
M623 HOMEWORK – Fall 2024

Prof. Andrea R. Nahmod

SET 1: Due Date 09/19/2024

Problem 1 Give an example of a decreasing sequence of nonempty closed sets in Rn

whose intersection is empty.

Problem 2 Give an example of two closed sets F1, F2 ⊂ R2 such that F1 ∩ F2 = ∅ and
dist(F1, F2) = 0.

Problem 3 a) Given an interval [a, b] ⊂ R, construct a sequence of continuous functions
φk(x) such that for every fixed x ∈ R we have

lim
k→∞

φk(x) =

{
1 if x ∈ [a, b]

0 if x /∈ [a, b]

b) Can one construct such a sequence φk so that it also converges uniformly as k →∞?
Explain and justify your answer.

Problem 4 A continuous function φ : R→ R is said to be convex if

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y), ;∀ x, y ∈ R,∀ λ ∈ [0, 1]

Show that if φ is convex, then if x1, . . . , xn are points in R then

φ

(
x1 + . . .+ xn

n

)
≤ φ(x1) + . . . φ(xn)

n

More generally, show that if α1, . . . , αn is a sequence of nonnegative numbers with

n∑
i=1

αi = 1

Then, for any n points x1, . . . , xn in R we have

φ

(
n∑

i=1

αixi

)
≤

n∑
i=1

αiφ(xi)

This last inequality is known as Jensen’s inequality.

Problem 5 Let x1, . . . , xn be all nonnegative numbers. Prove the arithmetic-geometric
mean inequality (

x1x2 . . . xn
)1/n ≤ x1 + x2 + . . .+ xn

n
1
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Hint Apply Jensen’s inequality with a conveniently chosen convex function.

Problem 6 Compute the following Riemann integrals:∫ 1

0

xk dx, k > 0;

∫ 1

0

x−k dx, k ∈ (0, 1);

∫ ∞
1

x−k dx, k ∈ (1,∞)

∫ ∞
0

e−ax
2

x dx, a > 0;

∫ ∞
0

e−ax
2

x2 dx, a > 0 (use that

∫ ∞
−∞

e−x
2/2 dx =

√
2π)

∫ b

a

cos(mx) dx, m ∈ N.

For the last one, fix a and b and investigate the limit m→∞. Does the result depend on
a, b?

SET 2: Due Date 09/26/2024

From Chapter 1 (pp 37-42): 1, 2, 3.

Additional Problems

A.I. Construct a subset of [0, 1] in the same manner as the Cantor set, except that at
the kth stage, each interval removed has length δ3−k, for some 0 < δ < 1. Show that
the resulting set is perfect, has measure 1− δ, and it is totally disconnected (in particular
contains no intervals).

A.II. For x ∈ [0, 1], let

x =
∞∑

n=1

an
2n

, an ∈ {0, 1} ,

be the binary expansion of x. Let A be the set of points x which admit a binary expansion
with zero in all even positions (i.e., a2n = 0 for all n ≥ 1). Show that A is a set of Lebesgue
measure 0.

Hint: Write the set A has A = ∩∞n=0An where A0 = [0, 1], An+1 ⊂ An and An+1 is
obtained from An by removing some of the dyadic intervals in An.

A.III. The following problem is a special case of Problem 4 in [SS, Ch1] dealing with
what we call Fat Cantor Sets.

Construct a closed set C analogous to the Cantor 1
3 -set by removing instead at the stage

kth stage 2k−1 centrally situated open intervals each of length `k = 1
4k

. The set C is again
defined as the (countably) infinity intersection of the closed sets Ck appearing at stage. k.
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a) Show that C is compact, totally disconnected and has no isolated points (this is
similar to problem 1).

b) Show that m∗(C) = 1
2 and conclude (with justification) that C is uncountable.

