BORDERED HESSIANS: DISCUSSION.

ALEXEI OBLOMKOV

Reminder: the $\operatorname{Hessian} \operatorname{Hess}(F)$ of a function $F=F\left(x_{1}, \ldots, x_{n}\right)$ of n variables is the $n \times n$ matrix of the second partial derivatives. The gradient $\nabla F\left(x_{1}, \ldots, x_{n}\right)$ is the n-dimensional vector of the first partial derivatives.

Problem 1 Let $g_{1}(x, y, z)=y, g_{2}(x, y, z)=z$ and $f(x, y, z)$ is a differential function. We introduce

$$
F(x, y, z, \lambda, \mu)=f(x, y, z)-\lambda g_{1}(x, y, z)-\mu g_{2}(x, y, z) .
$$

- Show that the Lagrange system for the critical points of f with constraints $g_{1}(x, y, z)=$ $g_{2}(x, y, z)=0$:

$$
\nabla F\left(x_{0}, y_{0}, z_{0}, \lambda_{0}, \mu_{0}\right)=(0,0,0,0,0)
$$

is equivalent to the one-dimensional critical point equation:

$$
\frac{d f}{d x}\left(x_{0}, 0,0\right)=0, \quad y_{0}=z_{0}=0
$$

- Let $\left(x_{0}, y_{0}, z_{0}, \lambda_{0}, \mu_{0}\right)$ be a solution of the Lagrange system. Compute the determinant of 5×5 matrix that is the Hessian $\operatorname{Hess}(F)\left(x_{0}, y_{0}, z_{0}, \lambda_{0}, \mu_{0}\right)$.
- What can you say about the relation between the second derivative $\frac{d^{2} f}{d x^{2}}\left(x_{0}, 0,0\right)$ and the determinant from the previous question. In particular, when the determinant is strictly negative, what is the type of the critical point?

Problem 2 Let $g(x, y, z)=z$ and $f(x, y, z)$ is a differential function. We introduce

$$
F(x, y, z, \lambda)=f(x, y, z)-\lambda g(x, y, z) .
$$

- Show that the Lagrange system for the critical points of f with constraints $g(x, y, z)=0$:

$$
\nabla F\left(x_{0}, y_{0}, z_{0}, \lambda_{0}\right)=(0,0,0,0,0)
$$

is equivalent to the one-dimensional critical point equation:

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, 0\right)=0, \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}, 0\right)=0, \quad z_{0}=0
$$

- Let $\left(x_{0}, y_{0}, z_{0}, \lambda_{0}\right)$ be a solution of the Lagrange system. Compute the determinant of 4×4 matrix that is the Hessian $\operatorname{Hess}(F)\left(x_{0}, y_{0}, z_{0}, \lambda_{0}\right)$.
- What can you say about the relation between the determinant of the Hessian $\operatorname{Hess}(\tilde{f})\left(x_{0}, y_{0}\right)$ two variable function $\tilde{f}(x, y)=f(x, y, 0)$ at $\left(x_{0}, y_{0}\right)$ and the determinant from the previous question. In particular, when the $\left(x_{0}, y_{0}\right)$ is a saddle point of \tilde{f} what is the sign of the determinant?

