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Abstract

It is well known that the two-point flux approximation, a numerical scheme used in most
commercial reservoir simulators, has O(1) error when grids are not K-orthogonal. In the last
decade, multi-point flux approximations have been developed as a remedy. However, non-
physical oscillations can appear when the anisotropy is really strong. We found out the oscil-
lations are closely related to the poor approximation of pressure gradient in flux computation.

In this paper, we propose the control volume enriched multi-point flux approximation
(EMPFA) for general diffusion problems on polygonal and polyhedral meshes. Non-physical
oscillations are not observed for realistic and strongly anisotropic heterogeneous material prop-
erties described by a full tensor. Exact linear solutions are recovered for grids with non-planar
interfaces, and a first and second order convergence are achieved for the flux and scalar un-
knowns respectively.
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1 Introduction

Many physical processes, for example the Darcy flow in porous media and the heat transfer in

Basin modeling, can be modeled by a diffusion equation in the form

−∇ · K∇p = f. (1)

The diffusion coefficient K is often a space dependent full tensor because of the strongly anisotropic

and inhomogeneous media, which imposes a great challenge for numerical schemes, especially

when the principle directions of K are not aligned with the grids. This is usually the case for

unstructured meshes. In the following, we will state everything in the context of reservoir simu-

lation, simply because the initial motive is to develop a more robust discretization for simulating

multi-phase flow in porous media, although the proposed scheme can apply to general diffusion

problems described by (1). In this paper, we assume K is a piecewise constant tensor. The scalar

unknown p will be called pressure for convenience.

There have been extensive research on developing numerical schemes for Eq. (1) on general

grids. Some highly desirable properties of the discretization beyond the classical stability and ac-

curacy, include local mass conservation, harmonic average transmissibilities, discrete maximum

principle, and cost-effective. For historic reasons, the two-point flux approximation (TPFA), a

scheme that is inconsistent when the grids are not K-orthogonal, is still used in most commercial

reservoir simulators. Roughly speaking, K-orthogonality means the flux −K∇p · n can be ap-

proximated by a factor of the pressure difference from two neighbouring control volumes (see (8)

for one example). Unfortunately, K-orthogonality is often lost in the grids that honor the geologic

features such as sloping faults and channels, and other important features such as nearly horizontal

wells [17]. Recently, Wu and Parashkevov studied the effect of non-orthogonality error of deviated

grids on the flow solutions from the two-point flux, control volume method [32]. They concluded

that for most practical cases the errors in horizontal flow are relatively small and the errors in

vertical flow can be rather significant.

To obtain a consistent scheme, different groups of researchers have independently developed
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the so-called control volume multi-point flux approximation (MPFA), such as Aavatsmark et al [3],

Edwards and Rogers [14], Verma and Aziz [31]. Since their pioneer work, a whole class multi-

point flux methods have been developed [2]. In [21], the authors implement the multi-point flux

methods on a hexahedral grid. More recently, Klausen and Russell [18] compare the multi-point

flux approximation with other locally conservative schemes which handle discontinuous coeffi-

cients, such as the classical mixed finite element method and the support operators method (also

called mimetic finite difference method). Klausen and Winther also proved the convergence of

multi-point flux approximations on smooth quadrilateral grids [19].

In most cases, good results are obtained by multi-point flux methods, but non-physical oscil-

lations can appear for strongly anisotropic fields because of non-monotonicity of the matrix (see,

e.g., [23, 25]). That means the numerical solution does not satisfy the maximum principle, al-

though the analytical solution does. In order to improve the monotonicity property, Nordbotten

and Eigestad recently developed a MPFA Z-method for quadrilateral grids by choosing a different

stencil when computing the flux [26]. But it is not clear how to extend their method to unstruc-

tured polyhedral meshes. Other very recent research on this issue includes the reduced integration

of mixed finite element method [22] and the corner velocity interpolation method [16].

The mimetic finite difference schemes proposed by Shashkov et al [30] are very promising

in terms of dealing with highly distorted grids and heterogeneous media. The convergence and

super convergence [5, 6] are also established for smooth problems on smooth meshes by rewriting

it into the form of mixed finite element methods. (A more general proof was provided in [7].)

Furthermore, in [8] Brezzi et al employ an innovative technique to generalize it to a family of

schemes with parameters which might be tuned to achieve the discrete maximum principle. But

by now such a scheme still does not exist, and the computational cost of mimetic finite difference

schemes is an issue too.

There is also considerable advance in mixed finite element type methods for distorted general

meshes [9, 11], but they are quite expensive and 3-D case is still under development [24, 20]. A

worthy alternative, the control volume finite element (CVFE) methods (often called finite volume
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element methods) [4, 10, 29], are locally mass conservative and applicable on flexible grids, but

they do not handle discontinuous diffusion coefficients well [13].

In this paper, we develop a new multi-point flux approximation method, called enriched multi-

point flux approximation (EMPFA), based on more consistent pressure approximations in the inter-

action region. The proposed method does not produce oscillatory solutions and works for general

matching or nonmatching polygonal and polyhedral meshes, including meshes with non-planar

interfaces. Expected convergence rate is also achieved for the new method, Moreover, the enriched

multi-point flux approximation is equivalent to the two-point flux approximation for K-orthogonal

grids.

