PROBLEMS ON QUADRATIC FORMS AND LAGRANGE MULTIPLIERS

ALEXEI OBLOMKOV

The quadratic form is a homogeneous function of degree 2. That is function on \mathbb{R}^{n} :

$$
Q(\vec{x})=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{j} x_{j}, \quad \vec{x} \in \mathbb{R}^{n} .
$$

A square matrix A is symmetric if and only if $A_{i j}=A_{j i}$ for every i, j. Given a square matrix A we can construct quadratic form by:

$$
Q_{A}(\vec{x})=\vec{x}^{t} A \vec{x}
$$

here we used t to denote transposition.
Suppose we have A, B symmetric square matrices of size $n \times n$. Let us also assume $\operatorname{det}(B) \neq 0$.

Problem 1 Set the Lagrange system for the constraint extremum problem for

$$
Q_{A}(\vec{x}) \text { restricted on the level set } Q_{B}(\vec{x})=1 \text {. }
$$

Show that that the corresponding Lagrange multipliers that solve the system are the eigenvalues of $A B^{-1}$. How do you interpret the critical values of the problem in terms of matrices A and B.

Problem 2. Suppose B is an identity matrix and $\operatorname{det}(A) \neq 0$. What can you say about the types of critical points from the previous problem if the signature of Q_{B} is

- ++ ,
- +- ?

What can you say about the types of critical points if the signature of Q_{B} is

- ++- ,
- +++ ?

