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Abstract

Karhunen Loève expansion has been proven to be an efficient way to approximate second-order ran-

dom processes. But numerical computation of the eigen-pairs can be costly, especially for high spatial

dimension problems with short correlation length. In this paper, we consider the stationary correlation

function C(x1,x2) (i.e., C only depends on the difference (x1 − x2)), on regular domains, e.g., rect-

angular domain for 2D problems. We propose an algorithm that is based on the separation of x- and

y- variables in the correlation function. Such a separation is automatic for correlation functions like the

squared exponential correlation, and will be achieved through the singular value decomposition when the

correlation function is not separable by nature. The storage requirement is linear, and the computation

cost will be in the order of O(M
√
M) , where M is the total number of Legendre modes.
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1 Introduction

Uncertainty arises in many physical and engineering applications, due to either intrinsic probabilistic nature

or lack of data. No matter what the source of uncertainty or randomness is, such random effects in the

inputs will produce stochastic solutions as outputs. The impact of such uncertainty should be modeled and

analyzed, and there has been an intensive research in this aspect in recent years [9, 8, 10, 21, 3, 2, 26,

5, 25, 11, 20, 17]. A common approach is to treat each variable with uncertainty as a random variable (or

random field), and rewrite the system as a stochastic system. The methods to study such a system include the

sampling based methods (such as the Monte-Carlo methods), the perturbation methods, the operator based

methods, the methods based on moment equations, and the recently developed generalized polynomial chaos

methods. Or, one may take the classical approach based on stochastic calculus and model the problem with

stochastic differential equation (SDE) in which the inputs are idealized processes, such as Wiener processes,

Poisson processes etc.

There are various techniques to simulate the second-order random processes (i.e., with finite second

moment) for both Gaussian and non-Gaussian processes, although the methods for the former are much

better established. We are more interested in the methods that approximate a random function (field, or

process) in a similar way of approximating a deterministic function. Depending on the random variables

used in the approximation, there are roughly three kinds of approximations: point discretization, average

discretization, and series expansion methods [7, 14, 16, 23].

In point discretization, the random variables at discrete positions (i.e., u(x1, ω), u(x2, ω), . . .) are used to

approximate the random field. For example, one could partition the whole domain D into non-overlapping

elements, and approximate the random field on each element by a single random variable u(xi, ω) with

xi belonging to the element. This corresponds to the piece-wise constant approximation for deterministic

functions. High order piece-wise approximations can also be achieved in a similar manner, e.g., by using

the shape functions typically defined in the Finite Element Method (FEM), then it becomes one of the

series expansion methods. In average discretization, the random variables on any individual points are not

used. Instead, the averages of the random field u(x, ω) over non-overlapping elements are used in the

approximation.
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Taking a different approach, the series expansion method writes the random field as a series expansion

over a complete set of deterministic functions. The Karhunen-Loève (KL) expansion [15], Orthogonal

Series expansion (OSE) [27], the expansion optimal linear estimation (EOLE) method [14] all fall into this

category. For approximation or simulation purpose, a truncated expansion will be used. The efficiency

of these methods are typically characterized by the number of random variables needed in the truncated

expansion in order to achieve a prescribed accuracy.

In particular, the Karhunen Loève (KL) expansion [15] is a spectral representation of random fields. Its

discrete version is often called the principal component analysis (PCA). It can be applied to both stationary

and non-stationary random fields, although the algorithm in this paper only works for stationary fields. The

Karhunen Loève expansion is optimal among all possible linear representations of random processes in the

sense of the mean-square error. (Some nonlinear approximations of random processes were studied for data

compression in [6].)

However, the computation of the KL expansion could be expensive, specially for high dimension prob-

lems with small correlation length. One major computation cost is from the eigen-solver, many of which

nowadays can take either an explicit matrix or a subroutine doing matrix-vector multiplication. Inspired by

the fast Gauss transform in [24], in this paper we develop a fast algorithm that takes use of the fact that

x- and y- variables can be separated in the correlation function. The overall storage requirement is linear

O(M), versus O(M2) if the matrix is formed explicitly. The matrix-vector multiplication involved in the

eigen-solver is in the order of O(M
√
M), instead of O(M2) for standard matrix-vector multiplication. For

the 2D rectangular domain, our method is more efficient than the piece-wise method with axis-parallel grids

for which the fast Fourier transform (FFT) can be applied to carry out the matrix-vector multiplication.

