Notes 10: Monomial Ideals

Let \(f = xy^2 - x, \ f_1 = xy + 1, \ f_2 = y^2 - 1 \). When we divide \(f \) by \(f_1, f_2 \) we obtain
\[
xy^2 - x = y(xy + 1) + 0(y^2 - 1) + (-x - y).
\]
When we divide \(f \) by \(f_2, f_1 \), we obtain
\[
xy^2 - x = y(xy + 1) + 0.
\]

From the second computation we conclude that \(f \in I = \langle f_1, f_2 \rangle \), and from this we see that the remainder from the first calculation, namely \((-x - y)\), is in \(I \) also. We want to make a guess as to why the first calculation failed, and from that guess see how to improve the division algorithm. The difficulty is that neither of the leading terms of \(f_1, f_2 \) divides either of the terms in the remainder \(-x - y\). Our plan is to adjoined to the list \(f_1, f_2 \) more terms in the ideal \(f_1, f_2 \) so that we have sufficiently many leading terms. For example if we adjoin the term \(-x - y\) (which is in \(I \)) to the list \(f_1, f_2 \), then we would not have run into this difficulty.

Example 1. We use the lexicographic order with \(x > y \) in \(k[x, y] \). Let \(I = \langle f_1 = x3y^2 + y, f_2 = xy^3 - x \rangle \). The element \(g = yf_1 - xf_2 = x^2 - xy \) is an element of \(I \), but neither of its leading terms is divisible by either of the leading terms of \(f_1 \) or \(f_2 \). If we applied the division algorithm to \(g \) we would get \(g = 0f_1 + 0f_2 + x^2 - xy \). The division algorithm fails to detect that \(g \in I \). Again the problem is the paucity of leading terms appearing in our list of generators.

Our plan is to add more terms to the set of generators of a given ideal, so that we have more leading terms. The first step in carrying out this program is to look at 'leading terms' more carefully.

Definition 1. An ideal \(I \) that can be written
\[
I = \{ \sum a_\alpha x^\alpha | \alpha \in A, a_\alpha \in k \}
\]
for some \(A \subseteq \mathbb{Z}_{\geq 0}^n \) is a monomial ideal.

Example 2. Let \(I = \langle x^2 \rangle \). Then \(I \) is a monomial ideal and \(A = \{ n \in |Z, n \geq 2 \} \).

Example 3. Let \(I = \langle xy^3, x^4y \rangle \). We have the notation:
\[
(a, b) + \mathbb{Z}_{\geq 0}^2 = \{(a, b) + (x, y) | (x, y) \in \mathbb{Z}^2 \text{ such that } x \geq 0, y \geq 0 \}.
\]
Let
\[
A = ((1, 3) + \mathbb{Z}_{\geq 0}^2) \cup ((4, 1) + \mathbb{Z}_{\geq 0}^2) .
\]
Then \(I \) is the monomial ideal \(< x^\alpha, \alpha \in A > \).

It is often easier to use a figure to see exactly what the set \(A \) looks like.

Note. Let \(I \) be a monomial ideal. If \(f = \sum a_\alpha x^\alpha, h \in k \) is an element of \(I \), then each of the terms \(h_\alpha x^\alpha \) is also in \(I \).
Note. Let $B \subseteq \mathbb{Z}_{\geq 0}^n$. The ideal $J = \langle x^\alpha, \alpha \in B \rangle$ is a monomial ideal. Indeed if we set

$$A = \bigcup_{\alpha \in B} (\alpha + \mathbb{Z}_{\geq 0}^n),$$

then $J = \{ \sum_{\alpha \in A} h_\alpha x^\alpha \}$.

Corollary 1. Two monomial ideals are the same iff they contain the same monomials.

Theorem 1. Dickson’s Lemma Let $I = \langle x^\alpha, \alpha \in A \rangle$ be a monomial idea. Then there exists a finite subset $B \subseteq A$ so that $I = \langle x^\alpha, \alpha \in B \rangle$.

