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Fermat’s Little Theorem

For the RSA encryption system, we shall need the following result

Theorem 1 (Fermat’s Little Theorem). Let p be a prime. Then for each integer

a not divisible by p,

ap−1 ≡ 1 (mod p).

Proof. Let a be an integer for which p ∤ a.
For each j = 1, 2, . . . , p − 1, let

rj = (ja) mod p,

so that 0 ≤ rj < p, that is, 0 ≤ rj ≤ p − 1.
We are going to prove that (r1, r2, . . . , rp−1) is a permutation of (1, 2, . . . , p− 1).
For each j = 1, 2, 3, . . . , p − 1, we have j a 6≡ 0 (mod p) (why?), that is, rj 6= 0.

Thus r1, r2, . . . , rp−1 all belong to the set {1, 2, 3, . . . , p − 1}.
Next, if 1 ≤ j, k ≤ p−1 with j 6= k, then rj 6= rk. (Why?) Thus {r1, r2, . . . , rp−1}

is a set of p − 1 numbers that is a subset of the set {1, 2, 3, . . . , p − 1}. Hence these
two sets are the same:

{r1, r2, . . . , rp−1} = {1, 2, 3, . . . , p − 1}

Since both sets have p − 1 elements, then (r1, r2, . . . , rp−1) is a permutation of
(1, 2, . . . , p − 1).

In other words, each of the p − 1 numbers a, 2 a, 3 a, . . . , (p − 1)a is congruent
modulo p to exactly one of the p − 1 numbers 1, 2, 3, . . . , p − 1. Hence

a · (2 a) · (3 a) · · ·
(

(p − 1) a
)

≡ 1 · 2 · 3 · · · (p − 1) (mod p).

In other words,
(p − 1)! ap−1 ≡ (p − 1)! (mod p). (*)

Now each of the factors 1, 2, 3, . . . , p−1 of (p−1)! is relatively prime to p and so, by
the Congruence Cancellation Law, may be cancelled from both sides of (*). After
the cancellations, what remains is

ap−1 ≡ 1 (mod p),

as desired.

The following corollary is, in fact, equivalent to Fermat’s Little Theorem.

Corollary 1. Let p be a prime. The for every integer a,

ap ≡ a (mod p).

Fermat’s Little Theorem may be used to calculate efficiently, modulo a prime,
powers of an integer not divisible by the prime.



Example 1. Calculate 2345 mod 11 efficiently using Fermat’s Little Theorem.
Solution. The number 2 is not divisible by the prime 11, so

210 ≡ 1 (mod 11)

by Fermat’s Little Theorem. By the division algorithm,

345 = 34 · 10 + 5.

Since 2345 = 234·10+5 = (210)34 · 25, then

2345 ≡ 134 · 25 ≡ 1 · 32 ≡ 10 (mod 11).

Thus 2345 mod 11 = 10.

The result actually needed for RSA encryption is the following corollary to Fer-
mat’s Little Theorem.

Corollary 2 (Euler’s Corollary). Let p and q be distinct primes. Then for each

integer a not divisible by either p or q,

a(p−1)(q−1) ≡ 1 (mod p q)

Proof. This is an exercise.

Both Fermat’s Little Theorem and Euler’s Corollary are special cases of a more
general result. To formulate the generalization, we need the following definition.

Definition 1. Euler’s phi function φ : N∗ → N∗ is defined by the rule that, for
each positive integer n,

φ(n) = #{ k : 1 ≤ k < n and k is relatively prime to n }.

For example, φ(2) = #{1} = 1, φ(3) = #{1, 2} = 2, φ(4) = #{1, 3} = 2,
φ(6) = #{1, 5} = 2, and φ(12) = #{1, 5, 7, 11} = 4.

Then the generalization is as follows.

Theorem 2 (Euler’s Theorem). Let m be an integer with m > 1. Then for each

integer a that is relatively prime to m,

aφ(m) ≡ 1 (mod m).

We will not prove Euler’s Theorem here, because we do not need it.
Fermat’s Little Theorem is a special case of Euler’s Theorem because, for a prime

p, Euler’s phi function takes the value φ(p) = p−1. Note that, for a prime p, saying
that an integer a is relatively prime to p is equivalent to saying that p does not
divide a.

Euler’s Corollary is also a special case of Euler’s Theorem because, for distinct
primes p and q, Euler’s phi function takes the value φ(p q) = (p − 1)(q − 1).
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