Problem 33.

Let us call denote by

\[I = \int f \, dx \quad a_n = \int f_n \, dx \quad \text{and} \quad A = \lim \inf \int f_n \, dx \]

We wish to prove that \(I \leq A \)

By assumption we know

1. \(f_n \geq 0 \) (in particular \(a_n \geq 0 \) also)
2. \(f_n \to f \) in measure.

Now since \(A \) is the smallest of all limit points, there must exist a subsequence of \(a_{n_k} \) of \(a_n \) that converges to \(A \); i.e.

\[\lim_{k \to \infty} a_{n_k} = A. \]

In particular note that

\[A = \lim_{k \to \infty} \int f_{n_k} \, dx \quad \text{and that} \quad f_{n_k} \to f \] in measure as well

Then for every subsequence \(a_{n_{k_j}} \) of \(a_{n_k} \) we also have that

\[A = \lim_{j \to \infty} a_{n_{k_j}} = \lim_{j \to \infty} \int f_{n_{k_j}} \, dx \]

and \(f_{n_{k_j}} \to f \) in measure as well.

In particular then, there exists one such subsequence for which we have a.e. convergence to \(f \). By abuse of notation let us refer to this particular subsequence as \(f_{n_{k_j}} \) once again. Now, by Fatou’s lemma we have that

\[I = \int f = \int \lim f_{n_{k_j}} = \int \lim \inf f_{n_{k_j}} \leq \lim \inf a_{n_{k_j}} = \lim_{j \to \infty} a_{n_{k_j}} = A \]

as desired. \(\square \)

Problem 38 Part b).

First note that :

\[f_ng_n - fg = (f_n - f)(g_n - g) + f(g_n - g) + g(f_n - f) \]

Then prove that if a function is finite a.e. and \(\mu(X) < \infty \) then the function is almost bounded: i.e.
∀\varepsilon > 0 \text{there exists } M = M(\varepsilon) > 0 \mu(\{x \in X : f(x) > M\}) < \varepsilon

To see this look at the sequence of sets $E_n = \{x \in X : f(x) > n\}$ and use the continuity from above of the measure μ. Note $\mu(E_1) \leq \mu(X) < \infty$.

To find a counterexample in the case $\mu(X) = \infty$ consider $X = \mathbb{R}$ and μ Lebesgue measure. Define a sequence of functions $f_n(x) = a_n$ for all x in \mathbb{R} where $\{a_n\}$ is any sequence of positive real numbers you care to choose such that $a_n \to 0$ as $n \to \infty$. And define $g_n(x) = g(x)$ for all $n \geq 1$ where $g(x)$ is any function you care to choose over \mathbb{R} such that $g(x) \to \pm \infty$ as $x \to \pm \infty$. Show f_n converges in measure to zero, g_n converges in measure to g but $f_n g_n$ does not converge in measure to zero.

Problem 41.

The argument below might need some fine tuning: check it carefully.

Since X is σ-finite we can write

$$X = \bigcup_{i=1}^{\infty} X_i \quad \mu(X_i) < \infty \quad X_i \cap X_{i'} = \emptyset, \quad i \neq i'$$

Then there exists $F_i \subset X_i$, $\mu(F_i) < \frac{\varepsilon}{2^i}$ such that

$$f_m \to f \quad \text{uniformly on } X_i \setminus F_i$$

Let $\varepsilon > 0$ be given and fixed. For each $i \geq 1$ we will apply Egoroff’s theorem with $\frac{\varepsilon}{2^i}$.

Note that $F_i \cap F_{i'} = \emptyset$ \quad $i \neq i'$.

