A Mixed Finite Volume Method for Elliptic Problems

Ilya D. Mishev and Qian-Yong Chen^{*} ExxonMobil Upstream Research Company P.O. Box 2189, Houston, TX 77252-2189

Abstract

We derive a novel finite volume method for the elliptic equation, using the framework of mixed finite element methods to discretize the pressure and velocities on two different grids (covolumes), triangular (tetrahedral) mesh and control volume mesh. The new discretization is defined for tensor diffusion coefficient and well suited for heterogeneous media. When the control volumes are created by connecting the center of gravity of each triangle to the midpoints of its edges, we show that the discretization is stable and first order accurate for both scalar and vector unknowns.

Key words; finite volume methods, cell-centered finite differences, error estimates AMS subject classification: 65N06, 65N12, 65N15.

^{*}Postdoctoral associate at Institute for Mathematics and its Applications, University of Minnesota. Partially funded by ExxonMobil Upstream Research Company. Current address: Department of Mathematics and Statistics, University of Massachusetts Amherst

1 Introduction

Physical diffusion process is usually modeled by an elliptic equation. The heterogeneous diffusion tensor due to the heterogeneous anisotropic media imposes great challenges to the numerical schemes. There are several highly desirable properties of the discretization beyond the classical stability and accuracy, such as local mass conservation, discrete maximum principle, etc, that are crucial in capturing the important details of the solutions of complicated (especially nonlinear) problems on relatively coarse grids.

In this paper we derive a method that is *locally mass conservative* and it can be applied to a general finite volume grid constructed from any given triangular or tetrahedral mesh. The first version belongs to the so called class of "**K** *methods*". When the control volume is formed by centers of gravity and edge midpoints of the triangles, we show first order accuracy for the pressure gradient and the velocity. The included numerical results confirm the theoretical estimates. We only mention the second version that is one of the "**K**⁻¹ *methods*". This version could be more suitable for simulation of fluid flow in porous media where harmonic averaging has proven to be very useful for problems with discontinuous coefficients when the control volumes are aligned to the discontinuities. The investigation of the **K**⁻¹ method is beyond the scope of this paper. Our computational experiments show that when we use Voronoi boxes and Delaunay triangles the resulting matrices from both versions are M-matrices which is in agreement with known results for Finite Element Methods [38].

Our discretization is similar to the Finite Volume Element (FVE) method, but it also produces direct approximation of the velocity which is not the case for FVE method. This can be very beneficial in some applications. In the proposed method, the velocity unknowns are eliminated and the resulting linear system for the pressure can be solved with the available solvers. We used ILU with fill-in type of preconditioners [31], but Algebraic Multigrid is also applicable. The estimated computational cost on triangular or tetrahedral mesh will be two to three times less than the cost for solving the same problem with the standard mixed finite element methods.

There have been extensive research on developing numerical schemes for the partial differential equations of interest on a given general grid. The classical finite difference schemes are only applicable to structured grids. The mimetic finite difference schemes proposed by Shashkov [33] are very promising in terms of dealing with highly distorted grids. The convergence and super convergence [6, 7] are also established for smooth problems on smooth meshes by rewriting it into the form of mixed finite element methods. But the computational cost is an issue.

Finite volume methods overcome most of the restrictions of finite difference schemes, and they are usually locally mass conservative. There have been a significant advance in the theory of the finite volume methods applied to diffusion equations with scalar coefficient on unstructured meshes [2, 18, 22, 24, 30]. Several methods for handling tensor coefficient have been proposed [37, 15, 1]. Recently the convergence is established for one of such methods, the multi-point flux approximation, on quadrilateral grids under the assumption of smooth mesh [20]. But a comprehensive theory for general mesh is still not available yet.

Control volume finite element methods, often called finite volume element methods are another worthy alternative [5, 16, 11, 32, 17, 25]. They are applicable on flexible grids and are locally mass conservative, but do not preserve the symmetry of the differential operator, and do not produce direct approximation of the velocity field.

Mixed finite elements, since their introduction [28], have proven to be robust and give very accurate approximations. In some cases it is possible to reduce the system of coupled equations for the pressure and velocity to a system only for the pressure [4, 3], which is much easier to solve. Unfortunately some restrictions apply. There is considerable advance in designing methods for distorted general meshes [23, 10, 35, 36, 12], but they are quite expensive and 3-D case is still under development [26, 21]. Closely related to the mixed hybrid methods are the finite volume box schemes proposed by Croisille [13, 14].

The proposed method in considerable extent alleviates the drawbacks of the known meth-

ods without significant increase of the computational cost.

The rest of the paper is organized as follows. In Sec. 2 we consider a simple model problem. The discretization is derived in Sec. 3. All necessary formulas for the implementation of the method are provided. Review of the theory for mixed finite element methods is outlined in Sec. 4 and theoretical estimates are proven in Sec. 5. Some numerical results are presented in Sec. 6. Finally we summarize the paper in the conclusions.

2 Model Problem

Consider a model boundary value problem:

$$-div(\mathbf{K}\nabla p(x)) = f(x) \text{ in } \Omega, \tag{1a}$$

$$p(x) = 0 \quad \text{on } \partial\Omega, \tag{1b}$$

where Ω is a domain in \mathbb{R}^d , d = 2 or 3, and the boundary $\partial \Omega$ is polygonal and convex. The diffusion tensor **K** is assumed to be a uniformly symmetric positive definite matrix.

Defining the velocity \mathbf{u} as

$$\mathbf{u} = -\mathbf{K}\nabla p,$$

we can rewrite (1a) as a first order system for the unknowns \mathbf{u} and p

$$\mathbf{u} + \mathbf{K}\nabla p = 0, \tag{2a}$$

$$div(\mathbf{u}) = f. \tag{2b}$$

Note that in some application \mathbf{K} can be discontinuous (heat transfer, reservoir simulation), although the normal component of \mathbf{u} is continuous.

Problems (1) and (2) are equivalent.

The weak formulation of problem (1) is: Find $(\mathbf{u}, p) \in \mathbf{U} \times P$ such that

$$\int_{\Omega} \mathbf{u} \cdot \mathbf{v} + \int_{\Omega} \mathbf{K} \nabla p \cdot \mathbf{v} = 0 \quad \forall \, \mathbf{v} \in \mathbf{V},$$
(3a)

$$\int_{\Omega} div(\mathbf{u})q = \int_{\Omega} fq \quad \forall q \in Q., \tag{3b}$$

Note that the test and trial spaces in (3) can be different. Similar methods have been considered in [35, 36] with particular choice

$$\mathbf{U} = H(div, \Omega), \quad P = H_0^1(\Omega), \quad \mathbf{V} = \left(L^2(\Omega)\right)^d, \quad Q = L^2(\Omega),$$

where

$$H_0^1(\Omega) = \{ p \in L^2(\Omega), \ Dp \in L^2(\Omega), \ p = 0 \text{ on } \partial\Omega \}.$$
$$H(div, \Omega) = \{ \mathbf{v} \in (L^2(\Omega))^d, \ div(\mathbf{v}) \in L^2(\Omega) \}.$$

It is generally difficult to find a stable pair discrete spaces $(\mathbf{U}_h, P_h), \mathbf{U}_h \subset H(div, \Omega), P_h \subset H_0^1(\Omega)$ for unstructured meshes.