The remaining of the paper is organized as follows. In Sec. 2, we restate the original multi-point

flux approximation on quadrilateral grids. Section 3 describes our new multi-point flux approxi-

mation for two-dimensional grids, shows its numerical convergence, and compares the numerical

results with the multi-point flux approximation method. In section 4, we extend the technique in

Sec. 3 to polyhedral meshes. Finally, we summarize the paper and make some concluding remarks

in Sec. 5.
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2 Multi-Point Flux Approximation

In this section, we first briefly review the multi-point flux method with surface mid-points as con-

tinuity points (called O-method [2]) on quadrilateral grids. The extension to unstructured grids is

trivial. Then we analyze the limitations of the MPFA O-method.

2.1 Description of Multi-Point Flux Approximation

Let Ω ∈ R2 be the computational domain, and divide it into non-overlapping quadrilateral control

volumes Ω = ∪Vi. Consider Eq. (1) with piecewise constant permeability K (i.e., constant on

each Vi). In control volume multi-point flux approximation methods, the mass is conserved on

each control volume, i.e., integrate the equation on control volumes {Vi} to obtain

−

∫

∂Vi

K∇p · n dS =

∫

Vi

f dV, ∀Vi, (2)

where the left hand side is the amount of flux (i.e., −K∇p · n) across the boundary of Vi.

In MPFA method, there is only one degree-of-freedom (usually pressure at the mass center)

for each control volume. The fluxes across control volume interfaces are computed for each in-

teraction region and expressed in terms of those degrees-of-freedom. When computing the fluxes,

each interface (a line segment) is divided into two parts, on which the fluxes are first computed

separately and then summed up to be the flux across the whole interface. For example, Figure 1

shows four control volumes with centers Ci’s which meet at point O. The polygon area formed by

cell centers Ci’s and edge middle points Mi’s is called interaction region. The small quadrilateral

of each control volume included in the interaction region is called sub-volume, e.g., M1OM4C1.

(Note that each vertex of the mesh corresponds to an interaction region.) In this region, only the

fluxes across half edges OMi’s will be computed. Then we loop over all the interaction regions to

compute the fluxes for all the control volume boundaries/interfaces.

In order to compute the fluxes across OMi’s (i.e., the integral of −K∇p ·n on OMi), the values

of p at Mi’s are introduced as four temporary unknowns. The method with this choice is called

MPFA O-method. (One could also use the values of p at other points as the temporary unknowns.)
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Figure 1: Multi-point flux method: interaction region

Recall that the primary unknowns are the values of p at Ci’s. With both primary and temporary

unknowns, we can compute ∇p and then the fluxes by assuming p is a linear function on shaded

triangles in Fig. 1. For example, when computing the flux across OM1 and OM4 from volume C1,

a constant gradient ∇p is computed from the linear function on ∆M1M4C1
, and then extrapolated to

be the gradient on the whole quadrilateral sub-volume M1OM4C1. Hence the flux across OM1 and

OM4 can be written into the form of a
T
K1∇p with the area vector a = |OM1|n1 and −|OM4|n4

respectively, where K1 is the diffusion tensor on volume C1.

Denote P = (pC1
, pC2

, pC3
, pC4

)T and P̄ = (pM1
, pM2

, pM3
, pM4

)T , where pA represents the

value of p at point A. Rewrite the fluxes across half edges OMi’s from volume Ci’s into a matrix

vector product form as AP̄ + BP, and the fluxes from the opposite volumes as CP̄ + DP. The

formula for matrices A,B,C,D can be found in [2]. Balancing the flux across OMi’s from both

sides yields

A P̄ + B P = C P̄ + D P.

From the above equation, P̄ can be solved in terms of P, and then substituted back to the flux

expression. In the end, the fluxes across the half edges can be written as

TP = [A(A − C)−1(D − B) + B]P,

where the matrix T is called transmissibility matrix in petroleum industry.
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Figure 2: General two-dimensional grids
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Figure 3: An interaction region of rectangular control volumes.

Note that the MPFA-O method also applies to both matching and non-matching unstructured

polygon grids as shown in Fig. 2, although the above description is only for quadrilateral meshes.

2.2 Limitations of MPFA O-Method

In most cases, good results are obtained from the multi-point flux methods. However, non-physical

oscillations can appear when the anisotropy of permeability field is strong (see Sec. 3.4 or [23,

25]). Most researchers agree that the oscillations are due to the non-monotonicity of the matrix.

In the following, we do a non-rigorous analysis from the aspect of accuracy, which leads to the

development of our new multi-point flux method in the next section.