Proof. We prove the theorem by induction on the number of variables. If there is a single variable $x = x_1$, then $I = \langle x^\alpha, \alpha \in A \cap \mathbb{Z}_{\geq 0} \rangle$. Let β be the smallest element in this list. Then for any $\alpha \in A$, $x^\alpha = x^\beta x^\gamma$ for some $\gamma \in \mathbb{Z}_{\geq 0}$. This says that I is generated by the single element x^β.

We do the induction step. We assume that any monomial ideal in $n - 1$ variables generated by a subset $A \subseteq \mathbb{Z}_{\geq 0}^{n-1}$

- is generated by a finite set of monomials, and
- we may take these monomials from the set A.

We write $x_n = y$ so $k[x_1, \ldots, x_{n-1}, y] = k[x_1, x_2, \ldots, x_n]$. We can write any monomial in the form $x^\alpha y^m$ for some $\alpha \in \mathbb{Z}_{\geq 0}^{n-1}$. Let $J \subseteq k[x_1, x_2, \ldots, x_{n-1}]$ be the ideal of
Let m be the maximum among the integers m_α so that $x^\alpha x^{m_\alpha} \in B^*$. Now let $B = \{x^\alpha y^{m_\alpha}|\alpha \in B^*\}$.

For each $k = 0, 1, \cdots < m$, let J_k denote the ideal of $k[x_1, x_2, \cdots x_{n-1}]$ generated by x^α so that $x^\alpha y^k \in I$. By induction this ideal is finitely generated by elements $x^{\alpha_ik}, i = 1, \cdots, s_k$.

Let $B_k = \{x^{\alpha_ik}y^k\}$.

We claim that I is generated by $B \cup B_0 \cup B_1 \cup \cdots \cup B_{m-1}$.

We prove the claim: Let $x^\beta y^t \in I$. If $t \geq m$, the there is an $\alpha \in B^*$ so that x^α divides x^β, furthermore, since $t \geq m$ we have $x^\alpha y^{m_\alpha}$ divides $x^\beta y^t$. One the other hand, suppose that $t < m$. In this case there is an element of B_t that divides $x^\beta y^t$. We have shown that the ideal I has a finite set of generators. Call this set of generators C.

We show that we can find a finite set of generators in the set $x^\alpha, \alpha \in A$. We have implicitly changed notation here. The notation x^α now refers to a monomial in the complete set of variables x_1, x_2, \cdots, x_n and not just the first $n-1$ variables. For each element x^α in C there is some element x^β in A so that x^β divides x^α. The set of such x^β generates I and is a subset of $x^\beta, \beta \in A$.

The above proof has a puzzling point. Can we proceed as follows: Instead of taking generators of the form $x^\alpha x^{m_\alpha}, \alpha \in B^*, m = max\{m_\alpha\}$, why not take as generators $x^\alpha y^{m_\alpha}$. Does this allow us to avoid dealing with the ideals J_k?

The answer is no. We look at an example. Let $I = \langle x y^3, x^4 y \rangle$.

- The ideal J is generated by a single element x.
- This comes from the monomial $x y^3$.
- The monomial $x y^3$ does not generate I.
- We have $J_0 = (0), J_1 = x^4, J_2 = x^4$.
- Hence we add to the generator $x y^3$ coming from J, the generator $x^4 y$.

Corollary 2. Consider an total order on the monomials in x_1, x_2, \cdots, x_n. Assume it satisfies the property:

$$x^\alpha > x^\beta \iff x^{\alpha+\gamma} > x^{\beta+\gamma}.$$

Then this is a well ordering if and only if $x^\alpha > x^0$ for all non-zero α.

Proof. We have already done the proof in the direction \implies. We use the theorem above to prove the implication \iff.

Let $A \subseteq \mathbb{Z}_{\geq 0}^n$ and let I be the monomial ideal generated by A. By the theorem above the ideal has a finite set of generators, $\{x^{\alpha_1}, x^{\alpha_2}, \ldots x^{\alpha_t}\}$. Relabeling if necessary, we may assume that $x^{\alpha_1} < x^{\alpha_2} < \cdots < x^{\alpha_t}$. It is easy to see that x^{α_1} is the smallest element in the set A.