Math 455.1 • 6 April 2009

Two algorithms to find a spanning tree

Algorithm 1 (Cutting-down algorithm).

Input. An arbitrary connected graph G.
Output. A spanning tree T of G.
Algorithm.
(0) Delete any multiple edges and loops from G; let H be the resulting subgraph of G. \{Then H is connected and includes all vertices of G.\}
(1) While H still includes any cycle as a subgraph, repeat:
(1.1) Delete one edge of some cycle of H; call the resulting graph H again. \{Then H is connected and includes all vertices of G.\}
(2) Let $T=H$. \{Then T is a spanning tree of G.

Algorithm 2 (Depth-first search algorithm).

Input. An arbitrary connected graph G with exactly n vertices.
Output. A spanning tree T_{n} of G.
Algorithm.
(0) Delete any multiple edges and loops from G; call the resulting graph G again. \{Then G is connected and includes all vertices of the original G.\}
(1) Set $k=1$; choose a vertex v_{1} of G; and let

$$
V_{1}=\left\{v_{1}\right\}, \quad E_{1}=\emptyset, \quad T_{1}=\left(V_{1}, E_{1}\right)
$$

\{Then T_{1} is a subgraph of G with 1 vertex that's a tree.\}
(2) While $k<n$, do: \{You already have

$$
V_{k}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}, \quad E_{k}=\left\{e_{1}, e_{2}, \ldots, e_{k-1}\right\}, \quad T_{k}=\left(V_{k}, E_{k}\right)
$$

with T_{k} a tree with k vertices that's a subgraph of G.\}
(2.1) Choose that vertex $u \in V_{k}$ having the largest subscript such that there is some edge e with ends u and some x that is not already pat of any cycle consisting of edges from E_{k}. \{Then $x \notin V_{k}$ and $\left.e \notin E_{k}.\right\}$
(2.2) Let

$$
v_{k+1}=x, \quad e_{k}=e
$$

and then let

$$
V_{k+1}=\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}, E_{k+1}=\left\{e_{1}, e_{2}, \ldots, e_{k-1}, e_{k}\right\}, T_{k+1}=\left(V_{k+1}, E_{k+1}\right)
$$

\{Then T_{k+1} is a tree with $k+1$ vertices that's a subgraph of G.\}
(2.3) Increment k by 1.