Consider an interaction region of rectangular control volumes as shown in Fig. 3. As described

in the previous section, a linear pressure is assumed on ∆M1M4C1
in the multi-point flux approxi-
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mation method. It yields a constant pressure gradient as
{

u =
pC1

−pM1

∆x
,

v =
pC1

−pM4

∆y
,

in which ∆x and ∆y are the grid-size in x and y-direction. This pressure gradient is then extrap-

olated to the whole quadrilateral M1OM4C1 and used to compute the flux across edges OM1 and

OM4 from control volume C1. From the Taylor expansion at point M1, one can have

∂p

∂y

∣

∣

∣

∣

M1

= v + ∆x
∂2p

∂x∂y

∣

∣

∣

∣

M1

+ O(∆y + (∆x)2). (3)

Clearly, v will be a poor approximation of ∂p
∂y

at point M1 if ∂2p
∂x∂y

∼ 1
∆x

in the neighbourhood

of M1. Similar result holds for u being an approximation of ∂p
∂x

at point M4. We believe that

these poor approximations of fluxes due to the built-in extrapolation in MPFA contribute to the

non-physical oscillations. If the grid is fine enough in the sense of ∆x ∂2p
∂x∂y

being small near point

M1, the oscillation should be less severe. It is confirmed by the first example in Sec. 3.4.

Note that these poor approximations do NOT come into the formulation of fluxes when the grid

is K-orthogonal. It explains why no oscillation was observed for K-orthogonal grids.
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3 Enriched Multi-Point Flux Approximation on Polygon Meshes

In this section, we present a new multi-point flux approximation, called enriched multi-point flux

approximation. It works for general polygon meshes like the multi-point flux approximation, but

all the descriptions and explanations are only for quadrilateral control volumes, with straightfor-

ward extension to unstructured grids. All the notations will be the same as those in Sec. 2 if not

specified otherwise.

3.1 Description

The enriched multi-point flux approximation method follows the same framework as the MPFA O-

method: introducing some temporary unknowns in the beginning in order to compute the gradient

of p, and then eliminating them by balancing fluxes. But in the EMPFA method we include one

more temporary unknown, p at the ’center’ of interaction region, to avoid the extrapolation pro-

cedure in the MPFA method which has been previously shown to contribute to the non-physical

oscillations.

We propose two different approximation for the scalar unknown p. As shown in the left of

Fig. 4, the first approximation is a piecewise linear function which is linear on each triangle (e.g.,

M1OC1). Note that only the interaction region is drawn. The second option is to approximate

p with a piecewise bilinear function on each quadrilateral in the right of Fig. 4. The bilinear

interpolation is included in Appendix A for completeness. With either approximation for p, we

compute the fluxes across edges OMi’s and balance them to get a system of four equations written

as

A P̄ + B P + pO ·~l = C P̄ + D P + pO ·~r. (4)

Note that matrices A,B,C,D may have different entries from those in Sec. 2. For simplicity, the

explicit formula for vectors~l and ~r are not given. The new temporary unknown pO, the value of

p at point O, comes into the formulation of fluxes as a result of approximating p in a richer space

(compared to the multi-point flux approximation). When the bilinear approximation is chosen, the

gradient of p is not a constant on the half edges OMi’s except for some special grids. In this case,
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Figure 4: EMPFA interaction region. Left: piecewise linear approximation; Right: piecewise
bilinear approximation.

a single point quadrature (e.g. Mi) can be used to compute the integral of flux on the half edges.

In order to eliminate all the five temporary unknowns, one more equation besides Eq. (4) is

needed. We propose two different ways to obtain the extra equation.

The first approach is to solve Eq. (1) on a small volume surrounding the interaction region

center. We only describe this approach with bilinear approximations of pressure p. The procedure

is similar for the piecewise linear approximation. In Fig. 5, Ωε = D1D2D3D4 with |ODi| =

ε|OMi| is the small volume on which Eq. (1) will be solved, where ε is a small positive number.

So,

−

∫

∂Ωε

K∇p · n dS =

∫

Ωε

f dV, (5)

where ∂Ωε = D1D2 ∪D2D3 ∪D3D4 ∪D4D1. Be aware that only the small volume for piecewise

bilinear approximation is plotted in Fig. 5.

Consider edge D4D1. After obtaining the bilinear transformation coefficients for the quadrilat-

eral M1OM4C1 as described in Appendix A, the flux across edge D4D1 can be computed as

−ε ·
1

a2b3 − a3b2

(

b3 − b2 a2 − a3

)

K1

(

b3 −b2

−a3 a2

)(

−1 1 0 0
−1 0 0 1

)









pM1

pO

pM4

pC1









+ O(ε2). (6)

In the same way, we compute the flux across other edges of ∂Ωε. Therefore, the left hand side of

Eq. (5) is equal to

ε g(pO,P, P̄) + O(ε2), (7)
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Figure 5: EMPFA interaction region: a small volume.

with the explicit expression of g being computed from the sum of (6) for all Ωε edges.

Now we consider the right hand side of Eq. (5). Assume f is a square integrable function on a

volume Ω̃ ⊃ Ωε for some ε > 0, i.e.,
(
∫

Ω̃

|f |2 dV

)1/2

< ∞.

By the dominated convergence theorem [28], we have
(
∫

Ωε

|f |2 dV

)1/2

→ 0 as ε → 0.