We would like to obtain a discrete method that replaces equation (3b) with an equation similar to the one derived from finite volume methods. Suppose the domain Ω is divided into set of control volumes V_i , i = 1, ..., n, and assume q is smooth enough. With integration by parts, we can rewrite (3b) as

$$\sum_{i=1}^{n} \left[\int_{\partial V_i} \mathbf{u} \cdot \mathbf{n} q - \int_{V_i} \nabla q \cdot \mathbf{u} \right] = \int_{\Omega} f q.$$
(4)

Choosing Q_h to be the space of piecewise constants on the control volumes, Eq. (4) becomes

$$\sum_{i=1}^{n} \int_{\partial V_i} \mathbf{u}_h \cdot \mathbf{n} \ q = \int_{\Omega} f \ q, \tag{5}$$

which is a typical equation in finite volume methods.

The equation (5) can be considered as an approximation of Eq. (3b) with non-conforming spaces \mathbf{U}_h and Q_h .

3 Discretization

We introduce two different meshes that are "dual" to each other. The meaning of "dual" will become clear from the following example on which we build the discretization. In particular, the triangular (tetrahedral) mesh, e.g., the Delaunay triangulation \mathcal{D}_h , is used

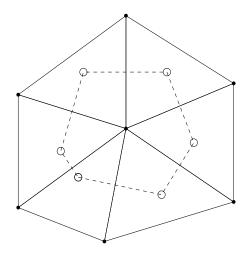


Figure 1: Voronoi box/Delaunay triangles

for the discretization of pressure p (the triangles on Fig. 1). The velocity **u** is approximated on a control volume mesh built from the triangles, for example the Voronoi (PEBI) grid \mathcal{V}_h . One Voronoi control volume is depicted on Fig. 1 with dotted line.

We take the finite element methodology to construct the discretization. The first step is to replace the infinitely dimensional spaces \mathbf{U} , P, \mathbf{V} , and Q in problem (3) with finite subspaces \mathbf{U}_h , P_h , \mathbf{V}_h , and Q_h . The subindex h is used to emphasize the sequences of spaces for $h \to 0$, i.e., when the meshes become more refined, the dimension of the spaces increases.

Denote with \mathcal{E}_h the edges of control volumes in \mathcal{V}_h . We approximate the velocity **u** with a piecewise constant vector function that have continuous normal components on \mathcal{E}_h . More details will be given later on the construction of \mathbf{U}_h .

The discrete space P_h of approximated pressure is defined on the triangulation \mathcal{D}_h . Every element $p \in P_h$ is a continuous piecewise linear function. We introduce a discrete subspace Q_h of $L^2(\Omega)$ that consists of piecewise constants on control volumes $V \in \mathcal{V}_h$.

Then the discrete problem is defined as follows:

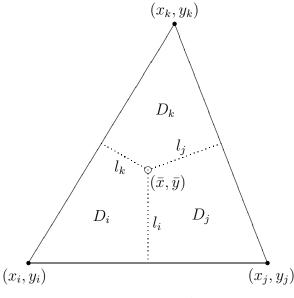


Figure 2: Triangle D

Find $(\mathbf{u}_h, p_h) \in \mathbf{U}_h \times P_h$ such that

$$\int_{\Omega} \mathbf{u}_h \cdot \mathbf{v}_h + \int_{\Omega} \mathbf{K} \nabla p_h \cdot \mathbf{v} = 0 \quad \forall \, \mathbf{v}_h \in \mathbf{U}_h, \tag{6a}$$

$$\sum_{V \in \mathcal{V}_h} \int_{\partial V} \mathbf{u}_h \cdot \mathbf{n} \, q_h = \int_{\Omega} f q_h \quad \forall \, q_h \in Q_h.$$
 (6b)

Note that $\mathbf{U}_h = \mathbf{V}_h$.

The second step in the finite element discretization is to construct basis for \mathbf{U}_h .

3.1 Basis of U_h

We would like to determine the velocity in such a way that the normal components on the edges of the control volumes in any given triangle are continuous. Consider a triangle $D = D_i \cup D_j \cup D_k$ as shown in Fig. 2. In each of the quadrilaterals D_i , D_j and D_k the velocity \mathbf{v} is approximated with a constant function (six degrees of freedom). We additionally impose that the normal components on l_i , l_j , l_k are continuous (subtract three degrees of freedom). Therefore, there are three degrees of freedom for the velocity space \mathbf{U}_h in D. We choose them to be the integrals of the normal components on l_i , l_j , l_k , i.e., any vector function $\mathbf{v}_{|D} \in \mathbf{U}_h$ can be uniquely determined by the numbers

$$v_i = \int_{l_i} \mathbf{v} \cdot \mathbf{n}_i, \quad v_j = \int_{l_j} \mathbf{v} \cdot \mathbf{n}_j, \quad v_k = \int_{l_k} \mathbf{v} \cdot \mathbf{n}_k$$

Note that the values of the velocity in one triangle are not directly connected with the values in the neighboring triangles.

Consider vector functions \mathbf{e}_i , \mathbf{e}_j , \mathbf{e}_k defined with the relations

$$\int_{l_i} \mathbf{e}_i \cdot \mathbf{n}_i = 1, \quad \int_{l_j} \mathbf{e}_i \cdot \mathbf{n}_j = 0, \quad \int_{l_k} \mathbf{e}_i \cdot \mathbf{n}_k = 0, \tag{7a}$$

$$\int_{l_i} \mathbf{e}_j \cdot \mathbf{n}_i = 0, \quad \int_{l_j} \mathbf{e}_j \cdot \mathbf{n}_j = 1, \quad \int_{l_k} \mathbf{e}_j \cdot \mathbf{n}_k = 0, \tag{7b}$$

$$\int_{l_i} \mathbf{e}_k \cdot \mathbf{n}_i = 0, \quad \int_{l_j} \mathbf{e}_k \cdot \mathbf{n}_j = 0, \quad \int_{l_k} \mathbf{e}_k \cdot \mathbf{n}_k = 1.$$
(7c)

It is easy to see that \mathbf{e}_i , \mathbf{e}_j , \mathbf{e}_k are linearly independent and therefore form a basis. So **v** restricted to the triangle D is equal to

$$\mathbf{v}_{|D} = v_i \mathbf{e}_i + v_j \mathbf{e}_j + v_k \mathbf{e}_k.$$

Each of the vectors $\mathbf{e}_i, \mathbf{e}_j$ and \mathbf{e}_k , is defined on the whole triangle D, being piecewise constant on each of the quadrilaterals D_i , D_j and D_k . One can compute the basis vectors once the normal vectors $\mathbf{n}_i, \mathbf{n}_j, \mathbf{n}_k$, and the lengths of the intervals l_i, l_j, l_k are given. For example, \mathbf{e}_i can be represented as

$$\mathbf{e}_{i} = \left((e_{1|D_{i}}^{(i)}, e_{2|D_{i}}^{(i)}), (e_{1|D_{j}}^{(i)}, e_{2|D_{j}}^{(i)}), (e_{1|D_{k}}^{(i)}, e_{2|D_{k}}^{(i)}) \right).$$

