
Math 421  è  November 2009

Complex nth roots

Copyright © 2004–2009 by Murray Eisenberg.  All rights reserved.

Prerequisites

Mathematica

Most of this notebook requires David Park'' Mathematica add-on application Presen-
tations. If this is not already available to you, see Park's Mathematica page for how
to obtain it.

In order to  reproduce all  the graphics  output  from this  notebook,  you must have
installed that application and then initialized it by evaluating, for example, the expres-
sion:

Needs["Presentations`Master`"]

That initialization is done below when it is first needed.

Mathematics

You should already know the basics of the algebra of complex numbers—how to
add and multiply them—and the representation of complex numbers by points in the
plane. 



The nth roots of a complex number

For a positive integer n=1, 2, 3, …, a complex number w ¹ 0 has n different com-
plex roots z. That is, for a given w ¹ 0, the equation zn = w has n different solutions
z.

This is the case, in particular, when w = 1.  In this case, the n different values of z

are called the nth roots of unity.

This notebook shows how to use Mathematica to calculate such roots as well as how
to visualize them geometrically. It also includes material about expressing complex
roots of unity in "polar form".

The cube roots of unity

For an example, work with the cube roots of unity. By definition, a cube root of
unity is a solution of the equation 

z3 = 1. 

Surely Mathematica can solve this equation directly. Try it:

In[1]:= SolveAz3 � 1, zE

Out[1]= 98z ® 1<, 9z ® -H-1L1�3=, 9z ® H-1L2�3==

That's  not  useful!  What are  the  solutions,  really?  Use ComplexExpand  on  the
result of Solve:

In[2]:= cubeRootsUnity = ComplexExpandAz �. SolveAz3 � 1, zEE

Out[2]= :1, -
1

2
-

ä 3

2
, -

1

2
+

ä 3

2
>

2   nthRoots.nb



How can you be sure that there are no more than just these three roots? This is a
consequence of the Fundamental Theorem of Algebra. (See the notebook FactorTheo-
rem.nb.) 

Visualizing the cube roots of unity

The graphics functions introduced below are used here just for visualizing the cube
roots of unity. But they can be used more generally to visualize diverse sets of com-
plex numbers.

You'll need a number of computational and graphics functions that are not already
built-in  objects  in Mathematica.   They are defined in David Park's Presentations
application. Tell Mathematica you are going to use that application:

In[3]:= Needs@"Presentations`Master`"D

Plotting roots of unity as points in the plane

You'll need to convert each of the complex numbers that are the cube roots of unity
into an Hx, yL-coordinate pair.  And then you'll need to surround it with the graphics

primitive Point  to produce a graphics object  capable  of being displayed.  Park's
function ComplexPoint does both of those things at once:

In[4]:= cubeRootsUnityP3T

Out[4]= -
1

2
+

ä 3

2

In[5]:= ComplexPoint@cubeRootsUnityP3TD

Out[5]= PointB:-
1

2
,

3

2
>F

You could do the same thing to all three roots by forming:

nthRoots.nb  3



In[6]:= Table@ComplexPoint@cubeRootsUnityPkTD, 8k, 1, 3< D

Out[6]= :Point@81, 0<D, PointB:-
1

2
, -

3

2
>F, PointB:-

1

2
,

3

2
>F>

A more direct, "functional" way to accomplish the same thing is:

In[7]:= Map@ComplexPoint, cubeRootsUnityD

Out[7]= :Point@81, 0<D, PointB:-
1

2
, -

3

2
>F, PointB:-

1

2
,

3

2
>F>

Here is the plot of the three cube roots of unity in the complex plane:

4   nthRoots.nb



In[8]:= Draw2D@
8H* Set color and point size for plotting points *L
Legacy�IndianRed, PointSize@LargeD,
H* Draw points *L
Map@ComplexPoint, cubeRootsUnityD

<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<D

Out[8]=

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0
Real

-0.5

0.5

Imaginary

nthRoots.nb  5



The preceding input  cell  included comments,  enclosed in (*  …*)  pairs,  just  to
help you understand what the various expressions do that constitute the entries in the
(list)  argument  to  Draw2D.  Ordinarily  such  comments  are  not  needed.
(Mathematica documentation is more usually in text cells.)  

