Due: Monday, April 27

Instructions: Work either individually or in a team.

1. (a) With paper and pencil/pen draw a representation of the complete bipartite graph $K_{2,3}$ and tell how many edges it has. Then do the same for $K_{3,3}$
(b) In general, how many edges does the complete bipartite graph $K_{m, n}$ have? Why?
2. Use the Combinatorica package to create and display graphs that are isomorphic to the complete bipartite graph $K_{3,3}$ by each of the following methods. By means of suitable options from the package, number or label the vertices in each display so as to indicate isomorphisms of all the displayed graphs - that is, vertices that correspond under an isomorphism should be labeled the same.

- by means of CompleteGraph;
- by forming the join of two graphs that are isomorphic to each other but neither of which is isomorphic to $K_{3,3}$;
- by using FromOrderedPairs to build the graph.

3. For each of $k=2,3,4,5$, determine the number of walks of length exactly k between two adjacent vertices of $K_{3,3}$. Reason directly about the structure of the graph, and indicate your reasoning! (You may use a graph drawing from Problem 1 or 2, above, to guide your reasoning. But you should not arrive at your answers merely by enumerating all the walks of the specified lengths.)
4. In each part, determine whether the two graphs are isomorphic. If they are, construct a specific isomorphism; if they are not, prove that they are not by finding a graph property that one has but the other does not have.
(a) The graphs A_{1} and A_{2} shown below.

(b) The graphs B_{1} and B_{2} shown below.

5. (a) Draw-paper and pencil will suffice - a connected graph that has exactly 5 vertices and exactly $5-1=4$ edges.
(b) Prove that a connected graph with n vertices has at least $n-1$ edges. [Suggestion: Use induction on n.]
6. (a) Use a suitable Combinatorica function to construct an Eulerian trail in each of the complete graphs K_{5} and K_{7}. Display these Eulerian trails by using suitable options from Combinatorica to number the successive edges 1, 2, 3, etc., in the order they are traveled in that Eulerian trail.
(b) Prove Poinsot's Theorem: The complete graph K_{n} is Eulerian if and only if n is odd. (Note: This is a two-way implication!)
