Notes 14: Applications of Groebner Bases

Ideal Membership Problem: Let $I \subseteq k[x_1, x_2, \ldots, x_n]$ be an ideal and G be a Groebner basis of I with respect to some monomial order. We have seen that

$$f \in I \iff \overline{f}^G = 0.$$

Solving Equations by Elimination: We outline how to use Groebner bases to solve polynomial equations in many variables. We do not give proofs here.

Example 1. Find the common solutions of the equations

$$f_1 = x^2 + y^2 + z^2 - 1 = 0,$$
$$f_2 = x^2 + z^2 - y = 0$$
$$f_3 = x - z = 0$$

We compute a Groebner basis of the ideal generated by $\{f_1, f_2, f_3\}$ with respect to the lexicographic order $x > y > z$. I have added a mathematica notebook showing how to do the calculation. The Groebner basis is

$$\{-1 + 2z^2 + 4z^4, y - 2z^2, x - z\}$$

We can back solve this equation. First we solve for z, then y, and finally x. The first member of the G-basis only involves z. The second only involves y and z, and the last adds the last variable x to the mix. If we change the monomial order the results change. The Groebner basis with respect to the monomial order $y > z > x$ is $\{-1 + 2x^2 + 4x^4, -x + z, -2x^2 + y\}$.

We return to the first G-basis. Solving for x by setting $z^2 = u$ and solving $4u^2 + 2u - 1 = 0$ gives

$$z = \pm(1/2)\sqrt{\pm5} - 1.$$

The last two equations in the Groebner basis determine x, y uniquely so there are four solutions.

Example 2. We partially solve a max-min problem in several variables. We find the critical points of the function $f(x, y) = 4 + x^3 + y^3 - 3xy$. This means we find the common zeros of $f_x = 0$ and $f_y = 0$, that is we find the points in the variety

$$V(3x^2 - 3y, 3y^2 - 3x).$$

The Groebner basis of the ideal $< 3x^2 - 3y, 3y^2 - 3x >$ is $y^4 - y, x - y^2$. The associated equations are easily solved.

Example 3. We solve a Lagrange Multipliers Problem. Find the dimensions of rectangular the box with largest volume if the surface area is 64. We wish to maximize $V = xyz$ subject to the constraint $2(xy + xz + yz) - 64 = 0$. We wish to find a point P where the surfaces $F(x, y, z) = 2(xy + xz + yz) - 64 = 0$ and $G(x, y, z) = xyz - V = 0$ intersect
and have parallel tangent planes at the point P. The direction of the tangent plane to a surface at a point is determined by its gradient at that point. The tangent plane at a point is perpendicular, that is, normal to the gradient at that point. To say that gradients of F and G point in the same direction is to say that there is a non-zero number u so that $\nabla G = u \nabla F$. Thus we wish to solve the equations

$$
F_x = u G_x \\
F_y = u G_y \\
F_z = u G_z \\
F = 0.
$$

In our case we wish to solve the equations

$$(2y + 2z) - u(yz) = 0$$
$$(2x + 2z) - u(xz) = 0$$
$$(2x + 2y) - u(xy) = 0$$
$$2(xy + xz + yz) - 64 = 0$$

The Groebner basis of the appropriate ideal is

$$\{-32 - 3z^2, y - z, x - z, 8u - 3z\}.$$

Note that $x = y = z$ so the solution is a cube.

Example 4. We describe a mechanism that draws a cissoid and find the equation of the resulting curve. We start with a point on the y-axis, $Q = (0, v)$. A fixed point $A = (1, 0)$ on the x-axis. Let $S = (w, z)$ be a point so that its distance to Q is 2. We require that the angle ASQ is a right angle. Let $P = (x, y)$ be the midpoint of the line segment SQ. Our problem is to find the equation of the locus of points P as Q moves along the y-axis.

We have 5 variables: v, x, y, w, z. We have 4 equations:

- The distance from S to Q is 2, so $(z - v)^2 + w^2 - 4 = 0$.
- The angle between AS and QS is $\pi/2$, so the dot product of the vectors \vec{AS} and \vec{QS} is zero. This gives the equation $(1 - w, -z) \cdot (w, v - z) = w^2 - w + z^2 - vz = 0$.
- The point P is the midpoint of SQ. This implies that
 $$x - w/2 = 0$$
 $$y - (v + z)/2 = 0.$$

Using Mathematica we obtain the equation

$$16 - 40x + 105x^2 - 100x^3 + 100x^4 - 20y^2 + 16xy^2 - 32x^2y^2 + 4y^4 = 0$$

for the cissoid.
Why Does a Groebner Basis Allow Us To Perform Elimination?

Finding solutions to sets of equations in many variables consist of two steps:

Step One: Say you have equations in variables x_1, x_2, \cdots, x_n. Eliminating variables so that you are able to find a solution of an equation in one variable, x_n.

Step Two: Once you have a solution in a single variable, extending it two a solution in the remaining variables one at a time.

We show how Groebner bases performs the elimination step.

Notation: Let $I \subseteq k[x_1, x_2, \cdots, x_n]$ be an ideal. We set

$$I_l = I \cap k[x_{l+1}, x_{l+2}, \cdots, x_n]$$

It is an exercise to show that I_l is an ideal, the l-th elimination ideal.

Theorem 1. Let G be a G-basis of an ideal $I \subseteq k[x_1, x_2, \cdots, x_n]$ with respect to the lex ordering with $x_1 > x_2, \cdots$. Then

$$G_l := G \cap k[x_{l+1}, x_{l+2}, \cdots, x_n]$$

is a Groebner basis for I_l.