Rewrite it into the standard asymptotic notation
(
∫

Ωε

|f |2 dV

)1/2

= o(ε0).

According to Schwarz inequality, we have
∣

∣

∣

∣

∫

Ωε

f dV

∣

∣

∣

∣

≤
(

∫

Ωε
|f |2 dV

)1/2

·
(

∫

Ωε
1 dV

)1/2

= o(ε).

Combining the above equation with (7), one can have

ε g(pO,P, P̄) + O(ε2) = o(ε).

Let ε → 0 to obtain the final equation

g(pO,P, P̄) = 0,

from which we can solve pO in terms of P and P̄. Then we can compute the flux by solving P̄ in

terms of P in the same way as in the multi-point flux approximation.

11



Remark 1 The resultant equation is in some sense independent of the shape of Ωε because of the

limiting process. One may be able to eliminate pO without letting ε → 0. But the formulation will

not be as neat as the one we get here.

Remark 2 Although we state our algorithm for an interaction region with four sub-volumes, it

works for any interaction region from general two-dimensional grids.

The second approach is to solve the original equation (i.e., Eq. (1)) on the whole interaction

region with the standard Finite Element Method (FEM). The mesh can be either one in Fig. 4,

depending on which approximation is used for p. Dirichlet boundary conditions are imposed, and

a linear p is interpolated from its values at two ending points for each boundary line segment

connecting Ci’s and Mi’s. From this FEM solve, the extra unknown pO can be expressed as a

linear function of P̄ and P, which is then plugged into Eq. (4) to eliminate all the other temporary

unknowns. After the elimination, the fluxes will be functions of primary unknowns only, like those

in the multi-point flux approximation methods.

One can combine the linear or bilinear approximation with either approach to obtain the extra

equation. Almost equivalent numerical results were obtained for the two different approximations.

Note that the enriched multi-point approximation method works for both matching and non-

matching unstructured polygon grids. In the following, we show how to make our algorithm work

for non-matching grids.

3.2 Non-Matching Grids

When a linear pressure is assumed, the enriched multi-point flux approximation automatically

works for non-matching grids. Only for bilinear pressure interpolation we need to make a minor

change of the above algorithm. Consider a typical interaction region with non-matching grid point

as shown in Fig. 6. Since C1M1OM3 is a degenerated quadrilateral, the point O will be a sin-

gularity point if we still use bilinear transformation to map it to a standard square element. So

instead of treating C1M1OM3 as one sub-volume, we decompose it into two triangles: ∆C1M1O

and ∆C1OM3, on each of which a linear interpolation is applied. Then following the procedure
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Figure 6: Interaction region with non-matching grid point. |ODi| = ε|OMi|, i = 1, 2, 3; |OD4| =
ε|OC1|.

described in the previous sections, we can compute the flux across all the edges in the interaction

region. The small volume used to generate the extra equation to eliminate pO is shown on the right

part of Fig. 6.

3.3 Equivalence of EMPFA and TPFA for K-Orthogonal Grids

Here we show the enriched multi-point flux approximation is equivalent to the conventional two-

point flux approximation for K-orthogonal grids.

Consider the flux across edge M1O from volume C1 in Fig. 5. Note that point M1 has coordi-

nate (0, 0) in ξ-η coordinate system (see Appendix A). Using the formula given in Appendix A,

the pressure gradient at point M1 is

1

a2b3 − a3b2

(

b3 −b2

−a3 a2

)(

−1 1 0 0
−1 0 0 1

)









pM1

pO

pM4

pC1









.

Since the grid is K-orthogonal, there exists a constant c such that

a
T
K = c

−−−→
C1M1 = c

(

−a3 −b3

)

. (8)

Plug the above two equations into the flux formula a
T
K∇p to obtain

a
T
K∇p = c (pM1

− pC1
),
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Figure 7: Oscillatory solution from MPFA on quadrilateral control volumes. k1 = 1, k2 =
1000, θ = π/3. Left: grid of size 15 × 15; Right: pressure profile.

which is exactly the same formula as that from the two-point flux approximation. Therefore we

have showed that the enriched multi-point flux approximation is equivalent to the conventional

two-point flux approximation for K-orthogonal grids.

3.4 Numerical Experiments

In this section, we solve Eq. (1) for various permeabilities and solutions with different regularities.

3.4.1 Non-Physical Oscillations

The problem described in [23] is to solve Eq. (1) with permeability

K =

(

cos θ sin θ
− sin θ cos θ

)(

k1 0
0 k2

)(

cos θ − sin θ
sin θ cos θ

)

. (9)

The computation domain is [−0.5, 0.5] × [−0.5, 0.5] with a well sitting in the middle. Constant

pressure is used as boundary conditions. A constant flow rate is specified in the code for the control

volume including the well. As shown in Fig. 7 and Fig. 8, non-physical oscillations are present

when k2/k1 is large and the grid is not K-orthogonal. Figure 9 shows the solution from the multi-

point flux approximation on finer quadrilateral grids. Clearly the oscillation becomes less severe

when refining the grid.
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Figure 8: Oscillatory solution from MPFA on triangular control volumes. k1 = 1, k2 = 25, θ =
π/3. Left: grid; Right: pressure profile.

