-K
10 T T T T T T T T T T T

* Chebyshev collocation (G-L)
O PSWF collocation (G-L) 5
10°% & & & & *x & % porxkFx
*
[} ° *
°© " o *
10 *
*
o
10°F ° 5 *
107" *
o *
5 e e 5
s 3 10
3 8 *
o 4
* o ©° °
% 10° *
107 %
o
© o 10°
oy *
o
° IS
[e] o 10721 * Chebyshev collocation (G-L) 00 °
* * *% 9 * % % O PSWF collocation (G-L)
** g *
o * *F *x K * kK x*8 ¥ o o %009 0 o o
10”5 L L L L L L L L 10’“

L L L L L L L L
70 80 90 100 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60
N (=C for PSWF collocation) N (=C for PSWF collocation)

Figure 9: L-error from solving u; = u, with a collocation method and strongly imposed

boundary condition. Final time: 7" = 2r. 10th order RK with At = 5. Left: u(z,t) =

cos(2m(z — 0.5 + t)); Right: u(z,t) = cos(20m(z — 0.5+ t)). ’o’: PSWF; "*’ : Chebyshev.
with a speed a = 1. We observe that the error does not decay below 10~* when using a
strongly imposed boundary condition.

When the boundary condition is imposed by a penalty procedure [7, 15, 12], the PSWF
method is superior to the Chebyshev method (see the right part of Fig. 10). We also applied
the Legendre collocation method to solve the equation with discontinuous initial conditions.
Similar to the PSWF collocation method, the weakly imposed boundary condition yields
more accurate results than the strongly imposed boundary condition.

The improved performance with the weak imposition of the boundary condition can be
linked to the behavior of the differentiation matrix. Figures 11 and 12 show the spectrum
of the modified differentiation matrix for the PSWEF collocation method with strongly and
weakly imposed boundary conditions, respectively. We believe that the positive real parts
of eigenvalues for N = 32,64 in Fig. 11 are spurious and caused by round-off errors, as
discussed in [24] for Chebyshev/Legendre spectral differentiation matrices. These results

document the importance of imposing boundary conditions in a penalty way.
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Figure 10: Ly-error of solving u; = u, by collocation methods. wu(z,0) = sin(207w(z —
0.5)) + H(xz — 0.5). Final time: T = 27. Left: Chebyshev and PSWEF collocation method
with Strongly imposed boundary condition. Right: PSWF collocation method with weakly
imposed boundary condition.
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Figure 11: Eigenvalues of the differentiation matrix for the PSWEF collocation method.
Boundary condition is imposed strongly.
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Figure 12: Eigenvalues of the differentiation matrix for the PSWEF collocation method.
Boundary condition is imposed weakly.

4.2 A Cavity problem

In this section, we solve the one-dimensional Maxwell equations

(OE  _ oH

ot — Oz

oH  _ OF - (14)
Ko = 8z

where F(z,t) and H(x,t) are the tangential electric and magnetic fields, and € and p are
the relative permitivity and permeability of the materials.

We shall consider the test case of a one-dimensional cavity [—1,1] filled with two di-
electric media with a material interface at x = 0. Two perfectly conducting walls are located
at © = —1 and x = 1. Denote by ¢; and pu; the relative permitivity and permeability of the
material at [—1,0]. Similarly, 5 and py are the relative permitivity and permeability of the
material in [0, 1]. The electric and magnetic fields in the two domains are denoted by E, H;

and EQ, HZ-
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Figure 13: Exact solution at ¢ = 0, ny = 1.0, no = 10.0 . Upper: electric field E(x,t); Lower:
magnetic field H(x,t)

Since the walls are perfectly conducting, the boundary conditions are:

0H
El(—l, t) =0 or 8—1|$:,1 = 0,
x
OH.
Ey(1,8) =0 or a—2|’”:1 = 0.
x

Denote ny = (/€1 and ny = /€, i.e., {n;} is the index of refraction. In all the following
tests, we assume pq = po = 1.0 , ny = 1 and ny = 10.

In Fig. 13, we display the solution at t = 0. (See [9] for the derivation of the exact
solution.) When n; # ny, the solution looses smoothness at the material interface. It is only
globally C° in [—1,1]. Thus without using domain decomposition, we can only get second
order convergence with a Chebyshev or PSWF collocation method (see Fig. 14). Because
of this low order there is limited advantage to the use of the PSWF collocation method,
although the PSWF method needs less points per wavelength to resolve the solution.