Some other recent work in the computation of the KL expansion are [27, 12, 18, 9, 1, 13, 22]. This

list only includes a very small portion of the papers we came across and is incomplete by all means. It is

noteworthy to point out that a fast matrix-vector multiplication was achieved by the Fast Multipole Methods

in [22], which is mostly favorable when the covariance function has low regularity. The situation is similar

for the method [13] based on the hierarchical matrix technique. Our method, on the other hand, has the

most advantage when the covariance kernel has high regularity, as shown by the results in Sec. 4. To certain
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extent, the algorithm proposed in this paper is a complement to the two fast algorithms mentioned above.

The rest of the paper is organized as follows. In Sec. 2, we briefly review the Karhunen-Loève expansion.

Our new algorithm based on the separation of x- and y- variables is given in Section 3. Then in section 4,

we apply the proposed method to the Squared Exponential, Rational Quadratic, and Matérn correlations,

and make some concluding remarks.

2 Karhunen-Loève Expansion

For any second order random field u(x, ω) (i.e., the second moment is finite) with x being the spatial or

time coordinates defined over the domain D, the Karhunen Loève expansion takes the form

u(x, ω) = ū(x) +

+∞
∑

k=1

√

λk fk(x)ξk(ω), (1)

where {ξk(ω)} is a set of uncorrelated random variables with zero mean and unit variance. ū(x) is the mean

of u(x, θ); λk and fk(x) are the kth eigenvalue and eigen-function of the covariance function C(x1,x2),

i.e.,
∫

D

C(x1,x2)fk(x1)dx1 = λkfk(x2). (2)

Moreover, the uncorrelated random variables {ξk(ω)} have an explicit formula

ξk(ω) =
1√
λk

∫

D

(u(x, ω)− ū(x)) fk(x)dx, (3)

a consequence of the fact that the eigenfunctions {fk(x)} are orthonormal.

In numerical simulations, a truncated Karhunen Loève expansion

uP (x, ω) = ū(x) +

P
∑

k=1

√

λk fk(x)ξk(ω), (4)

is always used. Then the numerical covariance function is

C̃(x1,x2) =

P
∑

k=1

λ̃kf̃k(x1) f̃k(x2), (5)

where λ̃k and f̃k denote the numerically computed eigenvalues and eigen-functions. In order to obtain

the truncated KL expansion, one need to: 1) Compute the eigenvalues and eigenfunctions from Eq. (2);

2) Determine the distribution of the uncorrelated random variables {ξk}. In this paper, we focus on the
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computation of the eigen-pairs. Without loss of generality, the random field u(x, ω) is assumed to have zero

mean and unit variance at any point x. (Any nonzero mean or other variance can be easily recovered by

rescaling and shifting.)

2.1 Computation of Eigenvalues and Eigen-Functions

For most cases, the analytical formula for the eigenvalues and eigen-functions are not available, leaving

numerical method the only choice to solve the eigen problem Eq. (2). In order to numerically solve Eq. (2),

one will need to define the approximation to the eigen-function {fk(x)}, the covariance function C(x1,x2),

and to the equation itself. Due to the concern of stability and other issues, the Galerkin approach is often

taken to obtain the approximation for Eq. (2), i.e., the whole equation will be projected to a functional space

while requiring the equality still holds.

As for the eigen-functions, the approximation can be either global or piece-wise. It can be in the form of

nodal or modal approximation - one choice may have advantage over the other - depending on the situation.

The basis functions can be polynomials, wavelets etc. Note that the basis functions are often called shape

functions in a piece-wise nodal approximation. There are also several options for the approximation of the

covariance function C(x1,x2): exact, induced or direct approximation.

• When using the exact covariance function, the Galerkin procedure leads to a generalized eigenvalue

problem

C ·V = M ·V ·Λ, (6)

where

Ci,j =

∫

D

∫

D

C(x1,x2)φi(x1) φj(x2)dx1dx2, and Mi,j =

∫

D

φi(x) φj(x)dx. (7)

Here {φi(x)} are the basis used in the approximation of the eigen-functions. The matrix M is often

called the mass matrix. Each column of the matrix V is an eigenvector, and Λ is a diagonal matrix

with eigenvalues on its diagonals. The procedure is computationally expensive if the basis functions

are not very carefully chosen, as each element of the matrix C is an integral over the domain D ×D.