Figure 9: Less oscillatory solution from MPFA on finer quadrilateral grids. k1 = 1, k2 = 1000, θ =
π/3. Left: 33 × 33; Right: 99 × 99.
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Figure 10: Pressure profile on the quadrilateral grid. Left: EMPFA. Right: TPFA. k1 = 1, k2 =
1000, θ = π/3. Grid: 15 × 15.

Figures 10 and 11 display the solution from the enriched multi-point flux approximation. No

oscillation is observed. For comparison purpose, we also show the pressure profile from the two-

point flux approximation. The anisotropic structure of the pressure profile is clearly distorted by

the two-point flux approximation.

In order to have a quantitative comparison between the EMPFA and MPFA methods, we con-

sider a case similar to the above problem. Assume the analytical solution is p(x, y) = −q log(r)+c,

where r =
√

ξ2 + η2 with
(

ξ
η

)

=

(

1√
k1

1√
k2

)

(

cos θ − sin θ
sin θ cos θ

)(

x
y

)

.

The constants q and c are chosen such that p ≥ 0 on the computational domain [−0.5, 0.5] ×

[−0.5, 0.5]. The permeability tensor is assumed to have the form as given in Eq. (9). Exact solution

is applied as Dirichlet boundary conditions. From the result shown in Fig. 12, the enriched multi-

point flux method is more accurate than the original multi-point flux method for this test case.

3.4.2 Uniform Flow

The analytical solution is a uniform flow on [−0.5, 0.5] × [−0.5, 0.5]. Specially, we choose

p(x, y) = x + 4, and p(x, y) = y + 2.
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Figure 11: Pressure profile on the triangular grid. Left: EMPFA. Right: TPFA. k1 = 1, k2 =
25, θ = π/3.

Figure 12: Flux error. Left: MPFA; Right: EMPFA. k1 = 1, k2 = 1000, θ = π/3. Quadrilateral
grid of size 11 × 11.
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Figure 13: Random grid.

The permeability is assumed to be a diagonal tensor, K = diag(10, 1). The computation is done

on a pseudo-random grid in Fig. 13. The grid is generated by first building a uniform Cartesian

grid and then perturbing it in a certain way such that all the control volumes are still convex

quadrilateral. More details on construction of this type of random grids can be found in [30]. As

expected, the exact solution is recovered by the enriched multi-point flux method.

3.4.3 Convergence Study

We now study the convergence rate of the enriched multi-point flux approximation. The discrete

L2 error of pressure and flux take the form










ep = (
∑

i |Vi| (pex,i − pi)
2)

1/2
,

ef =

(

∑

e∈E Qe

(

fex,e−fe

|e|

)2
/

∑

e∈E Qe

)1/2

,

where {Vi} is the set of all the control volumes and E is the set of all the control volume edges. |Vi|

denotes the volume (area for 2D problems) of control volume Vi, while Qe is the volume associated

with edge e. In this paper, the sum of the area of sub-volumes sharing edge e is used as Qe. The

same discrete error measure has been used in [18] and [15].

Example 1: The analytical solution p(x, y) = cos(πx) cos(πy) + 2 and K = diag(10, 1). The

computation is done on the random grid as shown in Fig. 13. During the grid refinement, we

first refine the Cartesian mesh uniformly and then perturb the mesh to obtain a finer random grid.

As shown in Tab. 1, the expected convergence rate is achieved for the enriched multi-point flux
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Figure 14: Discontinuous permeability field. Left: the computation domain; Right: 8 × 8 mesh
which honors discontinuity of permeability.

method.

Table 1: Convergence rate. p(x, y) = cos(πx) cos(πy) + 2 and K = diag(10, 1).

EMPFA MPFA
N ep Rate ef Rate ep Rate ef Rate
8 0.01593 1.4039 0.01892 1.7415

16 0.00344 2.21 0.6198 1.18 0.00369 2.36 0.7691 1.18
32 0.00082 2.06 0.2702 1.20 0.00100 1.88 0.3851 1.00
64 0.00023 1.81 0.1195 1.18 0.00029 1.78 0.1835 1.07

Example 2: Consider a case with discontinuous permeability field. Figure 14 shows the domain

including four sub-domains each of which is assumed to have homogeneous isotropic permeability

field, i.e., Ki = kiI. The four sub-domains meet at the center (origin (0, 0)) with angle φ. We seek

an analytical solution with form

p(x, y) = p(r, θ) = rα(ai sin(αθ) + bi cos(αθ)), if (x, y) ∈ ith sub-domain, i = 1, · · · , 4,

in the polar coordinate system. The coefficients ai’s ,bi’s and α can be computed from the con-

tinuity conditions of pressure p and flux K∇p · n across the interfaces of sub-domains. When

k1 = 100, k2 = 1, k3 = 1, k4 = 1, φ = 2π/3, we have a solution with

α = 0.7547,

a1 = 1.00995, ai = 1.99990, i = 2, 3, 4,

b1 = 1, bi = 100.98019, i = 2, 3, 4.
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Table 2 lists convergence rates from the enriched multi-point flux method and the multi-point

flux method. The order of the L2 error of pressure is almost h2α, which is the optimal rate for

conforming finite element methods. (The order h2α is obtained in [27] with the discontinuous

Galerkin method.) We also did the test cases with φ = π/2, k1 = k3 = 1, k2 = k4 = 5, 10, 100 as

Eigestad and Klausen did in [15]. Similar results were obtained for the enriched multi-point flux

approximation.