A.IV. a) Let A = ∪∞n=1An with m∗(An) = 0. Use the definition of exterior measure to
prove that m∗(A) = 0.

b) Use a) to prove that any countable set in Rd is measurable and has measure zero.

SET 3: Due Date 10/10/2024

A.I.) Prove that a set E in Rd is measurable if and only if for every set A in Rd,

(1) m∗(A) = m∗(A ∩ E) + m∗(A− E)

Hint: First assume E is measurable and prove (1). Then to prove the converse, to prove
that (1) implies that E is measurable, assume first that m∗(E) <∞. Then do the case of
m∗(E) =∞. For the later write E =

⋃∞
k=1[E ∩B(0, k)] where B(0, k) is the ball centered

at the origin of radius k. This characterization of measurability is called the Carathéodory
condition.

Remark: Note that A−E = A ∩Ec so the Carathéodory condition could be rephrased
as: A set E in Rd is measurable if and only if for every set A in Rd,

(1’) m∗(A) = m∗(A ∩ E) + m∗(A ∩ Ec)

From Chapter 1 (pp 37-42): 5, 6, 7, 10, 11, 16, 25.

SET 4: Due Date 10/17/2024

From Chapter 1 (pp 37-42): 28, 29.

A.I. Let {En}n≥1 be a countable collection of measurable sets in Rd. Define

lim sup
n→∞

En := {x ∈ Rd : x ∈ En, for infinitely many n }

lim inf
n→∞

En := {x ∈ Rd : x ∈ En, for all but finitely many n }
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a) Show that

lim sup
n→∞

En =

∞⋂
n=1

∞⋃
k=n

Ek lim inf
n→∞

En =

∞⋃
n=1

∞⋂
j=n

Ej

b) Show that
m(lim inf

n→∞
En) ≤ lim inf

n→∞
m(En)

m(lim sup
n→∞

En) ≥ lim sup
n→∞

m(En) provided that m(
∞⋃

n=1

En) <∞

c) Find lim supEk and lim inf Ek for the sequence {Ek} defined as follows:

Ek :=

{
[−1/k, 1] for k odd

[−1, 1/k] for k even

AII. Do problem 13a) in Chapter 1 page 41.

Hints for 13a) First show that for each n ∈ N, the set On := {x : d(x, F ) < 1
n} is open.

Then show that if x /∈ F then since F is closed, d(x, F ) > δ for some δ > 0.
Finally prove that if F is closed then F =

⋂∞
n=1On.

Conclude.

Additional Problem (do but do not turn in): Read, and then write/type, explaining
key points and expanding/filling gaps where necessary the construction of a nonmeasurable
set in Stein-Shakarchi’s book in pages 24-25-26. Note in the course of the proof you might
need to use the Invariance properties of the Lebesgue measure in the bottom half of page
22.

AIII. First do 32 (pp 44-45). (Hint for part a) consider the sets Ek = E + rk ⊂ Nk,
where {rk}k≥1 is an enumeration of the rationals.)

Note that part b) should read “...prove that there exists a subset of G which is....”.

Furthermore, show:

c) N c = I \ N satisfies m∗(N c) = 1. ( Hint: argue by contradiction and use a) )

d) Conclude that
m∗(N ) +m∗(N c) 6= m∗(N ∪N c)

Additional Problem (do but do not turn in): From Chapter 1 (pp 37-42) do problem
10
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SET 5: Due Date 10/24/2024

From Chapter 1 (pp 37-42): 17, 22

Hint for 17: Note that

{x : |fn(x)| = ∞} =

∞⋂
j=1

{x : |fn(x)| > j

n
}.

Hence the hypothesis implies that for each n,

m(

∞⋂
j=1

{x : |fn(x)| > j

n
}) = 0.

But then limj→∞m({x : |fn(x)| > j
n }) = 0 (Why? Justify.). Next, follow the hint in the

book from here.