But it does help to break the entire expression into separate lines to show successive
graphics directives—color and point size specifications, for example—and graph-
ics  primitives—ComplexPoints,  etc.—to which those  directives  apply.  Here's
the same expression as before, but with the comments omitted:

6   nthRoots.nb



In[9]:= Draw2D@
8
Legacy�IndianRed, PointSize@LargeD,
Map@ComplexPoint, cubeRootsUnityD

<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<D

Out[9]=

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0
Real

-0.5

0.5

Imaginary

Notice that the entire argument to the function Draw2D is a list (with a {} pair).

Other named alternatives for the PointSize directive are Medium, Small, and
Tiny. For more precise control, you can specify the point size by a number, which
will be the number of printer's points.

Exercise. Experiment with the effects of the following:

è Changing the argument to PointSize

è  Changing,  the  color  from Legacy@IndianRed  to  something  else
pretty.  

Note:  The named colors

Red,  Blue,  Green,Orange,  Yellow,Purple,Brown,  Cyan,
Magenta, Pink

are built-in and immediately available.  

Additional named colors are available. Use the Color Schemes palette to
find them. The Named colors in the Legacy group are the ones you may access
easily using the Presentations function Legacy , as with the legacy named color
IndianRed used above.

Still  more  colors  are  available  using  directly  the  built-in  Mathematica
ColorData function.

nthRoots.nb  7



Exercise. Experiment with the effects of the following:

è Changing the argument to PointSize

è  Changing,  the  color  from Legacy@IndianRed  to  something  else
pretty.  

Note:  The named colors

Red,  Blue,  Green,Orange,  Yellow,Purple,Brown,  Cyan,
Magenta, Pink

are built-in and immediately available.  

Additional named colors are available. Use the Color Schemes palette to
find them. The Named colors in the Legacy group are the ones you may access
easily using the Presentations function Legacy , as with the legacy named color
IndianRed used above.

Still  more  colors  are  available  using  directly  the  built-in  Mathematica
ColorData function.

To change the overall size of the plot, include as a second argument to Draw2D an
option of the form

ImageSize®72 inches

where  inches  is  the  number  of  inches  you  want  for  the  width  of  the  plot.
(Mathematica measures the width in "printer's points". There are 72 printer's points
to the inch.)

8   nthRoots.nb



In[10]:= Draw2D@
8
Legacy�IndianRed, PointSize@LargeD,
Map@ComplexPoint, cubeRootsUnityD

<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<, ImageSize ® 4 ´ 72D

Out[10]=

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0
Real

-0.5

0.5

Imaginary

In[11]:=

To annotate the display, you may include text at any locations by invoking the Pre-
sentations  function ComplexText. This function is used in the form

ComplexText[txt,z]

where the txt is the text you want to display and z is the complex number in the plane
where (the center of) the text is to be displayed.

nthRoots.nb  9



For example, create a label for the root 1 = 1 + 0 ä of unity like this…

In[12]:= ComplexText@TraditionalForm@cubeRootsUnityP1TD, cubeRootsUnityP1TD

Out[12]= Text@1, 81, 0<D
…and include that label like this:

In[13]:= Draw2D@
8
Legacy�Gold, PointSize@LargeD,
Map@ComplexPoint, cubeRootsUnityD,
Black, ComplexText@
TraditionalForm@cubeRootsUnityP1TD, cubeRootsUnityP1TD

<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<, ImageSize ® 4 ´ 72D

Out[13]=
1

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0
Real

-0.5

0.5

Imaginary

The point color there was changed to Gold so that you can see that the label was
displayed directly over the point. Ordinarily you will want to use some "offset" to
move the text away from the point…