Table 2: Convergence rate. Permeability Ki = kiI with k1 = 100, k2 = 1, k3 = 1, k4 = 1.
φ = 2π/3.

EMPFA MPFA
N ep Rate ef Rate ep Rate ef Rate
8 0.2688 6.5372 0.3360 4.9486

16 0.1044 1.36 4.1590 0.65 0.1255 1.42 3.1238 0.66
32 0.0393 1.41 2.5827 0.69 0.0454 1.47 1.9380 0.69
64 0.0145 1.44 1.5803 0.71 0.0162 1.49 1.1877 0.71

3.4.4 Discussion

Thorough numerical tests have been done to verify the accuracy of the enriched multi-point flux

approximation method. In the above numerical experiments, almost equivalent results have been

obtained for both Dirichlet and Neumann boundary conditions, and for any combination of lin-

ear/bilinear pressure approximation and either way to get the extra equation (cf Sec. 3.1). Fig-

ures 15-16 list a few other meshes we have tried, some of which are actually exported from the

gridding software currently used in ExxonMobil Upstream Research Company. For all the meshes,

the exact linear solution can be recovered, and expected convergence is achieved for both the scalar

and flux unknowns.

We have also done extensive tests on the robustness of the new method. No oscillations were

observed in all the numerical solutions when strongly anisotropic K exists, except for one case a

spike appears in the interior domain. In this particular case, the material property (permeability

field) is taken from an XZ cross-section of SPE10 [1]. Then we rotate the permeability for 60 de-
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Figure 15: Two dimensional meshes I.

Figure 16: Two dimensional meshes II.

21



grees, and use the rotated permeability as K in the numerical experiment. However, the numerical

permeability field is not considered to be realistic or physical because the correlation is completely

lost after the artificial rotation. Not surprisingly, the control volume finite element method per-

forms much better in this case because it is essentially a finite element method which usually does

not have problem with oscillations.
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4 Enriched Multi-Point Flux Approximation for Polyhedral Meshes

In this section, we extend the enriched multi-point flux approximation method to three-dimensional

grids. For simplicity, we only describe the extension with the combination of piecewise linear

approximation of pressure and the FEM way of obtaining the extra equation to eliminate the tem-

porary unknown which sits in the ’center’ of the interaction region.

4.1 Local Mesh

From the description in Sec. 3.1, the interaction region in 2D, more precisely every sub-volume,

has to be divided into triangles (see Fig. 4) in order to define a piecewise linear approximation for

p. Recall that every sub-volume is the portion of one control volume which is inside the interaction

region. For two-dimensional grids, each sub-volume is always a quadrilateral except for the non-

matching grids (see e.g., Fig. 6). For unstructured polyhedral grids, the sub-volumes are much

more complex, and so are the interaction regions. We first need to divide the interaction regions of

three-dimensional meshes into tetrahedrons in order to define a piecewise linear approximation for

the scalar unknown p.

Since each sub-volume will be partitioned into tetrahedrons separately, we only explain how

to divide one sub-volume. Figures 17 - 18 demonstrate the whole process of constructing the sub-

volume and local mesh for one particular control volume. Suppose point A is the ’center’ of the

interaction region, where the control volumes meet. The sub-volume for this control volume is the

polyhedron formed by point A, volume center C, and the centers of the control volume faces and

edges which meet at point A. In the graph, the face centers (e.g., B) and edge centers (e.g., D and

E) are the dark dots and star-shaped points respectively. Note that the control volume faces could

be non-flat. In the implementation, we simply use the average of face vertices as the face center

for each face.

Half of the sub-volume faces (e.g., ADBE) will be shared with another sub-volume. So when

dividing the sub-volume, we have to make sure the partitions of the shared faces are consistent

from both sides. This is achieved by a two-step partition strategy. The first step is to divide the sub-
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Figure 17: Polyhedral mesh. Left: A control volume; Right: The corresponding sub-volume.
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Figure 18: Polyhedral mesh: construction of local mesh.

volume into pyramids by connecting C with all the edge centers. One such pyramid is shown in the

middle part of Fig. 18. The total number of pyramids is equal to the total number control volume

faces which share point A. The second step is to partition each pyramid into two tetrahedrons

by connecting point A to one previously computed face center which lies on the bottom of the

pyramid (point B in Fig. 18). The resultant two tetrahedrons, CABE and CABD, are shown in

the right graph of Fig. 18. After all these, each interaction region is divided into non-overlapping

tetrahedrons, on which a piecewise pressure can be defined.

