Math 455.1 • 26 March 2009

The Cycle Lemma and Euler's Theorem

Lemma 1 (The Cycle Lemma). Let G be a graph in which each vertex has even degree. Let a be a vertex of G for which $\deg(a) \neq 0$. Then there is some cycle in G from a to a.

The proof is essentially an induction (or a recursion, depending on how you look at it). The method of proof will provide, in effect, an algorithm for finding such a cycle.

Proof. If there is a loop at a or multiple edges at a, we are done. Otherwise, remove all loops in G and, from each set of multiple edges between two adjacent vertices, remove all but one of these multiple edges. Now G is a simple graph. Still, each vertex has even degree and deg $(a) \neq 0$.

Let $v_1 = a$. Since $\deg(v_1) \neq 0$, there is some edge e_1 from v_1 to a vertex v_2 with $v_2 \neq v_1$.

Since deg (v_2) is even, there is an edge e_2 from v_2 to a vertex v_3 with $e_2 \neq e_1$. And since there is no loop or multiple edges at v_1 , necessarily $v_3 \neq v_1, v_2$. So far we have a trail v_1, e_1, v_2, e_2, v_3 .

Since deg(v_3) is even, there is an edge e_3 from v_3 to a vertex v_4 with $e_3 \neq e_2$. Then the edges e_1, e_2, e_3 are all distinct (why?).

If $v_4 = v_1$ we are done, because then $v_1, e_1, v_2, e_2, v_3, e_3, v_4$ is a cycle at $v_1 = a$.

Suppose, however, that $v_4 \neq v_1$. Then v_1, v_2, v_3, v_4 are all distinct (why?). So far we have a trail $v_1, e_1, v_2, e_2, v_3, e_3, v_4$.

Since deg(v_4) is even, there is an edge e_4 from v_4 to a vertex v_5 with $e_4 \neq e_3$. Also $v_5 \neq v_4, v_3$ (why?)—but it is possible that $v_5 = v_1$ or $v_5 = v_2$. Then the edges e_1, e_2, e_3, e_4 are all distinct (why?). So far we have a trail $v_1, e_1, v_2, e_2, v_3, e_3, v_4, e_4, v_5$.

If $v_5 = v_1$ we are done, because then $v_1, e_1, v_2, e_2, v_3, e_3, v_4, e_4, v_5$ is a cycle at $v_1 = a$.

Suppose that $v_5 \neq v_1$ but $v_5 = v_2$. Remove the cycle $v_2, e_2, v_3, e_3, v_4, e_4, v_5$ from G. Still, each vertex has even degree and $\deg(a) \neq 0$. Now start the entire process again!

Suppose, though, that $v_5 \neq v_1$ and $v_5 \neq v_2$. Then the vertices v_1, v_2, v_3, v_4, v_5 are all distinct, and the edges e_1, e_2, e_3, e_4 are all distinct. And we have the trail $v_1, e_1, v_2, e_2, v_3, e_3, v_4, e_4, v_5$. Now continue as before, getting a new edge from v_5 , etc. \Box

Theorem 1 (Euler's Theorem). A necessary and sufficient condition that a graph G be Eulerian is that G be connected and each vertex of G have even degree.

Proof. Necessity. Already done.

Sufficiency. Assume that G is connected and that each vertex of G has even degree.

The following algorithm shows how to construct an Eulerian trail in G.

- (0) Temporarily remove all loops from G. (We shall put them all back at the end.)
- (1) (1.1) Select an arbitrary vertex v_0 of G;
 - (1.2) form some cycle C in G from v_0 to v_0 {use Cycle Lemma method}; and
 - (1.3) remove all edges in C, leaving a subgraph H of G.
- (2) Now repeat the following while H still has any edges remaining...
 - (2.1) Choose some vertex v of H that is an end of some edge of C;
 - (2.2) form some cycle S in H from v to v {use Cycle Lemma method};
 - (2.3) form the new walk obtained by inserting S into C at vertex v {so that C is a trail in G}, and call the resulting trail C again; and
 - (2.4) remove all the edges and all the *isolated* (that is, degree 0) vertices of H, and call the resulting graph H again.
- (3) Finally, reinsert into C all the loops of G at their original ends. \Box

Then C is the desired Eulerian trail. \Box