According to the conditions (7a), in the quadrilateral D_i we have the identities $\int_{l_i} \mathbf{e}_i \cdot \mathbf{n}_i = 1$ and $\int_{l_k} \mathbf{e}_i \cdot \mathbf{n}_k = 0$ that lead to the linear system for the unknown components

$$e_{1|D_i}^{(i)} n_1^{(i)} + e_{2|D_i}^{(i)} n_2^{(i)} = 1/|l_i|,$$

$$e_{1|D_i}^{(i)} n_1^{(k)} + e_{2|D_i}^{(i)} n_2^{(k)} = 0.$$

Similarly we compute $e_{1|D_j}^{(i)}$ and $e_{1|D_k}^{(i)}$. Permuting appropriately the indexes i, j and k in the expressions above we can get the formulas for \mathbf{e}_j and \mathbf{e}_k .

3.2 Assembling

The last step is to derive the actual finite volume scheme, in finite element terminology, to assemble the matrix. Consider Eq. (6a) with $\mathbf{v}_h = \mathbf{e}_i$, \mathbf{e}_j and \mathbf{e}_k , i.e.,

$$\begin{aligned} u_i \int_D \mathbf{e}_i \cdot \mathbf{e}_i + u_j \int_D \mathbf{e}_j \cdot \mathbf{e}_i + u_k \int_D \mathbf{e}_k \cdot \mathbf{e}_i + \int_D \mathbf{K} \nabla p \cdot \mathbf{e}_i &= 0, \\ u_i \int_D \mathbf{e}_i \cdot \mathbf{e}_j + u_j \int_D \mathbf{e}_j \cdot \mathbf{e}_j + u_k \int_D \mathbf{e}_k \cdot \mathbf{e}_j + \int_D \mathbf{K} \nabla p \cdot \mathbf{e}_j &= 0, \\ u_i \int_D \mathbf{e}_i \cdot \mathbf{e}_k + u_j \int_D \mathbf{e}_j \cdot \mathbf{e}_k + u_k \int_D \mathbf{e}_k \cdot \mathbf{e}_k + \int_D \mathbf{K} \nabla p \cdot \mathbf{e}_k &= 0. \end{aligned}$$

Here we have taken into account that the restriction of \mathbf{u}_h to the triangle D is $\mathbf{u}_{h|D} = u_i \mathbf{e}_i + u_j \mathbf{e}_j + u_k \mathbf{e}_k$. Note that the matrix $\{\mathbf{e}_m \cdot \mathbf{e}_n\}_{m,n=i,j,k}$ is symmetric and positive definite. Therefore, we can solve for the fluxes u_i , u_j and u_k and substitute them into Eq. (6b). Let

$$t_{mn} = \int_D \mathbf{e}_m \cdot \mathbf{e}_n,$$

and denote the matrix

$$T^{-1} = \begin{bmatrix} t_{ii} & t_{ji} & t_{ki} \\ t_{ij} & t_{jj} & t_{kj} \\ t_{ik} & t_{jk} & t_{kk} \end{bmatrix}$$

On the triangle D, we have

$$p = p_i q_i + p_j q_j + p_k q_k,$$

where q_i, q_j and q_k are the basis "hat" functions. Denote

$$m_{mn} = \int_D \mathbf{K} \nabla q_m \cdot \mathbf{e}_n$$

and

$$M = \begin{bmatrix} m_{ii} & m_{ji} & m_{ki} \\ m_{ij} & m_{jj} & m_{kj} \\ m_{ik} & m_{jk} & m_{kk} \end{bmatrix}.$$

We call M the mass matrix. Then

$$\begin{bmatrix} u_i \\ u_j \\ u_k \end{bmatrix} = -\begin{bmatrix} t_{ii} & t_{ji} & t_{ki} \\ t_{ij} & t_{jj} & t_{kj} \\ t_{ik} & t_{jk} & t_{kk} \end{bmatrix}^{-1} \begin{bmatrix} m_{ii} & m_{ji} & m_{ki} \\ m_{ij} & m_{jj} & m_{kj} \\ m_{ik} & m_{jk} & m_{kk} \end{bmatrix} \begin{bmatrix} p_i \\ p_j \\ p_k \end{bmatrix} = -TM\mathbf{p}.$$

Having expressed \mathbf{u}_h through p_h , we obtain the final equation for each p_i by substituting \mathbf{u}_h into (6b) and testing with the basis of Q_h . Let D_1, D_2, \ldots, D_m are the triangles in the support of q_i . Then the equation for p_i is

$$\sum_{V \in \mathcal{V}_h} \int_{\partial V} -T_i M_i \mathbf{p}_i \cdot \mathbf{n} \, q_h = \int_{\Omega} f q_h.$$

Here the subscript means T_i , M_i and \mathbf{p}_i are defined on triangle D_i .

Remark 1 The proposed method belongs to the class of "K methods" [19]. One can obtain a "K⁻¹ method" by first rewriting Eq. (2a) as

$$\mathbf{K}^{-1}\mathbf{u} + \nabla p = 0$$

and then following the above procedure.

4 Theoretical Framework

In this section we state a theorem which is an easy generalization of the results by Nicolaides [27], Brezzi and Fortin [8] and Thomas and Trujillo [35, 36].

Take an abstract problem

Find
$$(\mathbf{u}, p) \in \mathbf{U} \times P$$

 $a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = \langle g, \mathbf{v} \rangle \quad \forall \mathbf{v} \in \mathbf{V},$ (8a)

$$c(\mathbf{u}, q) = \langle f, q \rangle \quad \forall q \in Q, \tag{8b}$$

where $(\mathbf{U}, \|.\|_{\mathbf{U}})$, $(P, \|.\|_P)$, $(\mathbf{V}, \|.\|_{\mathbf{V}})$ and $(Q, \|.\|_Q)$ are four Hilbert spaces, a(., .), b(., .) and c(., .) are bilinear forms defined respectively on $\mathbf{U} \times \mathbf{V}$, $P \times \mathbf{V}$ and $\mathbf{U} \times Q$. The right hand sides are defined for $g \in \mathbf{V}'$, $f \in Q'$, where \mathbf{V}' and Q' are the dual spaces of \mathbf{V} and Q correspondingly.