Proof. We need two facts

- Let x^α, x^β be two monomials in $k[x_1, x_2, \cdots, x_n]$. Assume that we are given a monomial order. If x^α divides x^β, then $x^\alpha < x^\beta$. For a proof see notes 8.

- Let $h \subseteq I, I$ an ideal in $k[x_1, x_2, \cdots, x_n]$. If

 $$<\text{LT}(H)> = <\text{LT}(I)>,$$

 then $<H> = I$.

Since $G_l \subseteq I_l$, it suffices to show that $<\text{LT}(G_l)> = <\text{LT}(I_l)>$ by one of the facts above.

We show that $<\text{LT}(G_l)> = <\text{LT}(I_l)>$. Since $G_l \subseteq I_l$, we have

$$<\text{LT}(G_l)> \subseteq <\text{LT}(I_l)>.$$

We now show $<\text{LT}(I_l)> \subseteq <\text{LT}(G_l)>$. Let $f \in <\text{LT}(I_l)>$. Since G is a Groebner basis for I there is some element g that divides f. The other fact implies that $\text{LT}(g) < \text{LT}(f)$. This is impossible if there is a positive power of any of the variables x_1, x_2, \cdots, x_l appearing in $\text{LT}(g)$. This implies that $g \in G_l$ and $\text{LT}(f) \in <\text{LT}(G_l)>$.

3
The Extension theorem

Let $I \subseteq k[x_1, x_2, \ldots, x_n]$ be an ideal, G_1 a Groebner basis of I, and let $(a_{l+1}, a_{l+2}, \ldots, a_n)$ satisfy all the equations in G_1. We want to know if there is an element $(a_1, a_2, \ldots, a_n) \in V(I)$, that is, an element (a_1, a_2, \ldots, a_n) that satisfies all the equations in G. This is asking: Can we extend a_{l+1}, \ldots, a_n to an element of $V(I)$? We do this step by step, first extending to a partial solution $(a_1, a_{l+1}, \ldots, a_n)$, that is, we wish to find $(a_1, a_{l+1}, \ldots, a_n)$ that satisfies the equations in I_{l-1}. We then try to find a partial solution $(a_{l-1}, a_l, \ldots, a_n)$ and so forth.

The answer is: Not Always. Often we can; we will find conditions insuring that we can extend our partial solution to a complete solution.

Example 5. Let $f_1 = (x^2 - 1)y - 1$, $f_2 = (x^2 - 1)z - 1$. A Groebner basis for the ideal $J = \langle f_1, f_2 \rangle$ with respect to the lex ordering $x > y > z$ is $g_1 = x^2 z - z - 1$, $g_2 = y - z$.

The equation $y - z = 0$ with no x appearing says that $(y = a, z = a)$ is a solution to the equations in G_1. Can we find an $b \in k$ so that (b, a, a) is an element $V(I)$? The answer is no if $a = 0$. If $a \neq 0$ there is a solution.

Theorem 2. Let $I = \langle f_1, f_2, \ldots, f_s \rangle \subseteq \mathbb{C}[x_1, x_2, \ldots, x_n]$. Let I_1 be the first elimination ideal if I (so we have only eliminated the first variable x_1). For all i write

$$f_i(x_1, x_2, \ldots, x_n) = g(x_2, x_3, \ldots, x_n)x_1^m + \text{ terms involving lower powers of } x_1.$$

Let (a_2, a_3, \ldots, a_n) be an element of $V(I_1)$. If $(a_2, a_3, \ldots, a_n) \notin V(g_1, g_2, \ldots, g_s)$, then (a_2, a_3, \ldots, a_n) extends to a solution of all the equations $f_i = 0$.

Theorem says that we can lift a partial solution (a_2, a_3, \ldots, a_n) to a complete solution when one of the coefficients of x_1 is not zero at (a_2, a_3, \ldots, a_n). In particular, we have the

Corollary 1. Assume that $f_i = c_i x_1^m + \text{ terms of lower degree in } x_1$ with c_i a non-zero constant. Then every partial solution lifts.

Example 6. We use the extension theorem in a step by step fashion. We find the solutions to

$$f_1 = x^2 - y^2 + z^2 - 1 = 0$$
$$f_2 = x(y^2 - 1)z - 1 = 0$$

We compute a Groebner basis with respect to the lex order $x > y > z$. We obtain

$$g_1 = -1 + z^2 - y^2 z^2 - y^4 z^2 + y^6 z^2 - z^4 + 2 y^2 z^4 - y^4 z^4, \quad g_2 = x + z - y^4 z - z^3 + y^2 z^3.$$

We set up some notation. We let $I = \langle f_1, f_2 \rangle$, and $I_2 = I \cap k[z]$, $I_1 = k[x, y] \cap I$.

Note that $I_2 = 0$. This says that any value of $z = a$ is a partial solution. Which ones lift to a solution to the equations in I_1, that is, to a partial solution $y = b, z = a$. By the extension theorem applied to the situation $k[z] \subseteq k[y, z]$ we see that $z = a$ extends to $y = b, z = a$ provided the coefficient of the highest power of y in

$$g_1 = -1 + z^2 - y^2 z^2 - y^4 z^2 + y^6 z^2 - z^4 + 2 y^2 z^4 - y^4 z^4.$$

4
is not zero at \(z = a \). The coefficient of \(y^6 \), the highest power of \(y \), is \(z^2 \). Hence the solution extends provided \(z \neq 0 \).

The next step is to find which solutions \((y = b, z = a)\) extend to a solution \(x = c, y = b, z = a \). We look at the generators of \(I \) that involve \(x \). We see that the coefficient of the highest power of \(x \) is 1. This means that all partial solutions extend.