10   nthRoots.nb



The point color there was changed to Gold so that you can see that the label was
displayed directly over the point. Ordinarily you will want to use some "offset" to
move the text away from the point…

In[14]:= incr = 0.1 + 0.2 ä;

ComplexText@TraditionalForm@cubeRootsUnityP1TD,
cubeRootsUnityP1T + incrD

Out[15]= Text@1, 81.1, 0.2<D
…and include that in the ComplexText item of the Draw2D expression:

In[16]:= Draw2D@
8
Legacy�Gold, PointSize@LargeD,
Map@ComplexPoint, cubeRootsUnityD,
Black, ComplexText@
TraditionalForm@cubeRootsUnityP1TD, cubeRootsUnityP1T + incrD

<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<, ImageSize ® 4 ´ 72D

Out[16]=

1

-0.5 0.5 1.0
Real

-0.5

0.5

Imaginary

nthRoots.nb  11



You may form labels for all three points at once like this:

In[17]:= Map@ComplexText@TraditionalForm@ðD, ð + incrD &, cubeRootsUnityD

Out[17]= :Text@1, 81.1, 0.2<D, TextB-
1

2
-

ä 3

2
, 8-0.4, -0.666025<F,

TextB-
1

2
+

ä 3

2
, 8-0.4, 1.06603<F>

Then here's the display of the three cube roots of unity with each labeled with its
value (and the point color restored to IndianRed):

12   nthRoots.nb



In[18]:= Draw2D@
8
Legacy�IndianRed, PointSize@LargeD,
Map@ComplexPoint, cubeRootsUnityD,
Black,

Map@ComplexText@TraditionalForm@ðD, ð + incrD &, cubeRootsUnityD
<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<, ImageSize ® 4 ´ 72D

Out[18]=
1

-
1

2
-

ä 3

2

-
1

2
+

ä 3

2

-0.5 0.5 1.0
Real

-0.5

0.5

1.0

Imaginary

Oops! One of the text labels is clipped at its top, and two run into the left edge of the
frame.  What's more, the whole plot has the origin off-center. To fix all this at the
same time, include the PlotRange option to Draw2D . The value of PlotRange

specifies the graphics "window" (just like for a calculator plot) and is used in the
form:

{{xmin,xmax},{ymin,ymax}}

You'll often need to do some figuring and some experimenting to adjust the value
for  PlotRange  so  as  to  provide  appropriate  dimensions.  (Good  graphics  takes
work—no matter how good the software creating it!)

nthRoots.nb  13



Oops! One of the text labels is clipped at its top, and two run into the left edge of the
frame.  What's more, the whole plot has the origin off-center. To fix all this at the
same time, include the PlotRange option to Draw2D . The value of PlotRange

specifies the graphics "window" (just like for a calculator plot) and is used in the
form:

{{xmin,xmax},{ymin,ymax}}

You'll often need to do some figuring and some experimenting to adjust the value
for  PlotRange  so  as  to  provide  appropriate  dimensions.  (Good  graphics  takes
work—no matter how good the software creating it!)

In[19]:= Draw2D@
8
Legacy�IndianRed, PointSize@LargeD,
Map@ComplexPoint, cubeRootsUnityD,
Black,

Map@ComplexText@TraditionalForm@ðD, ð + 0.1 + 0.2 äD &,

cubeRootsUnityD
<,
PlotRange ® 88-1.2, 1.2<, 8-1.2, 1.2<<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<, ImageSize ® 4 ´ 72D

Out[19]=

1

-
1

2
-

ä 3

2

-
1

2
+

ä 3

2

-1.0 -0.5 0.5 1.0
Real

-1.0

-0.5

0.5

1.0

Imaginary

When the entire Draw2D  expression such as the preceding one gets too long for
your comfort, you may want to define first the graphics objects and then reference
those names within the Draw2D expression. For example:

14   nthRoots.nb



In[20]:= points = Map@ComplexPoint, cubeRootsUnityD;
incr = 0.1 + 0.2 I;

labels =

Map@ComplexText@TraditionalForm@ðD, ð + incrD &, cubeRootsUnityD;

Draw2D@
8
Legacy�IndianRed, PointSize@LargeD,
points, Black, labels

<,
PlotRange ® 88-1.2, 1.2<, 8-1.2, 1.2<<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<, ImageSize ® 4 ´ 72D

Out[23]=

1

-
1

2
-

ä 3

2

-
1

2
+

ä 3

2

-1.0 -0.5 0.5 1.0
Real

-1.0

-0.5

0.5

1.0

Imaginary

nthRoots.nb  15



Plotting roots of unity as vertices of a triangle

The relevant  graphics  primitive  from Presentations  here  is  ComplexLine.   An

expression of the form

ComplexLine[{z1,z2}]

represents the line segment from the point  z1  to the point  z2.  More generally,  an
expression of the form

ComplexLine[{z1, z2, …, zn}]

represents the "broken line"—the polygonal curve—with vertices z1, z2, …, zn.
For example:

In[24]:= ComplexLine@cubeRootsUnityD

Out[24]= LineB:81, 0<, :-
1

2
, -

3

2
>, :-

1

2
,

3

2
>>F

The result of ComplexLine[{z1, z2, …, zn}] is the same as that of

Line[{ToCoordinates[z1], ToCoordinates[z2], …, ToCoordinates[zn]}]

where the Presentations function ToCoordinates converts a complex number to the corresponding list of its real and

imaginary parts. The function Line is a built-in Mathematica graphics primitive.

Here is the plot of that polygonal line:

16   nthRoots.nb



In[25]:= Draw2D@
8
Blue, ComplexLine@cubeRootsUnityD

<,
Axes ® True, ImageSize ® 4 ´ 72D

Out[25]=
-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

To close up such a polygonal curve to form a polygon, you need to append the first
point to the end of the list:

In[26]:= Append@cubeRootsUnity, First@cubeRootsUnityDD

Out[26]= :1, -
1

2
-

ä 3

2
, -

1

2
+

ä 3

2
, 1>

nthRoots.nb  17



In[27]:= ComplexLine@Append@cubeRootsUnity, First@cubeRootsUnityDDD

Out[27]= LineB:81, 0<, :-
1

2
, -

3

2
>, :-

1

2
,

3

2
>, 81, 0<>F

In[28]:= Draw2D@
8
Blue, ComplexLine@Append@cubeRootsUnity, First@cubeRootsUnityDDD

<,
Axes ® True, ImageSize ® 4 ´ 72D

Out[28]=
-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

To thicken the line segments in the triangle so as to make them more visible, include
the Thick directive (or a Thickness[size] directive) before the ComplexLine
object, like this:

18   nthRoots.nb



In[29]:= Draw2D@
8
Blue, Thick,

ComplexLine@Append@cubeRootsUnity, First@cubeRootsUnityDDD
<,
Axes ® True, ImageSize ® 4 ´ 72D

Out[29]=
-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

Exercise. Display the vertices of this triangle, as enlarged points, along with the
triangle itself on a single Draw2D display. Use different colors for the triangle
and its vertices.

Exercise. Include in the display text labels for the three points.

Be sure to do the following mathematical exercise now.

Exercise. What kind of triangle is it that has the cube roots of unity as its ver-
tices?  Base your answer upon what you see in the graphics display. Be as spe-
cific as you.

nthRoots.nb  19



Exercise. What kind of triangle is it that has the cube roots of unity as its ver-
tices?  Base your answer upon what you see in the graphics display. Be as spe-
cific as you.