Hint for 22: Argue by contradiction and use the continuity of such an f at x = 1 to
show that m({x : f(x) 6= χ[0,1](x)}) contains an interval of small but positive measure
and hence it can’t be zero (which gives you the contradiction).

From Chapter 1 (pp 37-42): Prove problem 18 in this case only “Every measurable
function f : [a, b]→ R (finite-valued ) is the limit a.e. of a sequence of continuous functions
on [a, b].”

Hint This is Lusin’s Theorem. Note the Handout and fully rewrite on your own thinking
the proof in this case.

Additional Problem AI. The following relates to the proof of Theorem 4.1 page 31.
Prove that the sequence of nonnegative simple functions {φk}k that approximate pointwise
f is indeed increasing, ie. φk ≤ φk+1.

From Chapter 2 (pp 89-97): 1

Hint One way to proceed is as follows. For j = 1, . . . , N (N = 2n − 1) write each j as
an n-digit binary number j1j2 . . . jn For example, 2 = 000 . . . 10 in binary representation.
Next define the set Ak to be Fk if jk = 1 and F c

k if jk = 0 and let F ∗k be the intersection
from k = 1 up ton of Ak. You’ll see that such F ∗k is intersection of n sets each of which
could be Fj or F c

j depending on the binary representation of k. Now:

i) Prove that the collection of F ∗k thus defined is pairwise disjoint and that

Fk =
⋃

F∗
j ⊂Fk

F ∗j
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.

ii) Argue from i) to deduce form here that
⋃n

`=1 F` ⊂
⋃N

j=1 F
∗
j .

iii) Finally show that the reverse inclusion easily holds.

SET 6: Due Date 11/14/2024

From Chapter 2 (pp 89-93): 6, 8, 9, 10, 11.

Hints. For 6a) consider the positive real x axis and select intervals of the form [k, k +
1

22k
], k ≥ 0 integer. Now think of a continuous (piecewise linear) function f whose graph

looks like series of triangles that get higher and higher over each of these intervals so that
the area under each one is 2−k and f is zero elsewhere. You don’t need to attempt to write
the function analytically, but graph it identifying the height of the triangles and argue why
this function gives you the desired conclusion.

For 6b) Use the ε− δ definition of uniform convergence to choose a suitable countable
family of disjoint intervals of small fixed length (say Cδ) on which |f | ≥ cε (for some
suitable fixed constants C, c > 0. Tchebychev might then be useful to draw the conclusion.

Additional Problems:

A.I. If a function f is integrable then we proved in Proposition 1.12 (Chapter 2) that
for any ε > 0 there exists a δ > 0 such that for any set A with m(A) ≤ δ, we have that∫
A
|f(x)| dm ≤ ε (absolute continuity of the Lebesgue integral).

We say that a sequence of functions {fn}n≥1 is equi-integrable if for every ε > 0 there
exists δ > 0 s.t. for any set A with m(A) ≤ δ, we have that

∫
A
|fn(x)| dm ≤ ε for all n ≥ 1.

Now prove the following.

Let E be a set of finite measure, m(E) < 1, and let {fn} : E → R be a sequence of
functions which is equi-integrable. Show that if limn→∞ fn(x) = f(x) a.e. x, then

lim
n→∞

∫
E

|fn(x)− f(x)| dm = 0.

Hint. Use Egorov’s Theorem as in the bounded convergence theorem.

A.II. We say that a sequence of measurable functions {fn}n≥1 converges in measure to
another measurable function f is for every ε > 0,

m({x : |fn(x) − f(x)| > ε}) → 0, as n→∞

Prove that if a sequence of measurable function fn converges in measure to another mea-
surable function f then there exists a subsequence {fnj}j≥1 which converges almost ev-
erywhere to f , that is fnj

(x)→ f(x) a.e. x as j →∞.
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Hint. First show that for ε = 2−j one can choose nj such that for all n ≥ nj

m({x : |fn(x) − f(x)| > 2−j}) ≤ 2−j .

