Let \(V, W \) be vector spaces whose dimension is finite. Let \(F : V \rightarrow W \) be a linear map. We show how to associate to \(F \) a matrix. We cannot do this just from the map \(F \). We need more information. To do this we need to have bases for \(V \) and \(W \). We begin by reviewing how we find matrices of linear maps when our vector spaces are \(\mathbb{R}^m \) and \(\mathbb{R}^n \).

Let \(e_i \) denote the vector of length \(m \) all of whose entries are zero, except in the \(i \)-th position. The entry in the \(i \) position is 1.

Problem: Let \(M \) be a linear map \(\mathbb{R}^m \rightarrow \mathbb{R}^n \). How do we construct a matrix \(M \) that induces the same function as \(M \)?

Observation 1. Let \(v_1, v_2, \ldots, v_m \) be \(m \) vectors in \(\mathbb{R}^n \); then the matrix whose columns are \(v_1, \ldots, v_m \) maps \(e_i \) to \(v_i \) for \(i = 1 \cdots i = m \).

Observation 2. Let \(F : \mathbb{R}^m \rightarrow \mathbb{R}^n \) be a linear map. Then \(F \) is determined by the vectors \(F(e_i) \in \mathbb{R}^n \).

Proof. Let \(x \in \mathbb{R}^m \). We can write \(x = \sum_{i=1}^{m} x_i e_i \). Then

\[
F(x) = F(\sum_{i=1}^{m} x_i e_i) = \sum_{i=1}^{m} x_i F(e_i).
\]

We have found a formula for \(F(x) \) using our knowledge of \(x \) and the values \(F(e_i) \). \(\square \)

Algorithm 1. Let \(\mathcal{M} \) be a linear map \(\mathbb{R}^m \rightarrow \mathbb{R}^n \).

- Define a matrix \(M \) whose columns are the vectors \(F(e_i), i = 1, \ldots, m \). Then \(M e_i = \mathcal{M}(e_i) \).
- By the second observation we see that \(M(x) = \mathcal{M}(x) \) for all \(x \in \mathbb{R}^m \).

Problem: Let \(V, W \) be finite dimensional vector spaces. Let \(\mathcal{M} \) be a linear map \(V \rightarrow W \). How do we construct a matrix \(M \) that induces the same function as \(\mathcal{M} \)?

First note that matrix multiplication does not mean anything in the context of an abstract vector space. For example consider the vector space \(P_2 \), the set of all polynomials in one variable of degree \(\leq 2 \). We cannot multiply a polynomial \(f \in P_2 \) by a matrix. The problem is not solvable as stated. To solve the problem we need to introduce bases for \(V, W \) and use the bases to write vectors in terms of coordinates.

Example 1. Let \(\mathcal{M} : P_2 \rightarrow P_2 \) be the map \(f \mapsto f' - 3f \). We choose \(B = \{1, t, t^2\} \) as a basis of \(P_2 \). This allows us to write elements of \(P_2 \) as column vectors. For example, we have

\[
f = 7 - 2t + 3t^2 \mapsto (f)_B = \begin{pmatrix} 7 \\ -3 \\ 3 \end{pmatrix}_B.
\]
Note that

\[\mathcal{M}(1) = -3 \cdot 1 \]
\[\mathcal{M}(t) = 1 - 3t \]
\[\mathcal{M}(t^2) = 2t - 3t^2 \]

In terms of coordinates with respect to the basis \(B\), we have

\[\mathcal{M} : \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_B \mapsto \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix}_B \]
\[\mathcal{M} : \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_B \mapsto \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_B \]
\[\mathcal{M} : \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_B \mapsto \begin{pmatrix} 2 \\ -3 \end{pmatrix}_B \]

If we set \(M_B = \begin{pmatrix} 3 & 1 & 0 \\ 0 & -3 & 2 \\ 0 & 0 & -3 \end{pmatrix}\), then the matrix \(B_M\) and the function \(\mathcal{M}\) are the same in terms of the \(B\)-coordinates. It is very important to note that the matrix \(M_B\) depends on the choice of coordinates.

Example 2. We consider the map \(\mathcal{F} : \mathbb{C} \to \mathbb{C}\) that maps

\[x + iy \mapsto (4 - 3i)(x + iy) = (4x + 3y) + i(-3x + 4y). \]

To obtain a matrix representation for \(\mathcal{F}\) we need to choose a basis for \(\mathbb{C}\). We choose \(A = \{1, i\}\). We have

\[\begin{pmatrix} 1 \\ 0 \end{pmatrix}_A = 1 \mapsto 4 - 3i = \begin{pmatrix} 4 \\ -3 \end{pmatrix}_A \]
\[\begin{pmatrix} 0 \\ 1 \end{pmatrix}_A = 1 \mapsto 3 + 4i = \begin{pmatrix} 3 \\ 4 \end{pmatrix}_A. \]

We see that the linear maps \(\mathcal{F}\) can be represented as the matrix

\[F_A = \begin{pmatrix} 4 & 3 \\ -3 & 4 \end{pmatrix}. \]

Example 3. Let \(V = \mathbb{R}^{2 \times 2}\) be the vector space of all \(2 \times 2\) matrices. Define

\[\mathcal{F} : V \to V \]
\[\mathcal{F} : M \mapsto \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} M. \]

We choose a basis

\[B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \]
for V. We compute

$$
\mathcal{F} : \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}_B = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}_B.
$$

Exercise 1. Let $A = \begin{pmatrix} 2 & -3 \\ -2 & 3 \end{pmatrix}$. Consider

$$
F : \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}
$$

$$
F : M \mapsto AM.
$$

Is this map linear? If so, is it an isomorphism? If it is linear and it is not an isomorphism, find a basis for the kernel and image of F.

We check that it is linear. We have

$$
F(M + N) = A(M + N) = AM + AN = F(M) + F(N), M, N \in \mathbb{R}^{2 \times 2},
$$

and

$$
F(\lambda M) = A(\lambda M) = \lambda AM = \lambda F(M).
$$

We choose a basis for $\mathbb{R}^{2 \times 2}$. A convenient choice is

$$
B = \{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \}.
$$

We find the matrix for the map F wrt the basis above and then use row operations to find a basis for the kernel and image. Note

$$
\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}_B = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}_B.
$$

This says that the first column of the matrix for F wrt the basis B is

$$
\begin{pmatrix} 2 \\ 0 \\ -2 \\ 0 \end{pmatrix}.
$$

We find the other columns of the matrix in the same way. Eventually we obtain the matrix of F:

$$
F_B = \begin{pmatrix} 2 & 0 & -3 & 0 \\ 0 & 2 & 0 & -2 \\ -2 & 0 & 3 & 0 \\ 0 & -2 & 0 & 3 \end{pmatrix}.
$$
Using row operations we obtain

\[
\begin{pmatrix}
 2 & 0 & -3 & 0 \\
 0 & 2 & 0 & -2 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

From this we can see that the kernel is non-trivial. This implies that \(F \) is not invertible and hence \(F \) is not an isomorphism. We can calculate a basis of the kernel using our usual algorithm. We find that

\[
\left\{ \begin{pmatrix} 3/2 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3/2 \\ 0 \\ 1 \end{pmatrix} \right\}
\]

is a basis of the kernel of \(F_B \) in \(B \)-coordinates. We really want a basis of \(F \) in the vector space \(\mathbb{R}^{2\times2} \). A basis of \(F \) is \(\left\{ \begin{pmatrix} 3/2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 3/2 \\ 0 & 1 \end{pmatrix} \right\} \). The image is dealt with similarly.