
M731–Partial Differential Equations HOMEWORKS – Fall 2012

Prof. Andrea R. Nahmod

SET 1

From McOwen’s Book: read the introduction & Sections 1.1c) d), 1.2, 1.3.

From McOwen’s Book Section 1.1 do: 1, 2, 3, 4a)b), 9.

Additional Problems.

(1) Write down an explicit formula for a function u solving the inhomogeneous initial value
problem {

ut + b · ∇u = f on Rn × (0,∞)
u = g on Rn × {t = 0}

where f = f(x, t), f : Rn × [0,∞) → R, c ∈ R, b ∈ Rn and g : Rn → R are all given.
(Hint. Solve first the homogeneous problem (i.e. f = 0) using the method of characteristics
(as in class or section 1.1a) ). Then use the Fundamental Theorem of Calculus to write
u(x, t)− g(x− bt) for (x, t) along a characteristic (g(x− bt) is the homogeneous solution) as
an appropriate integral of f . At the end u will be the sum of the homogeneous solution plus
an integral term.)

(2) Write down an explicit formula for a function u solving the initial value problem{
ut + b · ∇u+ c u = 0 on Rn × (0,∞)

u = g on Rn × {t = 0}

where c ∈ R, b ∈ Rn and g : Rn → R are given.

(3) Let f be a continuous function on an open set D ⊂ Rn such that∫
D0

f(x) dx = 0 for all D0 ⊂ D.

Prove that then f ≡ 0 on D.

SET 2

From McOwen’s Book Section 2.1: 1, 2, 7

From McOwen’s Book Section 2.2: Read examples in 2.2a); read all of Section 2.2b).
Then do 1.

Additional Problems.
1
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1) a) Find the characteristics of the PDE

y2uxx − 2yuxy + uyy = ux + 6y,

and determine if elliptic, parabolic or hyperbolic.
b) Then find the canonical form and use it to find the solution u first in the ξ and η

variables and then in the x and y variables.

2) a) Find the characteristics of the PDE

xuxx + (x− y)uxy − yuyy = 0, x > 0, y > 0,

and determine if elliptic, parabolic or hyperbolic.
b) Then show that it can be transformed into the canonical form

(ξ2 + 4η)uξη + ξuη = 0

for ξ and η are suitably chosen canonical coordinates. and use this to obtain the general
solution in the ξ and η variables.

SET 3

Robert McOwen’s Book Section 3.1: 1, 4

Additional Problems.

(1) (a)Show that the general solution to the PDE uxy = 0 is

u(x, y) = F (x) +G(y)

for arbitrary functions F, G

(b) Using a change of variables ξ = x+ t and η = x− t, show that

utt − uxx = 0 if and only if uξη = 0

(c) Use parts (a) and (b) to rederive D’Alembert’s formula.

(2) Let u ∈ C2(R× [0,∞)) be a solution to the Cauchy initial value problem
utt − uxx = 0 in R× (0,∞)
u(0, x) = g(x) in R
ut(0, x) = h(x) in R

Suppose that g and h are smooth and have compact support. The kinetic energy is

k(t) :=
1
2

∫
R
u2
t (t, x) dx
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and the potential energy is

p(t) :=
1
2

∫
R
u2
x(t, x) dx

Prove :
(a) k(t) + p(t) is constant in t.

(b) k(t) = p(t) for all large enough times t.

SET 4

Robert McOwen’s Book Section 3.1: 5
Robert McOwen’s Book Section 3.2: 1, 2, 2*, 3, 5, 6a)

Hint for Problem 2 First show that if y = (y1, y2, y3) is a point in the unit sphere S2

then ∫
S2
yj dσ(y) = 0 j = 1, 2, 3

where as always dσ is the area surface element. This can be proved by an explicit calculation
using spherical coordinates or also by symmetry, splitting for each j, the integral over the
sphere S2 into the two integrals for the half spheres yj ≥ 0 and yj ≤ 0 and showing the two
integrals cancel out).

Problem 2* Same as problem 2 but with initial conditions u(x, 0) = 0 and ut(x, 0) = x2.

Hint for Problem 5 Follow the hint in the back of the book and define u(x1, x2, x3) =
cos(mc x3)v(x1, x2, t). Then prove by a direct calculation u satisfies the 3d (linear homoge-
neous) wave equation. Hence u can be represented in terms of g and h using Kirchhoff’s
formula. Assume first for simplicity that g = 0 and write the explicit formula for u in this
case. Then set x3 = 0 and proceed as in the ‘method of descent’ (parametrize the two halves
of S2 corresponding by graphs y3 = ±

√
1− (y2

1 + y2
2)) to obtain a formula for v which should

look like:

v(x1, x2, t) = C t

∫
D

cos
(
mt
√

1− (y2
1 + y2

2)
)
h(x1 + cty1, x2 + cty2)√

1− (y2
1 + y2

2)
dy1dy2

where D := {(y1, y2) : y2
1 + y2

2 ≤ 1 }.
Finally drop the assumption that g = 0 to get the general formula.