• If an induced approximation is taken for the covariance function, an approximation (global or local)

will be first assumed for u(x, ω), and C(x1,x2) is then derived according to its definition. The
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biggest advantage of using the induced approximation is that when a nodal approximation is used for

u(x, ω), the expensive computation of the integrals over D×D can be avoided. Let {z1, . . . , zN} be

all the nodes used in the approximation of u. Then

u(x, ω) = (φ1(x), . . . , φN (x))







u(z1, ω)
...

u(zN, ω)






=⇒ C(x1,x2) = (φ1(x1), . . . , φN (x1))Ĉ







φ1(x2)
...

φN (x2))






,

where Ĉ is simply the discrete correlation matrix with Ĉi,j = C(zi, zj). With the induced approxi-

mation, the general eigenvalue problem now becomes:

(

M · Ĉ ·M
)

·V = M ·V ·Λ. (8)

• The proposed algorithm is based on the direct approximation of the covariance function for which the

details will be given in the next section.

No matter which choice is taken, finding the eigen-pair for the operator in Eq. (2) turns into a matrix

eigen-problem, the computation cost for which can be measured by the flops needed in the matrix-vector

multiplication (for the matrix on the left side).

3 Fast Algorithm for Computing Karhunen Loève Expansion

The main idea of our algorithm is to separate x- and y- variables, since the correlation only depends on

the difference (x1 − x2). The fast calculation of the matrix-vector product is then possible. When the

correlation is not separable by nature, a singular value decomposition (SVD) procedure will be applied to

write the correlation as a sum of separable functions.

3.1 Direct Approximation of Correlation Function for Stationary Processes

Assume the domain D = [−1, 1] × [−1, 1], and xi = (xi, yi), i = 1, 2. Define rx = (x1 − x2)/2 and

ry = (y1 − y2)/2, so that rx, ry ∈ [−1, 1]. Let Nx and Ny be the number of modes used in x- and

y- directions. Any stationary correlation function can be categorized as either separable or non-separable

function.
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Case I: A correlation is separable if it can be written as a product of two terms, each of which is a

function of rx or ry only, but not both. For example, the squared exponential (SE) correlation is separable:

C(x1,x2) = exp(−|x1 − x2|2
2l2

) = exp(−(x1 − x2)
2

2l2
) exp(−(y1 − y2)

2

2l2
)

= exp(−2r2x
l2

) exp(−
2r2y
l2

). (9)

where l is the correlation length.

Let F (rx) be the term including only rx. Approximate it with Chebyshev series

Nx
∑

i=0

fiTi(rx). The

coefficients can be obtained by either interpolation or L2 projection. Then we rewrite each Chebyshev basis

as a function of x1 and x2 as

Ti(rx) = Ti(
x1 − x2

2
) =

∑

k+j≤i

a
(i)
k,jTk(x1)Tj(x2), i = 0, 1, . . . , Nx,

where the coefficients a
(i)
k,l can be easily computed by using the orthogonality of Chebyshev polynomials,

combined with Gauss-Chebyshev quadrature. The last step is to change the basis to orthonormal Legendre

polynomials as the weight function is simply one in the original eigenvalue problem. Apply the same

procedure to the term that includes only ry. In the end, the approximated correlation function takes the form

C(x1,x2) ≈
(

∑

a
(∗)
i,j P̄i(x1)P̄j(x2)

)

·
(

∑

a
(∗∗)
i,j P̄i(y1)P̄j(y2)

)

, (10)

where P̄i is the orthonormal Legendre polynomial with degree i. Denote the matrices in Eq. (10) as A1 and

A2 - both of size (Nx + 1)-by-(Ny + 1)

A1 =
(

a
(∗)
i,j

)

A2 =
(

a
(∗∗)
i,j

)

Now approximate the eigen-function f(x, y) with orthonormal Legendre series
∑

fi,jP̄i(x)P̄j(y). Re-

order the basis functions {P̄i(x)P̄j(y)} as {Φ1,Φ2, . . . ,Φ(Nx+1)(Ny+1)} such that ΦI = P̄Is(I)(x)P̄Js(I)(y).

The indices Is and Js are

Is = 0, . . . , Nx, 0, . . . , Nx, . . . , 0, . . . , Nx,

Js = 0, . . . , 0, 1, . . . , 1, . . . , Ny, . . . , Ny,
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where the pattern repeats (Ny + 1) and (Nx + 1) times respectively. With the above ordering of the basis

functions, the eigenvalue problem after the Galerkin procedure becomes

A · V = V · Λ, with A = A1(Is, Is). ∗ A2(Js, Js), (11)

where .∗ refers to the element-by-element product of two matrices.

