PROBLEMS ON QUADRATIC FORMS AND LAGRANGE MULTIPLIERS

ALEXEI OBLOMKOV

The quadratic form is a homogeneous function of degree 2. That is function on \mathbb{R}^n :

$$Q(\vec{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_j x_j, \quad \vec{x} \in \mathbb{R}^n.$$

A square matrix A is symmetric if and only if $A_{ij} = A_{ji}$ for every i, j. Given a square matrix A we can construct quadratic form by:

$$Q_A(\vec{x}) = \vec{x}^t A \vec{x},$$

here we used t to denote transposition.

Suppose we have A, B symmetric square matrices of size $n \times n$. Let us also assume $det(B) \neq 0$.

Problem 1 Set the Lagrange system for the constraint extremum problem for

 $Q_A(\vec{x})$ restricted on the level set $Q_B(\vec{x}) = 1$.

Show that that the corresponding Lagrange multipliers that solve the system are the eigenvalues of AB^{-1} . How do you interpret the critical values of the problem in terms of matrices A and B.

Problem 2. Suppose B is an identity matrix and $det(A) \neq 0$. What can you say about the types of critical points from the previous problem if the signature of Q_B is

What can you say about the types of critical points if the signature of Q_B is