Math 236 work for Friday, Feb. 23

Exercise 1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection across the x_1 -axis and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation around the origin through an angle of $\pi/2$ counterclockwise.

(a) Is $T \circ S = S \circ T$, that is, is $(T \circ S)(\vec{x}) = (S \circ T)(\vec{x})$ for all $\vec{x} \in \mathbb{R}^2$? Why or why not?

(b) Let A and B be the standard matrices of T and S, respectively. What are A and B?

(c) For the matrix products AB and BA of that A and B, does AB = BA? Why or why not?

Exercise 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection across the x_1 -axis and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection across the x_2 -axis.

(a) What transformation is $T \circ S$, that is, what is $(T \circ S)(\vec{x})$ for all $\vec{x} \in \mathbb{R}^2$? (Think geometrically here!)

(b) What are the standard matrices A and B of T and S, respectively? (*Hint:* What are the images of $\overrightarrow{e_1}$ and of $\overrightarrow{e_2}$? Think geometrically.)

(c) What is the matrix product AB here?