4.2 Computation of Flux

Using a piecewise linear approximation for p on the local tetrahedron mesh constructed in the last

section, we can compute ∇p and the flux across the interfaces. Clearly the flux formulation will

involve the values of p at point A, C, face and edge centers, among which we only want to keep in
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our final numerical scheme the primary unknowns, the values of p at volume centers. Again, like

the algorithm for polygon meshes, we can eliminate face center unknowns by balancing fluxes, and

remove pA by using the Finite Element Method to solve the original equation on each individual

interaction region. So the only unknowns needing extra work are those which sit at control volume

edge centers. Bear in mind these unknowns cannot be eliminated through the above local FEM

solve because the edge centers are on the boundaries of the corresponding interaction region.

We propose to use least square and averaging to directly approximate the edge center unknowns

by linear functions of volume and face center unknowns. In each sub-volume, we implement a least

square method to find a linear p from its values at the volume and face centers. For the sub-volume

given in Fig. 18, the least square fitting simply becomes a linear interpolation procedure as there

are only three face centers. In general, the least square method is still necessary because there may

be more than three faces of a control volume which meet at a single point.

From the obtained linear function, one can compute the values of p at all edge centers for

every sub-volume. Since each edge center point belongs to more than one sub-volume, we use the

average of the values from all the sub-volumes at that point as the final value. After the averaging,

the value at any edge center is expressed as a linear function of unknowns sitting in volume centers

and face centers of all the sub-volumes in the local interaction region.

Combining everything together, we have the enriched multi-point approximation methods as

follows.

Algorithm 1 (EMPFA)

1. For each vertex of the mesh, construct the interaction region and local mesh as described in

Sec. 4.1.

2. Employ a piecewise linear approximation of p on the mesh built in the first step. Use this

approximation to compute the flux on each interface from the control volumes on both sides.

3. Solve the original equation with the Finite Element Method on the interaction region for

pressure at the ’center’ of the interaction region.
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4. In each sub-volume, apply least square method to find a linear function of p from its values

at the volume center and face centers.

5. Express the value of p at every edge center in terms of its values at all the volume centers

and face centers, by averaging the linear functions in the sub-volumes which contains this

edge center point.

6. Use the formula obtained in Step 2 and 5 to eliminate the pressure at edge centers and

interaction region center from the flux formulation.

7. Eliminate face center pressures by balancing fluxes from both sides on each interface. It

leads to a flux formulation in terms of control volume center pressures only.

8. Apply finite volume method to solve the original equation with flux computed in Step 7. It

gives a linear algebraic equation which then can be solved by standard solvers.

4.3 Numerical Results

In this section, we solve Eq. (1) with the EMPFA method described in the last section. In particular,

we consider two grids given in Fig. 19. These two are actually two-and-a-half dimensional grids

in the sense that they are built by first constructing a two dimensional grid on XY-plane, and then

projecting this areal mesh in Z-direction to each layer. Apparently, the areal mesh for the grids in

Fig. 19 are quadrilateral and polygon mesh respectively. We also randomly perturb the grids in the

vertical direction as

z = z + ∆z × r × rand([−1, 1]), 0 < r < 0.5,

where ∆z is the grid size and rand([−1, 1]) means a uniform random number from [−1, 1]. One

should note the control volume faces can be non-planar after the random perturbation (see the left

graph of Fig. 19).

We choose 2 1
2
-D grids because our algorithm is initially developed for reservoir simulations

and nobody in petroleum industry is really interested fully three-dimensional grids at this moment.

26



Figure 19: Two-and-a-half dimensional grids.

If not specified otherwise, we assume the domain is [−1, 1]3, and the permeability takes the

form

K = O
T
x ΛOx,

where Λ = diag(10, 10, 1) and Ox is the rotation matrix around x-axis:

Ox =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 .

Problem 1 (Linear Flow) Let the solution be

p = x + y + z + 4.

The exact solution and flux are recovered for both meshes in Fig. 19 with random perturbation

r = 0.4.

Problem 2 (Numerical Convergence) Let the solution be

p = cos(πx) cos(πy) cos(πz).

The rotation angle is 30 degrees and the perturbation parameter r = 0.3.

When refining the mesh, we first refine the mesh uniformly in all the directions, and then

perturb the z-coordinates, like all other random meshes. We compute the discrete L2 error of

pressure and normal flux which take the form










ep = (
∑

i |Vi| (pex,i − pi)
2)

1/2
,

eu =

(

∑

e∈E Qe

(

fex,e−fe

|e|

)2
/

∑

e∈E Qe

)1/2

,
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where {Vi} is the set of all the control volumes and E is the set of all the control volume faces. |Vi|

denotes the volume of control volume Vi, while Qe is the volume associated with face e. In this

paper, the sum of the area of sub-volumes sharing face e is used as Qe. The similar discrete error

measures is used in Sec. 3.4.