Consider the discrete problem:

Find
$$(\mathbf{u}_h, p_h) \in \mathbf{U}_h \times P_h$$

 $a_h(\mathbf{u}_h, \mathbf{v}_h) + b_h(\mathbf{v}_h, p_h) = \langle g, \mathbf{v}_h \rangle_h \quad \forall \mathbf{v}_h \in \mathbf{V}_h,$ (9a)

$$c_h(\mathbf{u}_h, q_h) = \langle f, q_h \rangle_h \quad \forall q_h \in Q_h, \tag{9b}$$

where $(\mathbf{U}_h, \|.\|_{\mathbf{U}_h})$, $(P_h, \|.\|_{P_h})$, $(\mathbf{V}_h, \|.\|_{\mathbf{V}_h})$ and $(Q_h, \|.\|_{Q_h})$ are four Hilbert spaces, $a_h(.,.)$, $b_h(.,.)$ and $c_h(.,.)$ are bilinear forms defined respectively on $\mathbf{U}_h \times \mathbf{V}_h$, $P_h \times \mathbf{V}_h$ and $\mathbf{U}_h \times Q_h$. Suppose that $\mathbf{U}_h \not\subset \mathbf{U}$ and $\mathbf{V}_h \not\subset \mathbf{V}$, i.e., discretization (9) is non-conforming.

Let \mathbf{U}_{0h} and \mathbf{V}_{1h} be the spaces defined by

$$\mathbf{U}_{0h} = \{ \mathbf{u}_h \in \mathbf{U}_h, \quad \forall q_h \in Q_h, \quad c_h(\mathbf{u}_h, q_h) = 0 \},$$
$$\mathbf{V}_{1h} = \{ \mathbf{v}_h \in \mathbf{V}_h, \quad \forall \mathbf{u}_h \in \mathbf{U}_{0h}, \quad a_h(\mathbf{u}_h, \mathbf{v}_h) = 0 \}.$$

Assume that there exists three constants A, B and C independent of h such that

$$a_h(\mathbf{u}_h, \mathbf{v}_h) \le A \|\mathbf{u}_h\|_{\mathbf{U}_h} \|\mathbf{v}_h\|_{\mathbf{V}_h},\tag{10a}$$

$$b_h(\mathbf{v}_h, p_h) \le B \|\mathbf{v}_h\|_{\mathbf{V}_h} \|p_h\|_{P_h}.$$
(10b)

$$c_h(\mathbf{u}_h, q_h) \le C \|\mathbf{u}_h\|_{\mathbf{U}_h} \|q_h\|_{Q_h}.$$
(10c)

Then we have the following result:

Theorem 1 Assume that the next three Babuška-Brezzi conditions are satisfied:

$$i) \quad \inf_{\mathbf{u}_h \in \mathbf{U}_{0h}} \sup_{\mathbf{v}_h \in \mathbf{V}_h} \frac{a_h(\mathbf{u}_h, \mathbf{v}_h)}{\|\mathbf{u}_h\|_{\mathbf{U}_h} \|\mathbf{v}_h\|_{\mathbf{V}_h}} \ge \alpha,$$
(11a)

ii)
$$\inf_{p_h \in P_h} \sup_{\mathbf{v}_h \in \mathbf{V}_{1h}} \frac{b_h(\mathbf{v}_h, p_h)}{\|\mathbf{v}_h\|_{\mathbf{V}_h} \|p_h\|_{P_h}} \ge \beta,$$
(11b)

iii)
$$\inf_{q_h \in Q_h} \sup_{\mathbf{u}_h \in \mathbf{U}_h} \frac{c_h(\mathbf{u}_h, q_h)}{\|\mathbf{u}_h\|_{\mathbf{U}_h} \|q_h\|_{Q_h}} \ge \gamma.$$
(11c)

and that

$$\dim(\mathbf{U}_h) + \dim(P_h) = \dim(\mathbf{V}_h) + \dim(Q_h).$$

Then problem (9) has a unique solution (\mathbf{u}_h, p_h) . Moreover, if α , β and γ are independent of h, there exists positive constant C independent of h such that

$$\|\mathbf{u} - \mathbf{u}_{h}\|_{\mathbf{U}_{h}} + \|p - p_{h}\|_{P_{h}}$$

$$\leq C \left(\inf_{\mathbf{v}_{h} \in \mathbf{V}_{h}} \|\mathbf{u} - \mathbf{v}_{h}\|_{\mathbf{V}_{h}} + \inf_{p_{h} \in P_{h}} \|p - p_{h}\|_{P_{h}} + M_{1h} + M_{2h} + M_{3h} + M_{4h} \right), \quad (12)$$

where

$$M_{1h} = \sup_{\mathbf{v}_h \in \mathbf{V}_h} \frac{a_h(\mathbf{u}, \mathbf{v}_h) + b_h(\mathbf{v}_h, p) - \langle q, \mathbf{v}_h \rangle}{\|\mathbf{v}_h\|_{\mathbf{v}_h}},$$

$$M_{2h} = \sup_{\mathbf{v}_h \in \mathbf{V}_h} \frac{\langle g, \mathbf{v}_h \rangle - \langle g, \mathbf{v}_h \rangle_h}{\|\mathbf{v}_h\|_{\mathbf{v}_h}},$$

$$M_{3h} = \sup_{q_h \in q_h} \frac{c_h(\mathbf{u}, q_h) - \langle f, q_h \rangle}{\|q_h\|_{Q_h}},$$

$$M_{4h} = \sup_{q_h \in Q_h} \frac{\langle f, q_h \rangle - \langle f, q_h \rangle_h}{\|q_h\|_{Q_h}}.$$

We use the results above for the bilinear forms:

$$\begin{aligned} a(\mathbf{u}, \mathbf{v}) &= \int_{\Omega} \mathbf{u} \cdot \mathbf{v}, \qquad a_h(\mathbf{u}_h, \mathbf{v}_h) = \int_{\Omega} \mathbf{u}_h \cdot \mathbf{v}_h, \\ b(\mathbf{v}, p) &= \int_{\Omega} \mathbf{K} \nabla p \cdot \mathbf{v}, \quad b_h(\mathbf{v}_h, p_h) = \int_{\Omega} \mathbf{K} \nabla p_h \cdot \mathbf{v}_h, \\ c(\mathbf{u}, q) &= \int_{\Omega} div(\mathbf{u})q, \qquad c_h(\mathbf{u}_h, q_h) = \sum_{V \in \mathcal{V}_{\langle}} \int_{\partial V} \mathbf{u}_h \cdot \mathbf{n} q_h, \end{aligned}$$

where $\mathbf{U}_h \not\subset \mathbf{U} = H(div, \Omega), \, \mathbf{V}_h \subset \mathbf{V} = (L^2(\Omega))^2, \, P_h \subset P = H_0^1(\Omega), \, Q_h \subset Q = L^2(\Omega).$

5 Stability and Error Estimates

We start with several auxiliary results. The primary triangular mesh is assumed to be quasiregular as in the analysis of conforming finite element methods. The dual mesh, i.e., the control volumes, are formed by connecting the centers of gravity of the triangles to their edge midpoints. The same error estimates also hold for the three dimensional case when the dual mesh is constructed in a similar way. Some proofs are omitted for simplicity. Lemma 1

$$\|\mathbf{u}_h\|_{0,\Omega}^2 \sim \sum_{E_{ij} \in \mathcal{E}_h} \left[\int_{E_{ij}} \mathbf{u}_h \cdot \mathbf{n} \right]^2, \quad \forall \, \mathbf{u}_h \in \mathbf{U}_h$$

(The \sim is use to indicate the equivalence of the norms.)