Next note that for each j ≥ 1 one may choose nj+1 ≥ nj (note this is needed to satisfy
the definition of subsequence) and define Aj := {x : |fnj

(x) − f(x)| > 2−j}.
Use Borel-Cantelli to prove m(lim supj→∞ Aj) = 0 and show this is equivalent to the

desired conclusion.

A.III. Suppose that {fn}n≥1 is a sequence of non-negative measurable function, that
is fn ≥ 0 for all n, such that fn converges in measure to f . Show that then∫

f(x) dm ≤ lim inf
n

∫
fn(x) dm

Hint. Let us call denote by I =
∫
fdx, an =

∫
fndx, and A = lim inf

∫
fndx.

We wish to prove that I ≤ A. Note that since A is the smallest of all limit points,
there must exist a subsequence of ank

of an that converges to A ; i.e. limk→∞ ank
= A. In

particular note that

A = lim
k→∞

∫
fnk

dx and that fnk
→ f in measure as well

Then for every subsequence ankj
of ank

we also have that

A = lim
j→∞

ankj
= lim

j→∞

∫
fnkj

dx

and fnkj
→ f in measure as well . Next obtain one (sub)subsequence for which we have a.e.

convergence to f (you may use previous problem). Apply Fatou’s Lemma and conclude.

SET 7: 11/21/2024.

From Chapter 2 (pp 89-93): 12, 15, 16.

Hint Recall the counter-examples we did in class.

From Chapter 2 (pp 95): 3.

Hint. Note {fn} → f in L1 as n → ∞ means ‖fn − f‖L1 → 0 as n → ∞. To
demonstrate one direction suitably use Tchebychev’s inequality. For the converse consider
fn(x) = nχ[0, 1

n ).

Additional Problems:
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I. Let f and fn, n ≥ 1 be measurable functions on Rd

a) Suppose that µ(E) < ∞ and that f and fn, n ≥ 1 are all supported on E. Prove
that fn → f a.e implies fn → f in measure.

b)Prove that the converse of (a) is false even under the hypothesis of (a) ( ie. all
functions supported on E a set of finite measure)

Hint. Let E = [0, 1] and consider the (double) sequence fm,k(x) = 1Em,k
(x) (m, k ∈ N),

where Em,k := [m−1k , mk ].)

II. Consider the sequence of functions fn(x) := n
1+(nx)2 . For a ∈ R be a fixed number

consider the Lebesgue integral Ia(fn)(x) :=
∫∞
a

fn(x) dm. Compute limn→∞ Ia(fn)(x) in
each case: i) a = 0 ii) a > 0 and iii) a < 0. Carefully justify your calculations (recall the
transformation of integrals under dilations).

III. In Chapter 2 we first prove the Bounded Convergence Theorem (using Egorov The-
orem). Then, we proved Fatou’s Lemma (using the BCT) and deduced from (a corollary
of) it the Monotone Convergence Theorem. Finally we proved the Dominated Conver-
gence Theorem (using both BCT and MCT). Here we would like to prove these sequence
of results in a different order. Namely, prove:

a)Prove Fatou’s Lemma from the MCT by showing that for any sequence of measurable
functions {fn}n≥1, ∫

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
fn dm.

Hint. Note that infn≥k fn ≤ fj for any j ≥ k, whence
∫

infn≥k fn dm ≤ infj≥k
∫
fj .

b) Now prove the DCT from Fatou’s Lemma.

Hint. Apply Fatou’s Lemma to the nonnegative functions g + fn and g − fn.

IV. Use the DCT to prove the following: let {fn}n≥1 be a sequence of integrable
functions on Rd such that

∑∞
n=1

∫
|fn(x)| dm < ∞. Show that

∑∞
n=1 fn(x) converges

a.e. x ∈ Rd to an integrable function and that
∑∞

n=1

∫
fn(x) dm =

∫ ∑∞
n=1 fn(x)dm.