We also compute the H(div)h error for the flux, defined as

‖u − uh‖H(div),h =

(

∑

all Vi

∫

∂Vi

(uh · n + K∇p · n)2 dl

)1/2

,

where uh denotes the numerical flux. Note that the discrete H(div)h error is actually computed in

the paper by applying certain quadrature rule to the above boundary integral. The results are listed

in Tab. 3 and 4.

Table 3: Discrete norms of the error. Quadrilateral areal mesh. N: number of grid points in each
direction.

N ep Rate eu Rate ‖u − uh‖H(Div,.) Rate
2 0.1351 6.2790 11.0248
4 0.0297 2.18 3.2825 0.94 7.7657 0.51
8 0.0072 2.05 1.4317 1.20 4.5238 0.78

16 0.0018 2.01 0.6645 1.11 2.8617 0.66

Table 4: Discrete norms of the error. Polygonal areal mesh. NCell: total number of control
volumes.

NCell ep Rate eu Rate ‖u − uh‖H(Div,.) Rate
18 0.0497 6.2519 12.8434

100 0.0222 1.41 4.2373 0.68 10.6348 0.33
648 0.0068 1.90 2.2228 1.04 7.3477 0.59

4624 0.0019 1.92 1.1290 1.03 5.0205 0.58

Problem 3 (Horizontal Well) The permeability K = O
T
x ΛOx, Λ = diag(1000, 1000, 1) and the

rotation angle is 30 degrees. Zero pressure is imposed as boundary conditions.

For this problem, we assume the horizontal well penetrates three control volumes in the center

of the computational domain. No well model is involved in the implementation. We simply fix the
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Figure 20: Pressure from MPFA and EMPFA. Left: MPFA; Right: EMPFA.

flow rate for each well block in the code, i.e.,

f(x, y, z) =

{

c (x, y, z) ∈ well block,

0 otherwise,

where c is some constant. The pressure profile is plotted in Fig. 20. Clearly, the solution from

the enriched multi-point flux approximation method does not have the non-physical oscillations

appearing in the MPFA solution.
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5 Summary

The control volume multi-point flux approximation produces oscillatory solutions for diffusion

processes in strongly anisotropic media. Within the setting of reservoir simulation, we showed

that the oscillations are related to the poor approximation of pressure gradient in flux computation

when the second order cross partial derivative of pressure is large. We then developed a new multi-

point flux approximation, called enriched multi-point flux approximation (EMPFA), for general

polygonal grids including non-matching grids. It is based on a more consistent approximation of

pressure, and does not produce oscillatory solutions for strongly anisotropic permeability field,

in contrast to other existent schemes such as the multi-point flux approximation method. The

expected convergence rate is achieved.

We extended the enriched multi-point approximation method to unstructured polyhedral grids.

Besides getting non-oscillating solutions, the EMPFA can also recover the exact linear solution for

grids with non-planar interfaces, and compute the scalar and flux unknowns respectively with a

first and second convergence on meshes which have perturbations of order O(h).
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Figure A-1: From a quadrilateral to a reference element.

Appendix A ’Bilinear’ Interpolation on Quadrilaterals

Here, we review the interpolation procedure of the quadrilateral element [12]. This interpolation is

not an authentic bilinear interpolation on quadrilaterals. Instead, as shown in Fig. A-1, a quadrilat-

eral A1A2A3A4 is mapped to a standard reference element, [0, 1]× [0, 1] in ξ-η plane, by a bilinear

mapping with the form
{

x = x(ξ, η) = a1 + a2ξ + a3η + a4ξη,

y = y(ξ, η) = b1 + b2ξ + b3η + b4ξη.
(A-1)

The interpolated function is required to be bilinear on the reference element, i.e.,

p(x, y) = p(ξ, η) = p1 (1 − ξ)(1 − η) + p2 ξ(1 − η) + p3 ξη + p4 (1 − ξ)η,

where pi = pAi
, i = 1, · · · , 4, denote the values of the original function at point Ai’s. The notation

is abused a bit by using p to represent the interpolated function.

With simple computation, one can have


















a1 = x1,

a2 = x2 − x1,

a3 = x4 − x1,

a4 = x1 + x3 − (x2 + x4),



















b1 = y1,

b2 = y2 − y1,

b3 = y4 − y1,

b4 = y1 + y3 − (y2 + y4),

where (xi, yi) is the coordinates of point Ai in x-y coordinate system. The Jacobian matrix of the

mapping takes the form

J =

(

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

)

=

(

a2 + a3η b2 + b4η
a3 + a4ξ b3 + b4ξ

)

.
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So the gradient of the interpolated function at any point can be computed as

( ∂p
∂x
∂p
∂y

)

=
1

det(J)

(

b3 + b4ξ −(b2 + b4η)
−(a3 + a4ξ) a2 + a4η

)

·

(

−(1 − η) 1 − η η −η
−(1 − ξ) −ξ ξ 1 − ξ

)

·









p1

p2

p3

p4









, (A-2)

where det(J) = (a2b3 − b2a3) + ξ(a2b4 − b2a4) + η(a4b3 − b4a3).
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