For the pointwise errors from both PSWF and Chebyshev collocations, there is a spike

(Fig. 15) propagating into the left half domain and whose speed is the speed of a character-
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Figure 15: Pointwise error from the PSWF collocation method. ¢ = N = 301. ¢
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Chebyshev collocation method, weakly imposed boundary condition for the PSWEF colloca-
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Modified Initial condition, T= 2 1, Prolate Penalty , (c=) N=301, n =1, n, =10
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-1 I I I I I I I I I I I
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X

Figure 16: Pointwise errors with the initial conditions computed from the numerical scheme.

istic wave. It is caused by the initial condition being computed from the exact solution to
the partial differential equation, rather than an exact solution to the numerical scheme. One
can remedy this by computing the initial conditions from the numerical scheme. Assume

that the semi-discrete equation of (14) is

D
. (15)
Dy

eIl T

—N
SRS
I

Take the exact solution to the numerical scheme as E = Ee®! and H = H e™! and introduce

them into (15) to obtain an eigenvalue problem

(-6

The eigenvectors can be used as the initial conditions for the numerical scheme. The new

results are shown in Fig. 16 confirming this to be the source of the spike.
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5 Conclusions

Our study of the applicability of PSWF based methods to the numerical solution of time

dependent PDEs results in the following conclusions:

e The PSWF approximation requires two points per wavelength to resolve a single mode

wave function (cos(mmz)) if ¢ is chosen as ¢ = m.

e Approximating a broad band function u(x) by a finite expansion of the form Z;V:o Un s,
one obtains spectral accuracy for N > %c, with loss of accuracy when N approaches

the limit. A robust choice is N = c.

e When solving the wave equation u; = u, with explicit temporal schemes, the CFL
bound on the time-step increases as ¢ < (w/2)N increases. Asymptotically, At =
O(N~3/2) if c is very close to (7/2)N. However, this choice results in a deterioration
of the accuracy. We found ¢ = N to be a good choice to ensure good accuracy and
large stable time-step, the latter effectively increasing by a factor of two over methods

based on classical orthogonal polynomials.

e For marginally resolved broad band problems, the PSWF based method with a carefully
chosen c¢ is better than the Legendre/Chebyshev collocation methods. Less points are
needed per wavelength for fast convergence and the allowable time-step is twice as

large.

e The weak imposition of the boundary condition is necessary for the success of the
method for problems with discontinuous initial conditions. By weakly applying the
boundary condition, we improve the spectrum of the first order differentiation matrix
of the PSWF collocation method, i.e., moving those eigenvalues with almost zero real
parts a little distance away from the imaginary axis, thus introducing a small amount

of dissipation.
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Appendix
In this appendix, we prove Theorem 3.
Let B = BY be the coefficient in the expansion of ¢ in terms of the normalized Legendre
polynomials, i.e., Y% (z) = Y2720 B Pi(x), where
1 —
B = /lPk(x)@/)N(x)dx.

The following recurrence relation for [ is proven in [25]:

(k+2)(k+1) Biry = <A—k(k+1)_ 2k(k+1) —1 )ﬁ
2k +3)/ 2k +o)2k+1) K

? (2k +3)(2k — 1)

k(k — 1)
2k —1)/2k—3)(2k + 1) P (16)

Note that, from [23], A = xy = O(N?). Let m be any integer satisfying
In 2
m=0AY*=0(N*?)  and  2m@m+1)< %A. (17)

Then we have the following lemma:

Lemma 1 Assume g = qy = \/% < 1. Then for any given k < 2m, [y is bounded by:

D(%)k|50|, k even

Bk < K (18)
D(2) |,k odd
where D is a constant independent of m.
Proof: We give the proof only for even k. The proof for odd k is similar.
Rewrite (16) as
1 1 k(k+1) f(k)
=—|(=|1- —g(k — ———— [ 9, 19
B2 Flk+2) <q2 ( A ) 9( )) B Fk+2) Br—2 (19)
_ z(x—1) _ 2z(z+1)-1 . .
where f(x) = R oy and g(z) = ey crany It is easy to verify that
1 11
1/4 < f(zx) < 2V/5/15, §§g(x)§ﬁ, for x > 2.

Therefore f(x)/f(z +2) < 8/5/15 when x > 2.

