Notes 16: Vector Spaces: Bases, Dimension, Isomorphism
Lecture November 5, 2009

Let V be a vector space.

Definition 1. Let $v_1, v_2, \ldots, v_m \in V$. A linear combination of the elements v_i is any element of V of the form $\sum_1^m a_i v_i$, $a_i \in \mathbb{R}$.

Definition 2. Let $S \subset V$. The span of S is the set of all linear combinations of elements of S. If $W \subset V$ is a subspace of V, we say that S spans W if the span of S is W.

Definition 3. Let $S \subset V$. We say that S is linearly independent if, whenever $\sum_1^m a_i v_i = 0$, $a_i \in \mathbb{R}, v_i \in V$ all of the $a_i = 0$.

Definition 4. Let W be a subspace of V and S a subset of W. We say S is a basis of W provided S spans W and S is linearly independent.

Theorem 1. Let S be a basis of a subspace W of V. We can write every element $w \in W$ uniquely as $w = \sum a_i v_i$, $a_i \in \mathbb{R}, v_i \in S$. We call the coefficients a_i the coordinates of w with respect to S.

Proof. Since S spans W, we can write $w = \sum a_i v_i$, $a_i \in \mathbb{R}, v_i \in S$.

Assume that we an write w in two different ways:

$$w = \sum a_i v_i = \sum b_i v_i, a_i, b_i \in \mathbb{R}, v_i \in S.$$

We obtain

$$0 = w - w = \sum (a_i - b_i) v_i.$$

Since S is linearly independent, $a_i = b_i$. Thus the expressions for w are the same.

Definition 5. Let W be a subspace of V. The dimension of W is the number of elements in a basis of W. If a basis of W is infinite we say that the dimension is infinite.

Dimension in abstract vector spaces satisfies the same properties as it does in \mathbb{R}^n.

- Every basis of a vector space has the same number of elements.
- Let $W \subset V$ be a subspace of V. Then $\text{dim}(W) \leq \text{dim}(V)$ and equality only occurs if $V = W$.

Example 2. Let $V = \mathbb{R}^{m \times n}$. Then a basis of V consists of the matrices with all zero entries except in one position. The entry in that position should be 1. Since there are mn distinct positions, the dimension of V is mn.

Example 3. Let $V = \mathbb{C}$, the complex numbers. A basis of C is $\{1, i\}$. The dimension of \mathbb{C} as a real vector space is 2.

Example 4. The set of polynomials P_2 of degree ≤ 2 is a vector space. One basis of P_2 is the set $1, t, t^2$.

1
Example 5. Let \(P \) denote the set of all polynomials of all degrees. Then \(P \) is a vector space. It has a basis \(\{1, t, t^2, \cdots \} \). It is infinite dimensional.

Example 6. \(F(\mathbb{R}, \mathbb{R}) \) denotes the set of all functions from \(\mathbb{R} \) to \(\mathbb{R} \). It is infinite dimensional.

Example 7. Let \(C \) denote the set of all infinitely differentiable functions from \(\mathbb{R} \) to \(\mathbb{R} \). Then \(C \) is a subspace of \(F(\mathbb{R}, \mathbb{R}) \) and it is infinite dimensional.

Example 8. Let \(W \subset P_2 \) be all the functions \(\{f \in P_2 | f'' - 2f' = 0\} \). Here 0 means the 0 polynomial. We verify that this is a subspace and then we find a basis and thus we find its dimension.

Let \(f, g \in W \) so \(f'' - 2f' = 0 \) and \(g'' - 2g' = 0 \). We need to show that \(f + g \in W \). We have \((f + g)'' - 2(f + g)' = f'' + g'' - 2f' - 2g' = f'' - 2f' + g' - 2g' = 0 + 0 = 0\).

We also need to show that \(\lambda f \in W, \lambda \in \mathbb{R} \). We have \((\lambda f)'' - 2(\lambda f)' = \lambda f'' - \lambda 2f' = 0\).

Thus \(W \) is a subspace.

