Work either in a team or individually.

For *Mathematica* work here, turn in printed pages. Try to place associated written work directly onto such printed pages (or include text cells there).

For RSA systems, follow all our conventions: letters should be encoded into integers in \{0, 1, 2, \ldots, 25\} as usual; and consecutive pairs of the resulting integers should be joined into 2-digit to 4-digit integers before encryption is applied.

1. Use the method shown in class, applying Fermat’s Little Theorem, to find each of the following modular powers of 8 as efficiently as possible—*without* first actually computing 8 to the given powers.

 (a) \(8^{2003} \mod 7\)

 (b) \(8^{2003} \mod 17\)

2. Already known (and proved in class):

 Proposition 1. If \(c\) is relatively prime to \(m\), then \([c]\) has a multiplicative inverse in \(\mathbb{Z}_m\).

 Corollary 1. If \(m\) is prime, then every nonzero element of \(\mathbb{Z}_m\) has a multiplicative inverse.

 Prove the following two converses of those results:

 Proposition 2. If \([c]\) has a multiplicative inverse in \(\mathbb{Z}_m\), then \(c\) is relatively prime to \(m\).

 (Suggestion to get started: Assume that \([c]\) has a multiplicative inverse in \(\mathbb{Z}_m\). Express this in terms of a congruence modulo \(m\).)

 Corollary 2. If every nonzero element of \(\mathbb{Z}_m\) has a multiplicative inverse, then \(m\) is prime.

3. A bungling cipher bureau issues to Bob the public RSA key \((n, e) = (3239, 17)\) (which is rather insecure). Assist Alice by encrypting the following message that she wants to send Bob.

 What’s another word for Thesaurus?

4. (a) Starting with the primes \(p = 41\) and \(q = 67\), generate for Bob a suitable RSA public key \((n, e)\) with \(e\) as small as possible and yet satisfying the usual requirements.

 (b) Help Alice send the number 2418 securely to Bob: use that public key of Bob’s to encrypt the number.
(c) Calculate Bob’s private key.
(d) Decrypt for Bob the encrypted number from (b) that Alice sent him.

5. (Corrected from the version originally posted.)
 Alice uses the RSA system to encrypt a message and sends to Bob the following list of ciphertext numbers:

 274, 1412, 420, 1646, 539, 226, 1, 2143, 2180, 810, 1466, 1367, 1834, 1995, 2277, 1130, 1766, 1817, 1421, 293, 810, 1466, 1461, 591

 Bob’s private key is \((n, d) = (2573, 17) \). Decipher Alice’s message for Bob (into English words).

 For your convenience, that list of ciphertext numbers appears in notebook Set6#5.nb.

6. A cipher bureau issues to Alice the public RSA key \((n, e) = (2226295933, 52109) \).
 Show why that’s a bad key by deducing Alice’s corresponding private key.

 For your convenience, that public key appears in notebook Set6#6.nb.

7. [Extra credit!] Without using Euler’s Theorem, deduce from Fermat’s Little Theorem and/or other results:

 Corollary 3 (Euler’s Corollary). Let \(p \) and \(q \) be distinct primes and let \(a \) be an integer divisible by neither \(p \) nor \(q \). Then:

 \[
 a^{(p-1)(q-1)} \equiv 1 \pmod{pq}
 \]

 [Note: Since \(\phi(pq) = (p - 1)(q - 1) \), the desired result is a special case of Euler’s Theorem: \(a^{\phi(m)} \equiv 1 \pmod{m} \) when \(\gcd(a, m) = 1 \).]