Geometry of Linear Functions and Multiplication of Matrices

Let \(v = (1, 2) \in \mathbb{R}^2 \). Define the function

\[
proj_v : \mathbb{R}^2 \to \mathbb{R}^2
\]

to be the orthogonal projection onto the line through \(v \). What is the matrix representing this function?

By definition \(proj_v(u) = av \) where \(u = av + x, a \in \mathbb{R}^2 \) and \(x \) is orthogonal to \(v \). This means that

\[
<v, u> = <v, av> + 0,
\]

so that \(a = \frac{<u, v>}{<v, v>} \). Writing \(u = (u_1, u_2) \), we see that

\[
a = \frac{1}{5}u_1 + \frac{2}{5}u_2,
\]

and hence

\[
proj_v(u_1, u_2) = av = (u_1/5 + (2/5)u_2, (2/5)u_1 + (4/5)u_2).
\]

From here there are two ways of reading off the matrix of \(proj_v \). Note that the function \((x, y) \mapsto (ax + by, cx + dy) \)

is given by the matrix

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix},
\]

so that the matrix of \(proj_v \) is

\[
\begin{pmatrix}
1/5 & 2/5 \\
2/5 & 4/5
\end{pmatrix}.
\]

another way to proceed is to calculate \(proj_v(e_1), proj_v(e_2) \). These give the columns of our sought for matrix.

Products of Matrices

Let \(f : S \to T, g : T \to U \) be two functions. The composition of \(f \) and \(g \) is denoted by \(g \circ f \) and is a function with domain \(S \) and target \(U \). It acts on an element \(s \) of \(S \) by

\[
x \mapsto f(s) = t \mapsto g(t).
\]

Example 1. Let \(f : \mathbb{R} \to \mathbb{R} \) be given by \(x \mapsto x^2 - 3x \). Let \(g : \mathbb{R} \to \mathbb{R} \) be given by \(x \mapsto 3x - 1 \). Then

\[
g \circ f : \mathbb{R} \to \mathbb{R}
\]

\[
x \mapsto x^2 - 3x = u \mapsto 3u - 1 = 3(x^2 - 3x) - 1 = 3x^2 - 9x - 1.
\]

Example 2. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2, f : (x, y) \mapsto (3x - y, 2x + 5y) \) and let \(g : \mathbb{R}^2 \to \mathbb{R}^2, g : (x, y) \mapsto (2x + y, -x - y) \). We compute \(g \circ f \). We get

\[
(x, y) \mapsto (3x - y, 2x + 5y) = (u, v) \mapsto (2u + v, -u - v)
\]

\[
= (2(3x - y) + (2x + 5y), -(3x - y) - (2x + 5y)) = (8x + 3y, -5x - 4y).
\]
The point is that this is a mess. We have a better way of doing this. The functions f and g are associated to the matrices

$$F = \begin{pmatrix} 3 & -1 \\ 2 & 5 \end{pmatrix},$$

and

$$G = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}.$$

We can compute the matrix of the composition of f and g from F and G easily. This operation is called matrix multiplication.

Example 3.

$$GF = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 2 \cdot 3 + 1 \cdot 2 & 2 \cdot (-1) + 1 \cdot 5 \\ -1 \cdot 3 + (-1) \cdot 2 & (-1) \cdot (-1) + (-1) \cdot 5 \end{pmatrix} = \begin{pmatrix} 8 & 3 \\ -5 & -4 \end{pmatrix}.$$

Note that this is the same result we got from calculating the composition of f and g directly.

Let A and B be matrices. We can multiply them provided their sizes are compatible. If A is size $n \times m$ and B is size $s \times t$, then we can multiply them if and only if $m = s$.

Example 4. Let

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 & 9 \\ 8 & 7 & 6 \end{pmatrix}, C = \begin{pmatrix} 5 & 4 \\ 3 & 2 \end{pmatrix}.$$

We can multiply AB, BA, CB, AC. We can’t multiply BC or CA.

Let A be a matrix of size $n \times m$ so that $I_n A$ and $A I_m$ make sense. When we perform the multiplication we get that both of these products are equal to A.

Multiplication of matrices, like composition of functions is not commutative. Very occasionally two matrices will commute.

Example 5. Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then

$$AB = \begin{pmatrix} -2 & 1 \\ -4 & 3 \end{pmatrix}, BA = \begin{pmatrix} 3 & 4 \\ -1 & -2 \end{pmatrix}.$$

We give some examples of matrix products that have geometric content.

Example 6. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ so A is reflection across the x axis. Then $A^2 = I_2$. We can see this both algebraically and geometrically.
Example 7. Let \(a = \cos(\theta), b = \sin(\theta) \), \(A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \), so that \(A \) is rotation by angle \(\theta \).

Let \(B = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \), so that \(B \) represents stretching by a factor of \(\lambda \). Arguing geometrically we see that the composition of rotating and stretching produces a 'spiral' motion given by the matrix

\[
AB = \begin{pmatrix} \lambda a & \lambda(-b) \\ \lambda b & \lambda a \end{pmatrix}.
\]

Example 8. Let \(L \) be the line through the origin making angle \(\theta \) with the \(x \)-axis. What is the matrix representing reflection across the line \(L \)?

If \(L \) were the \(x \)-axis then this problem is easy. The matrix is \(A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \).

We write the reflection as a composition of motions.

- First we rotate the plane about the origin so that \(L \) comes to rest on the \(x \)-axis. this is rotation by angle \(-\theta\).
- Second we reflect about the \(x \)-axis.
- Third we rotate back so that the \(x \)-axis moves to the line \(L \).

We need to find the matrix \(R \) which rotates by angle \(\theta \) and the matrix \(S \) which rotates by angle \(-\theta\). Let \(a = \cos(\theta), b = \sin(\theta) \), then

\[
R = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.
\]

Note that \(\cos(-\theta) = \cos(\theta) = a \) and \(\sin(-\theta) = -\sin(\theta) = -b \). Hence

\[
S = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.
\]

Since the reflection across \(L \) is the composition of rotation by \(-\theta\), reflection across the \(x \)-axis, and rotation by \(\theta \), the matrix of reflection across \(L \) is

\[
RAS = \begin{pmatrix} a^2 - b^2 & 2ab \\ 2ab & b^2 - a^2 \end{pmatrix}.
\]

Remark 9. Using trig identities we can express \(a^2 - b^2 \) and \(2ab \) in terms of \(\sin(2\theta), \cos(2\theta) \).

Remark 10. The composition of rotating by \(+\theta\) and \(-\theta\) is the identity transformation. Verify that the product of the corresponding matrices \(S \) and \(R \) is the identity matrix.