Case II: For non-separable correlation functions, we start with an approximation of the correlation

function as

C(x1,x2) = C(rx, ry) ≈ (T0(rx), . . . , TNx
(rx)) B







T0(ry)
...

TNy
(ry)






,

then compute the singular value decomposition of the matrix B and discard the insignificant terms. Now the

approximated correlation is

C(x1,x2) ≈
S
∑

j=1

σj [(T0(rx), . . . , TNx
(rx))Uj ] ·






V T
j







T0(ry)
...

TNy
(ry)












,

in which {Uj} and {Vj} are the corresponding columns and rows of the left and right matrices in the singular

value decomposition. Note that each term in the summation is separable, for which the technique described

in Case I can be readily applied. The final eigenvalue problem becomes





S
∑

j=1

A
(j)



 · V = V · Λ. (12)

The computational cost will be proportional to the value of S, which is found to be small for all the cases

tested. For a couple of worst situations, S can be as large as 12, if all the terms with singular value slightly

bigger than machine zero are kept.

3.2 Fast Matrix-Vector Multiplication

The matrix A in Eq. (11) (or A(j) in Eq. (12) for non-separable correlation functions) has a block structure.

More precisely it has (Ny + 1) × (Ny + 1) blocks, with each block being a (Nx + 1) × (Nx + 1) matrix.

In particular, the (i, j) block of the A is A1 · a(∗∗)i,j .

Dividing a column vector f of size (Nx + 1)(Ny + 1) into f = (f0, f1, . . . , fNy)
T , with each fi being
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a vector of size (Nx + 1), the matrix-vector product Af can be written as

Af =







a
(∗∗)
0,0 A1f0 + a

(∗∗)
0,1 A1f1 + . . .+ a

(∗∗)
0,Ny

A1fNy

. . .

a
(∗∗)
Ny,0

A1f0 + a
(∗∗)
Ny,1

A1f1 + . . .+ a
(∗∗)
Ny ,Ny

A1fNy






.

Clearly, the products A1f0,A1f1, . . . ,A1fNy
can be computed once and saved. Plus the matrices A1 and

A2, the memory requirement is in the order of O(NxNy). (We assumed Nx = O(Ny) for the seek of

estimates of memory requirement and computation cost.) As for the computation complexity, we need to

• Compute A1fi for all i = 0, . . . , Ny that needs O((Ny + 1)(Nx + 1)2) flops,

• And then compute a
(∗∗)
i,j · (A1fj) for all 0 ≤ i, j,≤ Ny , for which the amount of flops needed is

O((Nx + 1)(Ny + 1)2).

Let M = (Nx+1)(Ny +1) be the size of the matrix, then the required storage is linear O(M) and the total

flops is of the order O(M
√
M).

4 Numerical Results and Discussions

Three types of correlation functions picked from [19] were considered:

Squared exponential: C(x1,x2) = exp

(

− r2

2l2

)

,

Rational quadratic: C(x1,x2) =

(

1 +
r2

2αl2

)−α

,

Matérn: C(x1,x2) =
21−ν

Γ(ν)

(√
2ν r

l

)ν

Kν

(√
2ν r

l

)

,

with the domain [0, 10] × [0, 10]. In the above formula, r = |x1 − x2|, l is the correlation length, and Kν

is the modified Bessel function. In the following tests, we let α = 4 for the rational quadratic correlation,

and ν = 1.5, 2.5 (the two most interesting cases for machine learning) for the Matérn correlation. Note that

the regularity of the Matérn correlation increases as the value of ν gets bigger, with two extreme cases: the

exponential correlation exp(−r/l) when ν = 0.5 and the squared exponential correlation when ν → +∞.

Our algorithm was compared against the approach that uses a piece-wise approximation for the eigen-

functions and an induced approximation for the correlation function. For the latter, a uniform triangular
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mesh with axis-parallel grids was used so that the discrete correlation matrix Ĉ is a block Toeplitz matrix.

More precisely, the square domain is first partitioned into smaller squares of the same size, each of which

is then divided into two triangles. The eigen-function is then approximated on each triangle by a degree

p polynomial (with uniform nodes). Because of the Toeplitz structure, the complexity is O(M3/2 logM)

when employing the fast Fourier transform for the matrix-vector multiplication. (Again we assume that

Nx = O(Ny) when estimating the computation cost.)

