Math 236 work for Friday, Feb. 23

Exercise 1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection across the x_{1}-axis and $S: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} be rotation around the origin through an angle of $\pi / 2$ counterclockwise.
(a) Is $T \circ S=S \circ T$, that is, is $(T \circ S)(\vec{x})=(S \circ T)(\vec{x})$ for all $\vec{x} \in \mathbb{R}^{2}$? Why or why not?
(b) Let A and B be the standard matrices of T and S, respectively. What are A and B ?
(c) For the matrix products $A B$ and $B A$ of that A and B, does $A B=B A$? Why or why not?

Exercise 2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection across the x_{1}-axis and $S: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} be reflection across the x_{2}-axis.
(a) What transformation is $T \circ S$, that is, what is $(T \circ S)(\vec{x})$ for all $\vec{x} \in \mathbb{R}^{2}$? (Think geometrically here!)
(b) What are the standard matrices A and B of T and S, respectively? (Hint: What are the images of $\overrightarrow{e_{1}}$ and of $\overrightarrow{e_{2}}$? Think geometrically.)
(c) What is the matrix product $A B$ here?