Proof: The proof follows from the definition of the space \mathbf{U}_h . \Box

The error estimate for the constant interpolant in \mathbf{V}_h is provided below.

Lemma 2

$$\|\mathbf{v} - I_h^c \mathbf{v}\|_{0,\Omega} \le Ch \|\mathbf{v}\|_{1,\Omega},$$

where

$$I_h^c \mathbf{v} = \sum_{D \in \mathcal{D}_h} \left[\int_{l_i} \mathbf{v} \cdot \mathbf{n}_i \right] \mathbf{e}_i + \left[\int_{l_j} \mathbf{v} \cdot \mathbf{n}_j \right] \mathbf{e}_j + \left[\int_{l_k} \mathbf{v} \cdot \mathbf{n}_k \right] \mathbf{e}_k.$$

Proof: Consider the reference element \hat{D} and the constant interpolant \hat{I}^c . We have

$$\begin{split} \|\hat{I}^{c}\hat{\mathbf{v}}\|_{0,\hat{D}} &\leq C(\hat{D})\left(\left|\int_{l_{i}}\hat{\mathbf{v}}\cdot\mathbf{n}_{i}\right||\mathbf{e}_{i}| + \left|\int_{l_{j}}\hat{\mathbf{v}}\cdot\mathbf{n}_{j}\right||\mathbf{e}_{j}| + \left|\int_{l_{k}}\hat{\mathbf{v}}\cdot\mathbf{n}_{k}\right||\mathbf{e}_{k}|\right) \\ &\leq C_{1}(\hat{D})(\|\hat{\mathbf{v}}\|_{0,l_{i}} + \|\hat{\mathbf{v}}\|_{0,l_{j}} + \|\hat{\mathbf{v}}\|_{0,l_{k}}) \\ &\leq C_{2}\|\hat{\mathbf{v}}\|_{1,\hat{D}}. \end{split}$$

Therefore,

$$\|\hat{\mathbf{v}} - \hat{I}^c \hat{\mathbf{v}}\|_{0,\hat{D}} \le C_2 \|\hat{\mathbf{v}}\|_{1,\hat{D}}.$$

By the Bramble-Hilbert lemma argument we get

$$\|\hat{\mathbf{v}} - \hat{I}^c \hat{\mathbf{v}}\|_{0,\hat{D}} \le C_2 |\hat{\mathbf{v}}|_{1,\hat{D}}.$$

Transformation to the original element produces the desired result. \Box

In order to use **Theorem** 1 one has to specify the spaces and norms mentioned in it. We define the norms as

$$\|p_h\|_{P_h} = \|p_h\|_{1,\Omega}, \quad \|q_h\|_{Q_h} = \left(\sum_{x_i \in \omega} \sum_{j \in \Pi(i)} (q_i - q_j)^2\right)^{1/2}, \\ \|\mathbf{u}_h\|_{\mathbf{U}_h} = \|\mathbf{u}_h\|_{\mathbf{V}_h} = \|\mathbf{u}_h\|_{0,\Omega},$$

where ω consists of the nodes of the triangles in the triangulation \mathcal{D}_h and $\Pi(i)$ is the set of neighbors of x_i .

Recall a well known result for the equivalence of the norm on P_h with H_0^1 -seminorm [9]:

Lemma 3

$$\|p_h\|_{P_h} \sim |p_h|_{1,\Omega} \quad \forall \, p_h \in P_h.$$

The following theorem is the error estimate for the method proposed in this paper.

Theorem 2 Let (\mathbf{u}, p) be the solution of problem (3) and $\mathbf{u} \in (H^1(\Omega))^2$, $p \in H^1(\Omega)$. Suppose that the triangular grid is quasiregular and the control volumes are constructed by connecting the center of gravity of the triangles to their edge midpoints. Then there exist an unique solution (\mathbf{u}_h, p_h) of (6) and a positive constant C such that

$$||p - p_h||_{1,\Omega} + ||\mathbf{u} - \mathbf{u}_h||_{0,\Omega} \le Ch(|p|_{2,\Omega} + ||\mathbf{u}||_{1,\Omega}).$$

Proof: It is easy to verify (10a) and (11a) for the bilinear form $a_h(.,.)$.

We check the conditions (10b) and (11b) for the bilinear form $b_h(.,.)$ as follows. Since **K** is a uniformly positive definite matrix, there exists positive constants k_1 and k_2 such that

$$k_1 \xi^t \xi \leq \xi^t \mathbf{K} \xi \leq k_2 \xi^t \xi, \quad \forall \xi \in \mathbf{R}^d.$$

So,

$$b_h(\mathbf{v}_h, p_h) = \int_{\Omega} \mathbf{v}_h \cdot \mathbf{K} \nabla p_h \le \left(\int_{\Omega} \mathbf{K} \mathbf{v}_h \cdot \mathbf{v}_h \right)^{1/2} \left(\int_{\Omega} \mathbf{K} \nabla p_h \cdot \nabla p_h \right)^{1/2} \le k_2 \|\mathbf{v}_h\|_{0,\Omega} \|p_h\|_{1,\Omega}.$$

Choosing $\mathbf{v}_h(p_h) = \nabla p_h$. Then

$$b_h(\mathbf{v}_h(p_h), p_h) = \int_{\Omega} \mathbf{v}_h(p_h) \cdot \mathbf{K} \nabla p_h = \left(\int_{\Omega} \mathbf{K} \mathbf{v}_h(p_h) \cdot \mathbf{v}_h(p_h) \right)^{1/2} \left(\int_{\Omega} \mathbf{K} \nabla p_h \cdot \nabla p_h \right)^{1/2}$$

$$\geq k_1 \|\mathbf{v}_h(p_h)\|_{0,\Omega} \|p_h\|_{1,\Omega} \geq C \|\mathbf{v}_h(p_h)\|_{0,\Omega} \|p_h\|_{1,\Omega}.$$

Hence, in order to verify that (11b) is true, it suffices to show that $\nabla p_h \in \mathbf{V}_{1h}, \forall p_h \in P_h$, i.e., we only need to show

$$a_h(\mathbf{u}_h, \nabla p_h) = \sum_{D \in \mathcal{D}_h} \int_D \mathbf{u}_h \cdot \nabla p_h = 0, \qquad \forall \mathbf{u}_h \in \mathbf{U}_{0h}, p_h \in P_h.$$
(13)