Interlude: the principal argument of a complex number

Polar representations and arguments of a complex number

A complex number z = a + b ä is represented by the point Ha, bL in the plane.  The
numbers a and b are the usual Cartesian coordinates of that point. Such a point can
also be described by polar coordinates r and Θ with a = r cos Θ and b = r sin Θ.  In
other words, the complex number z  has a polar representation

z = r cos Θ + ä r sin Θ

with r ³ 0.  (The number r = 0 if and only if z = 0.)  See the figure below.

 Θ
r

z = x + ä y = r cosHΘL + r sinHΘL

x = r cosHΘL

y = r sinHΘL

The preceding figure was created in my notebook PrepRolarFigure.nb and copied to the preceding cell.

For example, the third cube root of unity Ω3 found above was:

In[30]:= Ω3 = cubeRootsUnityP3T

Out[30]= -
1

2
+

ä 3

2

20   nthRoots.nb



 (The preceding input cell used a suffix 3 to form the name Ω3 rather than use a sub-
script 3 to form the name Ω3, because employing subscripts in Mathematica names
presents certain technical difficulties.)

Since cos 2 Π � 3 = -1 � 2 and sin 2 Π � 3 = 3 � 2, this cube root of unity Ω3  has the

following polar representation:

In[31]:= CosB2
3

ΠF + ä SinB2
3

ΠF

Out[31]= -
1

2
+

ä 3

2

And that means that Θ = 2 Π � 3 is an argument of the cube root of unity Ω3.  

Exercise. Find two other arguments of Ω3, one positive and the other negative.

Exercise. Find an argument for each of the other two cube roots of unity.

Exercise. An earlier exercise asked you to say, from what you saw in the graphics
display, what kind of triangle it is that has the cube roots of unity as its vertices.
Use the results already obtained in this section to confirm mathematically what
you said.

The principal argument of a complex number

When z = r cos Θ + ä r sin Θ with r > 0, necessarily,

 r = z , 

 as the following Mathematica computation indicates.

nthRoots.nb  21



In[32]:= Clear@z, r, ΘD
z = r Cos@ΘD + ä r Sin@ΘD
Simplify@ComplexExpand@Abs@zDD, r > 0 D
Clear@z, r, ΘD

Out[33]= r Cos@ΘD + ä r Sin@ΘD
Out[34]= r

Because cos and sin are periodic,  a single point  Ha, bL  in the plane has infinitely
many different polar coordinates. But when Ha, bL ¹ H0, 0L, that is, when the com-
plex number z = a + b ä ¹ 0, then the point has unique polar coordinates r and Θ for
which

z = r cos Θ + ä r sin Θ, r > 0, -Π < Θ £ Π.

This unique Θ in the half-open, half-closed interval H-Π, ΠD is called the principal
argument of z.

For  example,  the  principal  argument  of  Ω3 = -1 � 2 + ä 3 � 2  is  the  number

Θ = 2 Π � 3.

Ü You may be accustomed to selecting polar coordinates Θ with 0 £ Θ < 2 Π.  How-

ever, in complex analysis -Π < Θ £ Π is the convention usually adopted for the princi-
pal argument.

Exercise. Check that neither of the other two arguments Θ  of Ω3 that you found
in the preceding exercise satisfies the condition  -Π < Θ £ Π  required to be the
principal argument.

The Mathematica function Arg finds the principal argument.  For example:

In[36]:= Arg@Ω3D

Out[36]=

2 Π

3

Exercise. Find the principal arguments of the other two of the three cube roots of
unity.

22   nthRoots.nb



Exercise. Find the principal arguments of the other two of the three cube roots of
unity.

Please  do  not  proceed  to  the  next  section  until  you  have  done  the  preceding
exercise!

The primitive cube root of unity

The principal arguments of the three cube roots of unity are:

In[37]:= Arg@cubeRootsUnityD

Out[37]= :0, -
2 Π

3
,
2 Π

3
>

The smallest strictly positive one of these three arguments is the third one, 2 Π � 3.
And that is the principal argument of 

Ω3 = cos 2 Π � 3 + ä sin 2 þ � 3.

