Math $455.1 \bullet$ April 4, 2009

Fermat's Little Theorem

For the RSA encryption system, we shall need the following result
Theorem 1 (Fermat's Little Theorem). Let p be a prime. Then for each integer a not divisible by p,

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

Proof. Let a be an integer for which $p \nmid a$.
For each $j=1,2, \ldots, p-1$, let

$$
r_{j}=(j a) \bmod p,
$$

so that $0 \leq r_{j}<p$, that is, $0 \leq r_{j} \leq p-1$.
We are going to prove that $\left(r_{1}, r_{2}, \ldots, r_{p-1}\right)$ is a permutation of $(1,2, \ldots, p-1)$.
For each $j=1,2,3, \ldots, p-1$, we have $j a \not \equiv 0(\bmod p)($ why? $)$, that is, $r_{j} \neq 0$. Thus $r_{1}, r_{2}, \ldots, r_{p-1}$ all belong to the set $\{1,2,3, \ldots, p-1\}$.

Next, if $1 \leq j, k \leq p-1$ with $j \neq k$, then $r_{j} \neq r_{k}$. (Why?) Thus $\left\{r_{1}, r_{2}, \ldots, r_{p-1}\right\}$ is a set of $p-1$ numbers that is a subset of the set $\{1,2,3, \ldots, p-1\}$. Hence these two sets are the same:

$$
\left\{r_{1}, r_{2}, \ldots, r_{p-1}\right\}=\{1,2,3, \ldots, p-1\}
$$

Since both sets have $p-1$ elements, then $\left(r_{1}, r_{2}, \ldots, r_{p-1}\right)$ is a permutation of $(1,2, \ldots, p-1)$.

In other words, each of the $p-1$ numbers $a, 2 a, 3 a, \ldots,(p-1) a$ is congruent modulo p to exactly one of the $p-1$ numbers $1,2,3, \ldots, p-1$. Hence

$$
a \cdot(2 a) \cdot(3 a) \cdots((p-1) a) \equiv 1 \cdot 2 \cdot 3 \cdots(p-1) \quad(\bmod p) .
$$

In other words,

$$
\begin{equation*}
(p-1)!a^{p-1} \equiv(p-1)!\quad(\bmod p) \tag{*}
\end{equation*}
$$

Now each of the factors $1,2,3, \ldots, p-1$ of $(p-1)$! is relatively prime to p and so, by the Congruence Cancellation Law, may be cancelled from both sides of $(*)$. After the cancellations, what remains is

$$
a^{p-1} \equiv 1 \quad(\bmod p),
$$

as desired.
The following corollary is, in fact, equivalent to Fermat's Little Theorem.
Corollary 1. Let p be a prime. The for every integer a,

$$
a^{p} \equiv a \quad(\bmod p) .
$$

Fermat's Little Theorem may be used to calculate efficiently, modulo a prime, powers of an integer not divisible by the prime.

Example 1. Calculate $2^{345} \bmod 11$ efficiently using Fermat's Little Theorem. Solution. The number 2 is not divisible by the prime 11, so

$$
2^{10} \equiv 1 \quad(\bmod 11)
$$

by Fermat's Little Theorem. By the division algorithm,

$$
345=34 \cdot 10+5
$$

Since $2^{345}=2^{34 \cdot 10+5}=\left(2^{10}\right)^{34} \cdot 2^{5}$, then

$$
2^{345} \equiv 1^{34} \cdot 2^{5} \equiv 1 \cdot 32 \equiv 10 \quad(\bmod 11)
$$

Thus $2^{345} \bmod 11=10$.
The result actually needed for RSA encryption is the following corollary to Fermat's Little Theorem.

Corollary 2 (Euler's Corollary). Let p and q be distinct primes. Then for each integer a not divisible by either p or q,

$$
a^{(p-1)(q-1)} \equiv 1 \quad(\bmod p q)
$$

Proof. This is an exercise.
Both Fermat's Little Theorem and Euler's Corollary are special cases of a more general result. To formulate the generalization, we need the following definition.

Definition 1. Euler's phi function $\phi: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ is defined by the rule that, for each positive integer n,

$$
\phi(n)=\#\{k: 1 \leq k<n \text { and } k \text { is relatively prime to } n\}
$$

For example, $\phi(2)=\#\{1\}=1, \phi(3)=\#\{1,2\}=2, \phi(4)=\#\{1,3\}=2$, $\phi(6)=\#\{1,5\}=2$, and $\phi(12)=\#\{1,5,7,11\}=4$.

Then the generalization is as follows.
Theorem 2 (Euler's Theorem). Let m be an integer with $m>1$. Then for each integer a that is relatively prime to m,

$$
a^{\phi(m)} \equiv 1 \quad(\bmod m)
$$

We will not prove Euler's Theorem here, because we do not need it.
Fermat's Little Theorem is a special case of Euler's Theorem because, for a prime p, Euler's phi function takes the value $\phi(p)=p-1$. Note that, for a prime p, saying that an integer a is relatively prime to p is equivalent to saying that p does not divide a.

Euler's Corollary is also a special case of Euler's Theorem because, for distinct primes p and q, Euler's phi function takes the value $\phi(p q)=(p-1)(q-1)$.