We compute a basis of \(W \). Let \(f = at^2 + bt + c \). Then \(f'' - 2f' = -4at + (2a - 2b) \). This is the zero polynomial if and only if

\[-4a = 0 \text{ and } 2a - 2b = 0.\]

Hence \(W \) consists of all the polynomials in \(P_2 \) such that the coefficients \(a, b \) are both zero. Hence \(W \) consists of all of the polynomials of degree zero. A basis of this set is the polynomial 1. The dimension of \(W \) is 1. Notice that our work led us to finding solutions to a system of linear equations

\[
\begin{align*}
4a &= 0 \\
2a - 2b &= 0.
\end{align*}
\]

Example 9. Let \(L \) be the set of lower triangular \(2 \times 2 \) matrices, that is, matrices of the form

\[
\begin{pmatrix}
a & 0 \\
b & c
\end{pmatrix}.
\]

A basis for \(L \) consists of the three matrices

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}.
\]

The dimension of \(L \) is 3.

Definition 6. Let \(V, W \) be vector spaces. We say that a function

\[
F : V \longrightarrow W
\]

\[
F : v \mapsto F(v)
\]

is linear provided \(F(v_1 + v_2) = F(v_1) + F(v_2),, v_1, v_2 \in V \) and \(F(\lambda v) = \lambda F(v), \lambda \in \mathbb{R}, v \in V \).

Definition 7. Let \(F : V \longrightarrow W \) be a linear map of vector spaces. Then the kernel of \(F \) is \(\text{ker}(F) = \{v \in V | F(v) = 0\} \) and the image of \(F \) is \(\text{im}(F) = \{y \in W | y = F(v), \text{ for some } v \in V\} \).
Theorem 10. Let $F : V \rightarrow W$ be a linear map of vector spaces. Then $\text{im}(F)$ is a subspace of W and $\ker(F)$ is a subspace of V.

Example 11. Let C be the vector space of functions from \mathbb{R} to \mathbb{R} with infinitely many derivatives. Define $D : C \rightarrow C$ by $f \mapsto f'' - f$. Notice that $D(e^x) = 0$. Here 0 is the 0-function in C. Notice that $D(e^{-x}) = 0$. Notice that D is linear. Thus the kernel of D is a subspace. We conclude that $D(ae^x + be^{-x}) = 0$ for all $a, b \in \mathbb{R}$.

Definition 8. Let $F : V \rightarrow W$ be a linear map of vector spaces. The rank of F is the dimension of the subspace $\text{im}(F)$ of W. The nullity of F is the dimension of $\ker(F)$.

Theorem 12. Let $F : V \rightarrow W$ be a linear map of vector spaces. Assume that $\dim(V)$ is finite. Then

$$\dim(V) = \text{rk}(F) + \text{nullity}(F).$$

Example 13. Let

$$F : P_2 \rightarrow \mathbb{R}^3$$

$$F : at^2 + bt + c \mapsto \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$ We check that F is linear. Notice that F has an inverse. In particular, $\ker(F) = 0$ and $\text{im}(F) = \mathbb{R}^3$.

Definition 9. Let F be a linear map of vector spaces $F : V \rightarrow W$. We say that F is an isomorphism if F has an inverse.

If F is a map of finite dimensional vector spaces of the same dimension and $\ker(F)$ is trivial, then F is an isomorphism. To see this we use the rank nullity theorem. This does not hold if the dimensions are infinite.

Example 14. Let P denote the vector space of all polynomials. Define $F : P \rightarrow P$ by $f \mapsto tf$ (Here t is the variable). This has trivial kernel but the image is not all of P.

Example 15. We show how to use an isomorphism to turn a problem about a challenging vector space into a problem about \mathbb{R}^n. Find all the polynomials f of degree ≤ 2 so that $f'' - 3f' + f = 0$ (Here 0 is the 0 polynomial).

We use the isomorphism from the previous example: $F : P_2 \rightarrow \mathbb{R}^3, at^2 + bt + c \mapsto \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Define a map $D : P_2 \rightarrow P_2, f \mapsto f'' - 3f' + f$. Define a map $G : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ by

$$G : \begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} a \\ (b - 6a) \\ (2a - 3b + c) \end{pmatrix}.$$ We have the following correspondence:

$$D : at^2 + bt + c \mapsto at^2 + (b - 6a)t + (2a - 3b + c)$$

$$G : \begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} a \\ (b - 6a) \\ (2a - 3b + c) \end{pmatrix}.$$