Due: Monday, May 4

Instructions: Work either individually or in a team.

1. Use our algorithmic method of proof (from class) of Euler's Theorem to construct an Eulerian trail from vertex a to a in the following graph:

2. (a) Use the function EulerianQ from to determine for which $n=2,3, \ldots, 10$ the cube graph Q_{n} is Eulerian. Nicely format your results as a Mathematica table without directly entering the individual entries of the table. Note: In Combinatorica notation, the graph Q_{n} is Hypercube [n].
(b) In general, for which values of n is the graph Q_{n} is Eulerian? Formulate a conjecture based upon your results from (a).
(c) Now prove that your conjecture is true in general.
3. (a) For each of the graphs A and B shown below, do the hypotheses of Ore's Theorem about Hamiltonian graphs hold?

(b) Determine whether each of the graphs in (a) is Hamiltonian and indicate why or why not.
4. In class you saw a method that constructs, from the reflective Gray code of n-bit binary words, the reflective Gray code of $(n+1)$-bit binary words. Apply that method to construct the reflective Gray code of 5 -bit binary words starting with the following reflective Gray code of 4 -bit binary words, shown here (horizontally, to save space).
5. Repeat problem 2 but for "Hamiltonian" instead of "Eulerian". Hint: For (c), consider the relationship between Gray codes and (hyper)cubes.
6. For the digraphs D_{1}, D_{2}, and D_{3} shown below, which are isomorphic to which others, and why?

7. (a) Write the adjacency matrix of the following graph, using the ordering $1,2,3,4,5$ of the vertices:

(b) Draw a graph whose adjacency matrix is the following; number the vertices of your graph in the order corresponding to the order of entries in the matrix, of course.

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

8. Recall the following result:

Theorem. Let D be a digraph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and let A be the adjacency matrix of D corresponding to that ordering of the vertices. Let

$$
B=A+A^{2}+\cdots+A^{n-1}
$$

Then D is strongly connected if and only if each non-diagonal entry is strictly positive.
(a) State - but do not prove - an analog of this theorem for (undirected) graphs. The theorem you state is to be about ordinary graphs, not digraphs! So its conclusion should be about when the graph is connected, not when it is strongly connected. And it really should be some sort of analog.
You might want to try your purported theorem on some more examples than those in (b), below, just to make sure you didn't rush to a conclusion too soon. But you do not need to prove your theorem.
(b) Here are the adjacency matrices A_{1} and A_{2} of two graphs G_{1} and G_{2}. Use your theorem to determine whether each graph is connected.

$$
A_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Note: Feel free to use Mathematica to calculate the matrix powers and sum of these powers that's involved. Just be sure to use MatrixPower to compute powers of matrices - and not mistakenly use the "k construction, which just raises all elements of a matrix to the power k.