27



Since

1 k(k+1)\ _ 1, In2 11
k§2m:>?<1—T>>—2(1——)>—> (x), for x > 2,

the coefficient of fj in (19) is positive. Hence, if we assume (18) is true for k, k — 2, we can

bound (2 as

|Bet2| < ﬁ <q—12 <1—W) g(k )) |Bk| + (£(+)2) | Br—2|
4% (1—11172) D<(2]> |60|+%D<q) | Bol

k+2 k+2
p ()" (-2 5 wi<n (2)
q q

The last inequality follows from the facts that ¢ < 1 and 1 — mTz + % < 1. When k£ =0, 2,

IN

IN

(18) can be easily satisfied by modifying the constant D. This completes the proof. 0.
Define

1
Ay = / e () da. (20)
-1
One can check that V23, = A and 1/2/35; = A,

Lemma 2 Let m be an integer satisfying (17). Then

2

o] < Kg™ dm+1’ (21)
where K is a constant independent of m.
Proof: We first show that
m—1 1
| Aol < ¢°™| Agm| H PRSETCESIE (22)

A

Rewrite (2) as
((1 — xQ)w,) +A(1 - ¢*2*)p = 0.
For [ < m, multiply the above equation by x?, then integrate on [-1,1] to obtain

(2 — 1) Ayo+ (A — 220+ 1)) Ay — AAgn =0, 1> 1,
Ao — ¢° A, =0, [=0.
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Since 2m(2m + 1) < A, all Ay, As, -+, Aoy yo have the same sign. Thus

1

= Ao~
A—2l(2l+1)_q [Azizl] EE,

|Ag| < ¢% |Aziso]

Then (22) follows by induction.

To show (21), we note that 1 —z > e when 0 < x < 1“72 Therefore,

- 2l(2i\+ 1) 26_221(2}\+1)7 1=1.9 m—1,

which leads to

m—1 Elm114l(2l+1) gmi‘
< e A

1 2l+1 — <e €

=1

From (17), m = O(A'?). So (20) yields

(\]

| Aom| < |#”™ | 2p=1,1) 19| 22=1,1) < il

which proves (21). O

In the same way, one can also show that [A;| < K¢*™ under the same conditions

4m—+3
on m. We are now ready to prove Theorem 3.

Proof of Theorem 3 : Assume u(z) has the Legendre expansion

+00
= Z ClkPk (37)
k=0

By definition,

iy = / ()i () = / 11 n () (f akPk(x)> da.

1 k=0
Let M be an integer such that

M+1  In(1/q)
2m _len(Q/q)’

(23)
where m is defined in (17) and 0 < v < 1 is a constant. Denote by u(x) the partial sum

U,M(l') = 224:0 Clkpk(ib‘). Then

iy :/1 unt () o (2)dz + /1 (u(x) — un(x)) b (2)dz

1 -1
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We use I and I to represent the first and second term, respectively. According to the error

estimate of the Legendre approximation [11, 6],

T < lu— unrl| o—107 [N (@) 22=10) £ DM 7 [Jul| sy,

where D is a constant (in the following, D is used for different constants). Now,

éak/_ij(x)T/}N(x)dx i(akm) </_11Fk($)¢N($)dx>‘

1l =

k=0

(i(ak)Z%il)W (Z (/_11 Fk(x)ww(w)de)z) N

<
k=0 k=0

M 1/2

< ullz2rag (Z@
k=0
Mo 2k 1/2

< Dlullgrry (Z (q) ) max (|fol, |51]).
k=0

Here Lemma 1 is used in the last reduction.

From Lemma 2, 3, = %AU < Kg*m 4mQ+1 and 8, = /3/24; < K¢*™ 4mZ+3, where K

is a constant. Thus

M 2 2k 1/2 2
2m
11| < Dllul|r2p-1, (Z g) ) T\ am+3

k=0
9\ M+1 5
< D _ - 2m
2\ ) " 2
< D 2[_ -
[ullz2i-1,1 (q (q) ) T
2
< Dllullzzj1.0 p*™
> [kajy? [-1,1] P Am+ 3’
M1
where p = ¢ (%) o
From (23), p = ¢'~” and M = O(m) = O(N?/?). Combining the bounds for I and II, we
get
2 21—
il < D (N ullmopa + (ax) 3N ullger 1)
which proves Theorem 3 with § = 2(1 — 7). |
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