Consider a triangle D as shown in Fig. 2. Denote the normal vectors for l_i, l_j, l_k as $\tilde{\mathbf{n}}_i, \tilde{\mathbf{n}}_j, \tilde{\mathbf{n}}_k$ with the direction $D_i \to D_j \to D_k \to D_i$. Note that $\tilde{\mathbf{n}}_i, \tilde{\mathbf{n}}_j, \tilde{\mathbf{n}}_k$ have length $|l_i|, |l_j|, |l_k|$ respectively, different from those normal vectors defined in Sec. 3.1. Let s be the area of triangle D. Take $\mathbf{N}_i, \mathbf{N}_j$ and \mathbf{N}_k to be the outwards normal vectors of triangle D. The usual convention applies, i.e., \mathbf{N}_i is the normal vector of the edge $(x_j, y_j) \to (x_k, y_k)$, and the norm of \mathbf{N}_i is equal to the length of the corresponding edge. Since the edge midpoints and center of gravity are used to form the control volumes, one can show

$$|D_i| = |D_j| = |D_k| = \frac{s}{3}, \qquad \tilde{\mathbf{n}}_i - \tilde{\mathbf{n}}_j + \tilde{\mathbf{n}}_k = 0,$$
$$\mathbf{N}_i = 2(\tilde{\mathbf{n}}_i - \tilde{\mathbf{n}}_k), \qquad \mathbf{N}_j = 2(\tilde{\mathbf{n}}_j - \tilde{\mathbf{n}}_i), \qquad \mathbf{N}_k = 2(\tilde{\mathbf{n}}_k - \tilde{\mathbf{n}}_j).$$

Since p_h is a linear function on D, we have

$$\nabla p_h = -\frac{1}{2s} \left(p_i \mathbf{N}_i + p_j \mathbf{N}_j + p_k \mathbf{N}_k \right)$$

Therefore,

$$\begin{split} \int_{D} \mathbf{u}_{h} \cdot \nabla p_{h} &= \int_{D_{i}+D_{j}+D_{k}} \mathbf{u}_{h} \cdot \nabla p_{h} \\ &= -\frac{1}{3} \left(\mathbf{u}_{h}|_{D_{i}} + \mathbf{u}_{h}|_{D_{j}} + \mathbf{u}_{h}|_{D_{k}} \right) \cdot \left(p_{i}(\tilde{\mathbf{n}}_{i} - \tilde{\mathbf{n}}_{k}) + p_{j}(\tilde{\mathbf{n}}_{j} - \tilde{\mathbf{n}}_{i}) + p_{k}(\tilde{\mathbf{n}}_{k} - \tilde{\mathbf{n}}_{j}) \right), \end{split}$$

where the coefficient of $\left(-\frac{1}{3}p_i\right)$ is equal to

$$\begin{aligned} \left(\mathbf{u}_{h}|_{D_{i}}+\mathbf{u}_{h}|_{D_{j}}+\mathbf{u}_{h}|_{D_{k}}\right)\cdot\left(\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{k}\right) \\ &= \mathbf{u}_{h}|_{D_{i}}\cdot\left(\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{k}\right)+\mathbf{u}_{h}|_{D_{j}}\cdot\left(\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{k}\right)+\mathbf{u}_{h}|_{D_{k}}\cdot\left(\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{k}\right) \\ &= \mathbf{u}_{h}|_{D_{i}}\cdot\left(\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{k}\right)+\mathbf{u}_{h}|_{D_{j}}\cdot\left(2\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{j}\right)+\mathbf{u}_{h}|_{D_{k}}\cdot\left(\mathbf{\tilde{n}}_{j}-2\mathbf{\tilde{n}}_{k}\right) \\ &= \mathbf{u}_{h}|_{D_{i}}\cdot\left(\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{k}\right)+2\mathbf{u}_{h}|_{D_{j}}\cdot\mathbf{\tilde{n}}_{i}-\mathbf{u}_{h}|_{D_{j}}\cdot\mathbf{\tilde{n}}_{j}+\mathbf{u}_{h}|_{D_{k}}\cdot\mathbf{\tilde{n}}_{j}-2\mathbf{u}_{h}|_{D_{k}}\cdot\mathbf{\tilde{n}}_{k} \\ &= \mathbf{u}_{h}|_{D_{i}}\cdot\left(\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{k}\right)+2\mathbf{u}_{h}|_{D_{i}}\cdot\mathbf{\tilde{n}}_{i}-\mathbf{u}_{h}|_{D_{j}}\cdot\mathbf{\tilde{n}}_{j}+\mathbf{u}_{h}|_{D_{j}}\cdot\mathbf{\tilde{n}}_{j}-2\mathbf{u}_{h}|_{D_{i}}\cdot\mathbf{\tilde{n}}_{k} \\ &= 3\mathbf{u}_{h}|_{D_{i}}\cdot\left(\mathbf{\tilde{n}}_{i}-\mathbf{\tilde{n}}_{k}\right) \end{aligned}$$

In the above equalities, we use the fact that the normal component of \mathbf{u}_h is continuous across the edges l_i, l_j, l_k . So,

$$\int_D \mathbf{u}_h \cdot \nabla p_h = -\left(p_i \mathbf{u}_h|_{D_i} \cdot (\tilde{\mathbf{n}}_i - \tilde{\mathbf{n}}_k) + p_j \mathbf{u}_h|_{D_j} \cdot (\tilde{\mathbf{n}}_j - \tilde{\mathbf{n}}_i) + p_k \mathbf{u}_h|_{D_k} \cdot (\tilde{\mathbf{n}}_k - \tilde{\mathbf{n}}_j)\right).$$

Substitute it into Eq. (13) and sum all the coefficients of p_i . Then,

$$a_h(\mathbf{u}_h, \nabla p_h) = \sum_{V \in \mathcal{V}_h} \int_{\partial V} \mathbf{u}_h \cdot \mathbf{n} \ p_V = 0,$$

where p_V denotes the value of p_h at the 'center' of control volume V and the last equality follows from the fact $\mathbf{u}_h \in \mathbf{U}_{0h}$.

Now we check the conditions (10c) and (11c). The condition (10c) can be easily verified. Given $q_h \in Q_h$, construct $\mathbf{u}(q_h)$ such that $\mathbf{u}(q_h) \cdot \mathbf{n}_{|E_{ij}|}|E_{ij}| = q_i - q_j$. Then

$$c_{h}(\mathbf{u}(q_{h}), q_{h}) = \sum_{V \in \mathcal{V}_{h}} \int_{\partial V} \mathbf{u}(q_{h}) \cdot \mathbf{n} q_{h} = \sum_{E_{ij} \in \mathcal{E}_{h}} \mathbf{u}(q_{h}) \cdot \mathbf{n}_{|E_{ij}|} |E_{ij}| (q_{i} - q_{j})$$
$$= \left(\sum_{E_{ij} \in \mathcal{E}_{h}} \left[\int_{E_{ij}} \mathbf{u}(q_{h}) \cdot \mathbf{n}\right]^{2}\right)^{1/2} \left(\sum_{E_{ij} \in \mathcal{E}_{h}} (q_{i} - q_{j})^{2}\right)^{1/2}$$
$$\geq C \|\mathbf{u}(q_{h})\|_{0,\Omega} \|q_{h}\|_{1,\Omega}.$$

Therefore,

$$\sup_{\mathbf{u}\in\mathbf{U}_h}\frac{c_h(\mathbf{u},q_h)}{\|\mathbf{u}\|_{0,\Omega}} \geq \frac{c_h(\mathbf{u}(q_h),q_h)}{\|\mathbf{u}(q_h)\|_{0,\Omega}} \geq C \|q_h\|_{1,\Omega}.$$

To finish the proof of the theorem we note that M_{1h} , M_{2h} , M_{3h} and M_{4h} are equal to zero for the corresponding bilinear forms and **Lemma** 2 provides a bound for the interpolation of **u** in (12). \Box

6 Numerical Results

In this section we present numerical experiments with three model problems on a domain Ω - a pentagon with a square hole inside. The coordinates of the pentagon vertexes are ((-1,0), (1,0), (1.6,2), (0,4), (-1.6,2)) and the coordinates of the square hole are ((-0.7,0.9), (0.7,0.9), (0.7,2.3), (-0.7,2.3)). The domain Ω is shown on Fig. 3 with 66 mesh points and 92 triangles. We choose such a domain to illustrate the flexibility of the finite volume method.