Same as in [1], we only considered the global relative error for the variance:

1

|D|

∫

D

∣

∣

∣

∣

∣

C̃(x,x)− C(x,x)

C(x,x)

∣

∣

∣

∣

∣

dx =

∣

∣

∣

∣

∣

1−
∑P

k=1 λ̃k

|D|

∣

∣

∣

∣

∣

. (13)

Of course, when numerically computing the KL expansion, only the enough accurate eigenvalues and eigen-

functions will be included in the KL expansion, and in the above error formula as well.

The CPU time needed to achieve a prescribed accuracy was used as the main indicator of the algo-

rithm’s efficiency.

Step I: For either method, we find the largest mesh size (or smallest matrix size) that leads to the prescribed

accuracy for the global variance in Eq. (13), by the following iterations:

• Input: prescribed accuracy ǫ, polynomial order p on each element, and the correlation function.

• Procedure: Start with a very coarse mesh, and compute enough eigenvalues and eigen-functions.

(The solver irbleigs [4] was used.) Using the eigen-pairs from a very fine mesh as the ’exact’ solution,

compute the relative error for the eigenvalues and keep in the KL expansion the terms whose corre-

sponding error is less than ǫ/10. Then compute the variance error as shown in (13). Stop if it is less

than ǫ. Otherwise, refine the mesh and repeat the above steps.

The above description is for the piece-wise algorithm. For our new algorithm, one only needs to increase

the number of modes instead of refining the mesh.

Step II: We then rerun both methods with the largest mesh size (or smallest orthonormal Legendre modes)

that leads to the prescribed accuracy, and record the CPU time. For fair comparison, multi-threading is now

disabled. All the computations were done with 64-bit Matlab on Dell T7500N Workstation with Intel(R)

Xeon(R) CPU X5680 @3.33GHz.
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The results when the correlation length is one and five are given in Table 1 and 2. As shown in Tab. 1, the

algorithm proposed in this paper outperforms the piece-wise method when the correlation length is not large.

It is particularly true when the correlation function is analytic (i.e., the Squared Exponential correlation).

Another observation is that the piece-wise quadratic approximation is always much more efficient than

the piece-wise linear approximation. But there is no gain at all when the order is increased to the piece-

wise cubic approximation if the correlation gets rough, e.g., the Matérn correlation with ν = 1.5. For

completeness, two eigen-functions are included in Fig. 1 for the Matérn correlation with ν = 1.5.

However, the proposed algorithm performs not as good as the piece-wise method when the correlation

length is very large. Note that correlation length = 5 is unreasonably large in practice for a domain size

[0, 10] × [0, 10]. Nevertheless, it indicates that a lower order piece-wise approximation can yield accurate

eigenvalues if very few them need to be computed.

Table 1: CPU time for computing the KL expansion with prescribed accuracy ǫ = 0.1. The last column is

from the new algorithm. Correlation length = 1. SE: Squared Exponential; RQ: Rational Quadratic.

p = 1 p = 2 p = 3 Legendre

SE 389.76 30.85 14.67 2.28

RQ 29.31 1.67 1.04 1.06

Matérn (ν = 2.5) 36.82 2.54 2.43 2.17

Matérn (ν = 1.5) 108.63 5.83 8.19 5.70

Table 2: CPU time for computing the KL expansion with accuracy ǫ = 0.1. Correlation length = 5.

p = 1 p = 2 p = 3 Legendre

SE 0.533 0.075 0.046 0.117

RQ (α = 4) 0.112 0.022 0.026 0.218

Matérn (ν = 2.5) 0.245 0.048 0.031 0.688

Matérn (ν = 1.5) 0.282 0.057 0.059 0.535

Acknowledgment: The author’s work was supported in part by the National Science Foundation under

the grant DMS-1016047.
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Figure 1: Example eigen-functions for Matérn correlation, ν = 1.5. Correlation length = 1.
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[15] M. Loève. Probability Theory. Springer-Verlag, New York, 4th edition, 1977.

[16] G. Matthies, C. Brenner, and C. Guedes Soares. Uncertainties in probabilistic numerical analysis of

structures and solids - stochastic finite elements. Struct. Safety, 19(3):283–336, 1997.

[17] W. L. Oberkampf, J. C. Helton, and K. Sentz. Mathematical representation of uncertainty. In AIAA

Non-Deterministic Approaches Forum, Seattle, WA, April 2001. Paper No. 2001-1645.

[18] K. K. Phoon, H. W. Huang, and S. T. Quek. Comparison between Karhunen-Loève and wavelet
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