Hint for Problem 6a) The decay in t in 3d is due to waves spreading out in space on
expanding spheres ∂B(x, ct) as t→∞. This bound reflects the dispersion of waves. Assume
first g = 0 and use Kirchhoff’s formula in conjunction with the fact that h is bounded (i.e.
|h(x)| ≤ M for some M > 0) and compactly supported ( hence h(x) = 0 if |x| ≥ R for some
large R > 0). From these (plus change of variables) one can prove that

|u(x, t)| ≤ M

Ct
area(∂B(x, ct) ∩B(0, R))
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where C > 0 depends on the area of the unit sphere and the speed c. Next show that the area
of the spherical cap ∂B(x, ct)∩B(0, R) can be bounded by some absolute constant times R2-
and hence by a quantity that is independent of x and t. Next note that if h = 0 instead then
both terms in g in Kirchhoff’s formula can be treated similarly as the previous case (do it!).
Finally, for g, h ∈ C∞0 (R3) we have the sum of 3 terms all of which we know how to treat.

Note related to part 6b). In 2d there is ‘one less direction’ than in 3d for waves to spread
out so intuitively we expect the amplitude of the waves to decay slower as time increases.
And indeed, in 2d there is decay bound of the form |u(x, t)| ≤ C√

t
but this is harder to prove.

In 1d , however, as we can clearly see from D’Alembert’s formula there is no decay at all as
t→∞.

SET 5

Robert McOwen’s Book Section 3.3: 1, 2, 4, 5.

Additional Problem. Let f : Rn → R be a continuous function and let x ∈ Rn be fixed.
For r > 0 let

Br(x) := { y ∈ Rn : |x− y| ≤ r }, and ∂Br(x) := { y ∈ Rn : |x− y| = r }.

a) Prove that
d

dr

∫
Br(x)

f(y) dy =
∫
∂Br(x)

f(y) dσ(y)

where dσ is the surface measure.
Hint. Use polar coordinates to write∫

Br(x)

f(y) dy =
∫ r

0

∫
Sn−1

f(x+ ρz) dσ(z)ρn−1 dρ

where Sn−1 is the unite sphere in Rn

b) Suppose now f : R× Rn → R, f = f(r, x), r ∈ R and x ∈ Rn (fixed). Let

φ(r) :=
∫
Br(x)

f(r, y) dy

and assume that f and ∂rf are continuous. Show then that

d

dr
φ(r) =

∫
Br(x)

∂rf(r, y) dy +
∫
∂Br(x)

f(r, y) dσ(y).

Hint. Write
φ(r + h)− φ(r)

h
as ∫

Br+h(x)

f(r + h, y)− f(r, y)
h

dy +
1
h

{∫
Br+h(x)

f(r, y)dy −
∫
Br(x)

f(r, y) dy
}
.
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Then use the Dominated Convergence Theorem on the first term and part a) on the second
term.

Additional Problems on Distributions.

(1). Prove the Remark at the bottom of page 10 of the Notes on Distributions.

A generalized version of this statement is the following problem: (how would you do it?)

(1’) Let {fj} ∈ L1(Rn) be a sequence of nonnegative functions such that∫
Rn

fj(x) dx→ 1 as j →∞ and for any a > 0,∫
|x|>a

fj(x) dx→ 0 as j →∞.

Let Ffj
be the distribution defined by fj . Prove that Ffj

→ δ in D′.

(2) Prove that the Dirac delta distribution δx0 with point mass at x0 ∈ Rn (fixed) is not
given by a locally integrable function. In other words prove that there does not exist any
f ∈ L1

loc(Rn) such that

〈δx0 , v〉 = 〈f, v〉 for all v ∈ C∞0 (Rn)

SET 6

Robert McOwen’s Book Section 2.3: 4, 8, 10, 11c).

Additional Problem
Compute d

dx (log |x|) on R in the sense of distributions.

Recall that the principal value of 1
x ( pv 1

x ) is defined as

〈pv
1
x
, φ〉 = pv

∫
R

φ(x)
x

dx := lim
ε→0+

∫
|x|>ε

φ(x)
x

dx

SET 7

Robert Owen’s Book Section 4.1: 1, 2, 3, 5, 6

SET 8

Robert Owen’s Book Section 4.1: 7, 9 (cont. next page)
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Robert Owen’s Book Section 4.2: 3, 4, 5, 6, 8, 10a)

Additional Problem: Let Ω ⊂ Rn, bounded open set and g ∈ C1(∂Ω). Find the PDE
for u ∈ C2(Ω) such that u is the minimizer over A of

E(v) =
∫

Ω

√
1 + |∇v|2 dx

Here A is the as we defined in class.

SET 9

Robert Owen’s Book Section 5.1: 2, 6, 7

Robert Owen’s Book Section 5.2: 1, 2, 3, 4, 11

Additional Problems. Compute (in the sense of distributions) the following Fourier
transforms on Rn:

(i) δ̂0 (ii) D̂α δ0 (iii) x̂α (iv) Ĥ where H(x) is the Heaviside function.

SET 10 – Do these but do not turn in:

Robert Owen’s Book Section 6.1: 5a), 6, 15, 16

Robert Owen’s Book Section 6.2: 1, 2, 4, 6