The Delaunay triangulations are generated using the software product **triangle** developed by J. R. Shewchuk [34]. **Triangle** is a Delaunay triangulator and it provides the control

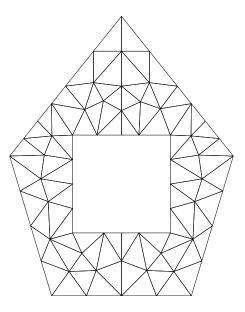


Figure 3: Domain Ω and mesh points

on the maximum area of the triangles. We used this option to generate five Delaunay triangulations. The maximum area of the triangles decreases four times on every successive level. The number of nodes increase roughly by four. The control volumes are created by connecting the center of gravity of each triangle to the center of its edges.

Problem 1 (Laplacian) Take

 $\mathbf{K}(\mathbf{x}) = I$

and the exact solution

$$p(x, y) = \sin(\pi x)\sin(\pi y).$$

Problem 2 (Smooth full tensor (see Shashkov [33])) Take

$$\mathbf{K}(x,y) = R \ D(x,y) \ R^T,$$

where

$$R = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}, \quad D(x,y) = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$$

and

$$\phi = \frac{\pi}{4},$$

$$d_1 = 1 + 2x^2 + y^2 + y^5,$$

$$d_2 = 1 + x^2 + 2y^2 + x^3,$$

and the exact solution is

$$p(x, y) = \sin(\pi x)\sin(\pi y).$$

Problem 3 (Discontinuous full tensor) Let

$$\mathbf{K}(x,y) = \begin{cases} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} & \text{for } x \le 0, \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \text{for } x > 0. \end{cases}$$

The exact solution is given as

$$p(x,y) = \begin{cases} (1+x)y, & \text{for } x \le 0, \\ (1+x)y + x(1+y), & \text{for } x > 0. \end{cases}$$

We compute the L^2 error of p_h and \mathbf{u}_h , the H^1 error of p_h , and the $H(div)_h$ error for \mathbf{u}_h . In particular, the $H(div)_h$ error takes the form

$$\|\mathbf{u} - \mathbf{u}_h\|_{H(div)_h} = \left(\sum_{V \in \mathcal{V}_h} \int_{\partial V} (\mathbf{u}_h \cdot \mathbf{n} - \mathbf{u} \cdot \mathbf{n}) \, dl\right)^{1/2} = \left(\sum_{V \in \mathcal{V}_h} \int_{\partial V} (\mathbf{u}_h \cdot \mathbf{n} + \mathbf{K} \nabla p \cdot \mathbf{n})^2 \, dl\right)^{1/2}.$$

The numerical results reported in Tab. 1-3 confirm the first order error estimates for p_h and \mathbf{u}_h proven in **Theorem 2**. We also observe that there is second order convergence of the pressure in L^2 -norm and half an order convergence for the discrete divergence of the velocity.

Remark 2 Similar results are obtained for all the three test problems with the " \mathbf{K}^{-1} " method discussed in **Remark 1**.

N	$\ p-p_h\ _{0,\Omega}$	$\ p-p_h\ _{1,\Omega}$	$\ \mathbf{u}-\mathbf{u}_h\ _{0,\Omega}$	$\ \mathbf{u}-\mathbf{u}_h\ _{H(div),h}$
66	$3.127.10^{-1}$	$2.067.10^{-0}$	$2.603.10^{-0}$	$2.891.10^{-0}$
233	$7.319.10^{-2}$	$9.070.10^{-1}$	$1.210.10^{-0}$	$1.700.10^{-0}$
878	$1.815.10^{-2}$	$4.440.10^{-1}$	$5.973.10^{-1}$	$1.112.10^{-0}$
3353	$4.466.10^{-3}$	$2.160.10^{-1}$	$2.928.10^{-1}$	$7.609.10^{-1}$
13105	$1.124.10^{-3}$	$1.070.10^{-1}$	$1.453.10^{-1}$	$5.303.10^{-1}$
Order	2.121	1.110	1.085	0.633

Table 1: Discrete norms of the error for Problem 1

Table 2: Discrete norms of the error for Problem 2

N	$\ p-p_h\ _{0,\Omega}$	$\ p-p_h\ _{1,\Omega}$	$\ \mathbf{u}-\mathbf{u}_h\ _{0,\Omega}$	$\ \mathbf{u}-\mathbf{u}_h\ _{H(div),h}$
66	$3.847.10^{-1}$	$2.493.10^{-0}$	$2.776.10^{+2}$	$3.614.10^{+2}$
233	$9.474.10^{-2}$	$9.802.10^{-1}$	$1.575.10^{+2}$	$2.621.10^{+2}$
878	$2.513.10^{-2}$	$4.797.10^{-1}$	$7.894.10^{+1}$	$1.631.10^{+2}$
3353	$5.892.10^{-3}$	$2.266.10^{-1}$	$4.001.10^{+1}$	$1.146.10^{+2}$
13105	$1.698.10^{-3}$	$1.120.10^{-1}$	$1.785.10^{+1}$	$7.764.10^{+1}$
Order	2.056	1.157	1.036	0.589

Table 3: Discrete norms of the error for Problem 3

N	$\ p-p_h\ _{0,\Omega}$	$\ p-p_h\ _{1,\Omega}$	$\ \mathbf{u}-\mathbf{u}_h\ _{0,\Omega}$	$\ \mathbf{u}-\mathbf{u}_h\ _{H(div),h}$
66	$4.862.10^{-2}$	$5.756.10^{-1}$	$8.721.10^{-1}$	$9.048.10^{-1}$
233	$9.450.10^{-3}$	$2.577.10^{-1}$	$4.193.10^{-1}$	$5.906.10^{-1}$
878	$2.609.10^{-3}$	$1.298.10^{-1}$	$2.073.10^{-1}$	$4.075.10^{-1}$
3353	$5.818.10^{-4}$	$6.339.10^{-2}$	$1.028.10^{-1}$	$2.806.10^{-1}$
13105	$1.603.10^{-5}$	$3.155.10^{-2}$	$5.103.10^{-2}$	$1.959.10^{-1}$
Order	2.145	1.088	1.069	0.574

7 Conclusion

We have developed a locally conservative and flux-continuous "K method" for the elliptic diffusion equation with tensor diffusion tensor. The method is well defined on very general meshes and is directly applicable to 3-D problems. Stability and error estimate are also established when the control volumes are formed by connecting the center of gravity of the triangles to their edge midpoints. Numerical experiments confirm our theoretical results. Similar numerical results were obtained for its corresponding " \mathbf{K}^{-1} method". The same error estimates can be shown for the three dimensional case, and will be reported elsewhere.