Let us denote by $G_i = X_i \setminus F_i$ then since

$$G_i^c = X \setminus G_i = \bigcup_{j \neq i} X_j \cup F_i$$

where all unions are disjoints one can prove (homework: prove it !) that

$$\bigcap_{i=1}^{\infty} G_i^c \subseteq \bigcup_{i=1}^{\infty} F_i$$

(again last union is disjoints union). Hence

$$\mu((\bigcup_{i=1}^{\infty} G_i)^c) = \mu(\bigcap_{i=1}^{\infty} G_i^c) \leq \sum_{i=1}^{\infty} \mu(F_i) \leq \varepsilon$$

For later use we now denote by

$$H_1 = (\bigcup_{i=1}^{\infty} G_i)^c = X \setminus (\bigcup_{i=1}^{\infty} G_i) \quad \text{and} \quad \mathcal{E}_1 = (\bigcup_{i=1}^{\infty} G_i)$$
Now consider the sequence \(\varepsilon_n = 2^{-n}, \ n \geq 1 \).

Let \(n = 1 \) and run the argument above with \(\varepsilon = \varepsilon_1 = 1/2 \). We get \(\mathcal{E}_1 \) and \(H_1 \) such that

1. \(X = \mathcal{E}_1 \cup H_1 \) where the union is disjoint and \(\mu(X \setminus \mathcal{E}_1) = \mu(H_1) < 1/2 \)
2. \(f_m \to f \) uniformly on each set \(G_i \) in \(\mathcal{E}_1 \)
3. \(f_m \to f \) a.e in \(X \); hence in particular, \(f_m \to f \) a.e in \(H_1 \)

For \(n = 2 \) we now consider as full space \(X = H_1 \) and apply Egoroff’s theorem with \(\varepsilon_2 = 1/4 \). Then there exists a set \(\mathcal{E}_2 \) such that

1. \(X = \mathcal{E}_2 \cup H_2 \), where the union is disjoint, \(H_2 = H_1 \setminus \mathcal{E}_2 \) and \(\mu(H_1 \setminus \mathcal{E}_2) = \mu(H_2) < 1/4 \)
2. \(f_m \to f \) uniformly in \(\mathcal{E}_2 \)
3. \(f_m \to f \) a.e in \(H_1 \); hence in particular, \(f_m \to f \) a.e in \(H_2 \)

Repeat the step \(n = 2 \) above inductively for all \(n \geq 3 \) applying Egoroff to \(X = H_{n-1} \) and \(\varepsilon = \varepsilon_n = 2^{-n} \) to get sets \(\mathcal{E}_n \) and \(H_n \) such that

1. \(X = \mathcal{E}_n \cup H_n \), where the union is disjoint, \(H_n = H_{n-1} \setminus \mathcal{E}_n \) and \(\mu(H_{n-1} \setminus \mathcal{E}_n) = \mu(H_n) < 2^{-n} \)
2. \(f_m \to f \) uniformly in \(\mathcal{E}_n \)
3. \(f_m \to f \) a.e in \(H_{n-1} \); hence in particular, \(f_m \to f \) a.e in \(H_n \)

Note that \(\mu(H_1) < \infty \) and \(\ldots \subseteq H_n \subseteq H_{n-1} \ldots \subseteq H_2 \subseteq H_1 \). Then

\[
X = \bigcup_{n=1}^{\infty} \mathcal{E}_n \cup H \quad \text{where} \quad H = \left(\bigcup_{n=1}^{\infty} \mathcal{E}_n \right)^c \quad \text{and}
\]

\[
\mu(H) = \mu(X \setminus \bigcup_{n=1}^{\infty} \mathcal{E}_n) = \mu\left(\bigcap_{n=1}^{\infty} H_n \right) = \lim_{n \to \infty} \mu(H_n) = 0
\]

On the other hand by relabeling all the \(G_i \) in \(\mathcal{E}_1 \) and all the \(\mathcal{E}_n \), \(n \geq 2 \) as \(E_m, \ m \geq 1 \) (note that the union of two countable families of sets is countable) for example by sending \(G_i, \ i \geq 1 \) to \(E_{2k}, \ k \geq 1 \) and \(\mathcal{E}_n, \ n \geq 2 \) to \(E_{2k+1}, \ k \geq 0 \) we obtained the desired conclusion. \(\square \)