This root with the smallest strictly positive principal argument is called the primi-
tive cube root of unity.

According to the theory of nth roots of unity, the set of all three cube roots of unity
consists of the powers of the primitive cube roots of unity. Here are those three pow-
ers of Ω3:

In[38]:= cubeRoots = ExpandAΩ380, 1, 2<E

Out[38]= :1, -
1

2
+

ä 3

2
, -

1

2
-

ä 3

2
>

nthRoots.nb  23



Exercise.  Verify that  the set  of three cube roots of unity  appearing in the list
cubeRootsUnity  is  exactly  the same as the set  of  powers of the primitive
cube root of unity  appearing in the list  cubeRoots.  Do this  by evaluating  a
single equation in Mathematica that has result True. (Hint: The difficulty is that
Mathematica lists give their entries in some particular order, whereas a set need
not  have  any  particular  order  for  its  members.  Try  the  Mathematica  function
Sort.)

Roots of other complex numbers

Example: Find the cube roots of 1 + ä.

One way to find these cube roots is simply to solve the corresponding cubic equation
z3 � 2 + 2 ä and, as usual, using ComplexExpand so as to obtain actual complex
numbers in x + ä y form:

In[39]:= ComplexExpandAz �. SolveAz3 � 2 + 2 ä, zEE

Out[39]= :1
2

-
3

2
+ ä -

1

2
-

3

2
,
1

2
+

3

2
+ ä -

1

2
+

3

2
, -1 + ä>

According to the theory, you only need one of the three cube roots of 2 + 2 ä   in
order to find them all. Here's the last of the three:

In[40]:= Ζ = Last@%D

Out[40]= -1 + ä

Then all the cube roots of2 + 2 ä are, according to the theory, the products of that one
cube root and the cube roots of unity. And the cube roots of unity are just the powers
of the primitive cube root of unity Ω3. So again the three cube roots of 2 + 2 ä are:

24   nthRoots.nb



In[41]:= ComplexExpandAΖ Ω380,1,2<E

Out[41]= :-1 + ä,
1

2
-

3

2
+ ä -

1

2
-

3

2
,
1

2
+

3

2
+ ä -

1

2
+

3

2
>

Just to be convinced that the theory really is correct, check that these numbers all do
have cubes equal to2 + 2 ä:

In[42]:= SimplifyA%3E

Out[42]= 82 + 2 ä, 2 + 2 ä, 2 + 2 ä<

Exploration: fourth, fifth, sixth, … roots of unity

Exercise.  (a)  Repeat  for fourth roots  of  unity  the calculations  done above for
cube roots of unity. How many do you obtain?
(b) Plot the fourth roots of unity as points in the plane and as the vertices of some
polygon. What do you observe about this polygon?

Exercise. (a) Repeat for fifth roots of unity the calculations done above for cube
roots of unity. How many do you obtain?
(b) Plot the fifth roots of unity as points in the plane and as the vertices of some
polygon.  What do you observe about this polygon?

Exercise. (a) Repeat for sixth roots of unity the calculations done above for cube
roots of unity. How many do you obtain?
(b) Plot the sixth roots of unity as points in the plane and as the vertices of some
polygon. What do you observe about this polygon?

nthRoots.nb  25



Exercise. What does the evidence obtained so far suggest as to: 
(a) how many nth roots of unity there are; and
(b) the configuration of these nth roots of unity as points in the complex plane?

Appendix: Plotting roots of unity as vectors from the origin

Instead of viewing the cube roots of unity just as points, you can also represent them
by vectors—arrows drawn from the origin to those points.  The graphics function
ComplexArrow  from Presentations  draws such  vectors.  This  function  takes  as

argument a list of two complex numbers that prescribe the tail and the head of the
arrow, respectively.