There are still several theoretical and practical issues left unresolved like the convergence of the pressure in L^2 -norm and convergence of the velocity in the discrete H(div)-norm.

References

- I. Aavatsmark, T. Barkve, O. Bœ, and T. Mannseth. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. *SIAM* J. Sci. Stat. Comput., 19:1700–1716, 1998.
- [2] L. Angermann. An introduction to finite volume methods for linear elliptic equations of second order. Technical Report No. 163, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, 1995.
- [3] T. Arbogast, C. N. Dawson, P. T. Keenan, M. F. Wheeler, and I. Yotov. Enhanced cell-centered finite differences for elliptic operators on general geometry. *SIAM J.Sci. Comput.*, 19(2):404–425, 1998.
- [4] T. Arbogast, M. F. Wheeler, and I. Yotov. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J.Numer. Anal., 34(2):828–853, 1997.

- [5] R. E. Bank and D. J. Rose. Some error estimates for the box method. SIAM J.Numer. Anal., 24:777–787, 1987.
- [6] M. Berndt, K. Lipnukov, J. Moulton, and M. Shashkov. Convergence of mimetic finite difference discretizations of the diffusion equation. *East-West J. Numer. Math.*, 9:253– 316, 2001.
- [7] M. Berndt, K. Lipnukov, M. Shashkov, M. Wheeler, and I. Yotov. Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal., 2005, to appear.
- [8] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.
- [9] Z. Cai. On the finite volume element method. Numer. Math., 58:713–735, 1991.
- [10] Z. Cai, J. Jones, S. F. McCormick, and T. Russell. Control volume mixed finite element methods. *Computational Geosciences*, 1:289–315, 1997.
- [11] Z. Cai, J. Mandel, and S. F. McCormick. The finite volume element method for diffusion equations on general triangulations. SIAM J.Numer. Anal., 28:392–402, 1991.
- [12] S.-H. Chou, D. Y. Kwak, and K. Y. Kim. A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: The overlapping covolume case. SIAM J. Numer. Anal., 39(4):1170–1196, 2001.
- [13] J.-P. Croisille. Finite volume box schemes and mixed methods. Math. Model Numer. Anal, 34(2):1087–1106, 2000.
- [14] J.-P. Croisille and I. Greff. Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Eq., 18(3):355–373, 2002.
- [15] M. G. Edwards. Symmetric, flux continuous, positive definite approximation of the elliptic full tensor for pressure equation in local conservation form. In C. et. al., editor,

Proceedings of 13th SPE Reservoir Simulation Symposium, San Antonio, Texas, USA (SPE 29147), 1995.

- [16] W. Hackbusch. On first and second order box schemes. Computing, 41:277–296, 1989.
- [17] J. Huang and S. Xi. On the finite volume element method for general self-adjoint elliptic problem. SIAM J.Numer. Anal., 35(5):1762–1774, 1998.
- [18] T. Kerkhoven. Piecewise linear Petrov-Galerkin error estimates for the box method. SIAM J.Numer. Anal., 33(5):1864–1884, 1996.
- [19] R. Klausen and T. Russell. Relationships among some locally conservative discretization methods which handle discontinuous coefficients. *Computational Geosciences*, submitted.
- [20] R. Klausen and R. Winther. Convergence of multipoint flux approximations on quadrilateral grids. SIAM J. Numer. Anal., submitted.
- [21] Y. Kuznetsov and S. Repin. New mixed finite element method on polygonal and polyhedral meshes. Russian Journal of Numerical Analysis and Mathematical Modeling, 18(3):261–278, 2003.
- [22] R. D. Lazarov and I. D. Mishev. Finite volume methods for reaction-diffusion problems. In F. Benkhaldoun and R. Vilsmeier, editors, *Finite Volumes for Complex Applications*, pages 231–240. Hermes, 1996.
- [23] T. Mathew and J. Wang. Mixed finite element methods over quadrilaterals. In I. T. Dimov, B. Sendov, and P. Vassilevski, editors, Proc. 3d Internat. Conf. on Advances in Numerical Methods and Applications, pages 203–214, Singapore, 1994. World Scientific.
- [24] I. D. Mishev. Finite volume methods on Voronoi meshes. Numer. Methods Partial Differential Eq., 14:193–212, 1998.

- [25] I. D. Mishev. Finite volume element methods for non-definite problems. Numer. Math., 83:161–175, 1999.
- [26] R. L. Naff, T. F. Russell, and J. D. Wilson. Shape functions for velocity interpolation in general hexahedral cells. *Computational Geosciences*, 6(3-4):285–314, 2002.
- [27] R. A. Nicolaides. Existence, uniqueness and approximation for generalized saddle appoint problems. SIAM J.Numer. Anal., 19(2):349–357, 1982.
- [28] P. A. Raviart and J. M. Thomas. A mixed finite element methodd for 2nd order elliptic problems. In *Mathematical aspects of the Finite Element Methods*, Lecture Notes in Math. Springer-Verlag, Berlin, 1977.
- [29] J. E. Roberts and J. M. Thomas. Mixed and hybrid methods. In P. G. Ciarlet and J. L. Lions, editors, *Handbook of Numerical Analysis*, volume 2, pages 524–639. Elsevier Science Publisher B.V., 1991.
- [30] R.Vanselow and H. P. Scheffler. Convergence analysis of a finite volume method via a new non-conforming finite element method. Numer. Methods Partial Differential Eq., 14:213–231, 1998.
- [31] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numer. Lin. Alg. with Appl, 1:387–402, 1994.
- [32] T. Schmidt. Box schemes on quadrilateral meshes. Computing, 51:271–292, 1993.
- [33] M. Shashkov. Conservative Finite-difference methods on general grids. CRC Press, New York, 1996.
- [34] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Proc. First Workshop on Applied Computational Geometry, Philadelphia, Pennsylvania, pages 124–133, ACM, 1996.

- [35] J. M. Thomas and D. Trujillo. Analysis of finite volume methods. Technical Report 19, Universite de Pau et des Pays de L'adour, Pau, France, 1995.
- [36] J. M. Thomas and D. Trujillo. Convergence of finite volume methods. Technical Report 20, Universite de Pau et des Pays de L'adour, Pau, France, 1995.
- [37] S. K. Verma. Flexible grids for reservoir simulations. PhD thesis, Stanford University, California, 1996.
- [38] J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equations. Math. Comp., 68:1429–1446, 1999.