
Math 455.1 • 6 April 2009

Two algorithms to find a spanning tree

Algorithm 1 (Cutting-down algorithm).

Input. An arbitrary connected graph G.

Output. A spanning tree T of G.

Algorithm.

(0) Delete any multiple edges and loops from G; let H be the resulting subgraph
of G. {Then H is connected and includes all vertices of G.}

(1) While H still includes any cycle as a subgraph, repeat:

(1.1) Delete one edge of some cycle of H; call the resulting graph H again.
{Then H is connected and includes all vertices of G.}

(2) Let T = H. {Then T is a spanning tree of G.}

Algorithm 2 (Depth-first search algorithm).

Input. An arbitrary connected graph G with exactly n vertices.

Output. A spanning tree Tn of G.

Algorithm.

(0) Delete any multiple edges and loops from G; call the resulting graph G again.
{Then G is connected and includes all vertices of the original G.}

(1) Set k = 1; choose a vertex v1 of G; and let

V1 = {v1}, E1 = ∅, T1 = (V1, E1).

{Then T1 is a subgraph of G with 1 vertex that’s a tree.}

(2) While k < n, do: {You already have

Vk = {v1, v2, . . . , vk}, Ek = {e1, e2, . . . , ek−1}, Tk = (Vk, Ek)

with Tk a tree with k vertices that’s a subgraph of G.}

(2.1) Choose that vertex u ∈ Vk having the largest subscript such that there is
some edge e with ends u and some x that is not already pat of any cycle
consisting of edges from Ek. {Then x /∈ Vk and e /∈ Ek.}

(2.2) Let
vk+1 = x, ek = e,

and then let

Vk+1 = {v1, v2, . . . , vk, vk+1}, Ek+1 = {e1, e2, . . . , ek−1, ek}, Tk+1 = (Vk+1, Ek+1).

{Then Tk+1 is a tree with k + 1 vertices that’s a subgraph of G.}

(2.3) Increment k by 1.