Consider, for example, the third cube root of unity  (in the order that the three cube
roots of unity were found)…

In[43]:= cubeRootsUnityP3T

Out[43]= -
1

2
+

ä 3

2

…and form the arrow from the origin to that cube root of unity: 

In[44]:= ComplexArrow@80, cubeRootsUnityP3T<D

Out[44]= ArrowB:80, 0<, :-
1

2
,

3

2
>>F

As you see, ComplexArrow creates an equivalent object with head Arrow. The function Arrow is a built-in Mathemat-

ica object.  And what the Presentations  ComplexArrow  does is to apply ToCoordinates to each of the complex

number  arguments—here  0  and  -1 �2 + ä 3 �2—to  convert  them  into  the  corresponding  Hx, yL-coordinate  pairs

{0,0} and {-1/2, 2 /2} required by Arrow. In other words,

ComplexArrow[{0,cubeRootsUnityP3T}]
gives the same result as

Arrow[{ToCoordinates[0],ToCoordinates[cubeRootsUnityP3T]}]

Plot that vector:

26   nthRoots.nb



In[45]:= Draw2D@
8
Blue,

ComplexArrow@80, cubeRootsUnityP3T<D
<,
Axes ® True, ImageSize ® 3 ´ 72D

Out[45]=

-0.5 -0.4 -0.3 -0.2 -0.1

0.2

0.4

0.6

0.8

The following forms the list of vectors to all three cube roots of unity:

In[46]:= Map@ComplexArrow@80, ð<D &, cubeRootsUnityD

Out[46]= :Arrow@880, 0<, 81, 0<<D,

ArrowB:80, 0<, :-
1

2
, -

3

2
>>F, ArrowB:80, 0<, :-

1

2
,

3

2
>>F>

To shorten  such expressions,  especially  when they  are  part  of  larger  expressions
(such as Draw2D commands), you may use the special input form 

func/@list, 

to mean:

Map[func,list] 

For example:

nthRoots.nb  27



To shorten  such expressions,  especially  when they  are  part  of  larger  expressions
(such as Draw2D commands), you may use the special input form 

func/@list, 

to mean:

Map[func,list] 

For example:

In[47]:= ComplexArrow@80, ð<D & �� cubeRootsUnity

Out[47]= :Arrow@880, 0<, 81, 0<<D,

ArrowB:80, 0<, :-
1

2
, -

3

2
>>F, ArrowB:80, 0<, :-

1

2
,

3

2
>>F>

And finally here's the desired plot of the vectors representing all three cube roots of
unity:

28   nthRoots.nb



In[48]:= Draw2D@
8
Blue, Thick,

ComplexArrow@80, ð<D & �� cubeRootsUnity

<,
Axes ® True, ImageSize ® 3 ´ 72D

Out[48]=
-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

It's easy to plot both the points and the vectors in the same graphics display:

nthRoots.nb  29



In[49]:= Draw2D@
8
Directive@Legacy�IndianRed, PointSize@LargeDD,
ComplexPoint �� cubeRootsUnity,

Directive@Blue, ThickD, ComplexArrow@80, ð<D & �� cubeRootsUnity

<,
PlotRange ® 88-1.2, 1.2<, 8-1.2, 1.2<<,
Axes ® True, AxesLabel ® 8"Real", "Imaginary"<, ImageSize ® 4 ´ 72D

Out[49]=

-1.0 -0.5 0.5 1.0
Real

-1.0

-0.5

0.5

1.0

Imaginary

The Directive construction just used is a handy way of combining several graph-
ics directives in order to make clear that they are going to be applied together to the
graphics objects that follow (until some new directives override them).

In  a  similar  way,  you  can  display  various  graphics  objects  in  a  single  Draw2D
display.

Exercise. Include text labels for the three points in the preceding display .

30   nthRoots.nb



Exercise. In a single Draw2D display, show the cube roots of unity, the triangle
having them as vertices, and arrows going from the origin to these vertices. 

Exercise. Repeat the preceding exercise but with the sixth roots of unity.  (See
the Exploration section.)

nthRoots.nb  31


